Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Установление строения белковой молекулы

    После установления того факта, что в состав белков входят только L-формы аминокислот, для дальнейшего изучения строения белка важнейшим стало изучение аминокислотного состава белков, способа связи аминокислот в молекуле белка. Именно этой стороне проблемы строения белка были посвящены многочисленные исследования, выполненные на протяжении первой половины нашего столетия. Поскольку эта сторона дела не имеет прямого отношения к обсуждаемому нами вопросу о пространственном строении белка, мы не будем здесь разбирать ни соответствующих экспериментальных работ, ни предлагавшихся в разное время теорий. [c.588]


    Исследования белка, как экспериментальные, так и теоретические, независимо от конкретных целей и используемых методов, естественным об разом подразделяются на пять фундаментальных задач, составляющих единую проблему Первые две задачи включают изучение химического и пространственного строения белковых молекул Они были рассмотрены в предшествующих томах настоящего издания [1, 2] Третья задача заключается в установлении взаимосвязи между природными аминокислотными последовательностями, нативными пространственными формами и динамическими конформационными свойствами, т е в определении молекулярной структурной организации белков Но прежде чем перейти к обсуждению этой задачи, целесообразно вновь обратиться к уже рассмотренному материалу и подвести некоторые итоги [c.59]

    Строение белков. Несмотря на сложность белковых молекул, все же удалось подойти к выяснению их структуры. Два основных метода обычно применяются химиками при установлении структуры вещества — его разложение (анализ) и его воспроизведение (синтез). Оба этих метода -были применены для решения вопроса о структуре белков. [c.278]

    Рождение молекулярной биологии (1940-1960-е годы) означало определение химического и пространственного строения белков, нуклеиновых кислот и молекул других соединений живой материи, а также установление универсальности генетического кода и молекулярного механизма наследственности и изменчивости, общности биохимических принципов метаболизма и морфологического построения всего живого и многое другое. В результате органический мир предстал не как хаотическая и устрашающая своим многообразием совокупность видов и форм, а как иерархически упорядоченная система, имеющая единую молекулярную структурную организацию. [c.9]

    Основная физическая задача, возникающая при изучении белков, состоит в установлении связи между их строением и свойствами. Это — классическая задача молекулярной физики. Решение ее начинается с установления структуры белка — пространственного расположения атомов и состояния их электронных оболочек в белковой молекуле. [c.177]

    Крупные заслуги в установлении строения белков и в их частичном синтезе принадлежат кембриджскому профессору (Англия) Ф. Сенгеру (1918). С 1945 г. он начал свои известные исследования гормона поджелудочной железы — инсулина. Молекулярная масса инсулина оказалась сравнительно небольшой — около 12 000. Было известно, что молекула инсулина состоит из двух полипептидных цепочек различной длины, связанных друг с другом дисульфидным мостиком. [c.262]


    Вместе с тем в период с 1902 г., когда был синтезирован первый дипептид, и до 1945 г., хотя и было синтезировано огромное количество пептидов, изучение деталей структуры природных белков продвинулось вперед весьма незначительно. Количество пептидов, выделенных из гидролизатов белков, строение которых было установлено, исчислялось единицами, а расположение этих пептидов в белковой молекуле было совершенно неясно. Очень незначительными были успехи в деле изучения строения природных пептидов. Практически самым большим достижением в этой области было установление строения трипептида глутатиона Ф. Гопкинсом. [c.130]

    Важным этапом в исследовании строения белка явилось установление в них пептидной связи, образованной взаимодействием карбоксильной и аминогрупп, входящих в состав различных аминокислот (рис. 54). Впервые важная роль группы —ЫН—СО— в построении белковой молекулы отмечена А. Д. Данилевским (1888 г.). [c.277]

    Таким образом, к решению задачи химического строения белков присоединилась еще одна область естествознания - физика. С 1920-х годов белок становится объектом всесторонних химических, биологических и физических исследований, а проблема белка (в ту пору она сводилась, по существу, только к установлению химического типа белковых молекул) - проблемой всего естествознания. [c.66]

    Так как размеры белковых молекул весьма велики, то нет настолько тяжелых атомов, рассеяние на которых могло бы преобладать в картине рентгеновской дифракции. Для установления структуры белков необходимо применять метод многократного изоморфного замещения, получая кристаллы по крайней мере двух производных с тяжелыми атомами, для которых введение тяжелого атома не изменяет геометрию кристалла белка и строение самой белковой молекулы (изоморфное замещение). [c.232]

    Квантовая химия - это раздел теоретической химии, в котором строение и свойства химических соединений, их взаимодействия и превращения рассматриваются на основе представлений квантовой механики и экспериментально установленных закономерностей, в том числе описываемых классической теорией химического строения. Одно из наиболее важных ее направлений -изучение элементарных актов химических превращений, подчас выделяемое в последние годы отдельно как химическая динамика. Квантовая химия использует математический аппарат и методы квантовой механики для описания и расчета свойств химических соединений, начиная с атомов и простейших молекул и кончая такими высокомолекулярными соединениями, как белки, и [c.3]

    Нельзя сказать, чтобы автору удалось вполне успешно выполнить эту задачу. Главное затруднение, которое возникает перед всяким исследователем, поставившим себе такую задачу, состоит в том, что в настоящее время известно лишь очень небольшое число твердо установленных фактов относительно строения белков и характера связей, обусловливающих их специфичность и различные биологические свойства (например, ферментативную и гормональную активность). Автор в большинстве случаев пытается разрешить это затруднение, идя по линии наименьшего сопротивления и основывая свои выводы не на твердо установленных фактах, а на более или менее вероятных предположениях и гипотезах. В этом, без сомнения, кроется причина спорности и шаткости многих положений автора и известной тенденциозности в подборе и истолковании экспериментальных данных. Особенно ясно эта тенденциозность проявляется в разделе, посвященном вопросу о наличии циклических группировок в молекуле белка. Поскольку положение о наличии этих группировок в молекуле белка противоречит концепции автора, он совершенно произвольно и необоснованно отбрасывает все экспериментальные данные, имеющиеся по этому вопросу в литературе, и объявляет их артефактами. Исследования акад. Н. Д. Зелинского и его сотрудников (В. С. Садиков, [c.3]

    В конце 40-х — начале 50-х годов нашего века химикам удалось обстоятельно проанализировать с помощью метода бумажной хроматографии смеси аминокислот, полученные при расщеплении ряда белков. В результате удалось установить общее число остатков каждой аминокислоты, содержащихся в молекуле белка, однако порядок расположения аминокислот в полипептидной цепи при этом определить, естестве шо, было нельзя. Английский химик Фредерик Сенгер (род. в 1918 г.) изучал инсулин — белковый гормон, состоящий примерно из пятидесяти аминокислот, распределенных между двумя взаимосвязанными пол и пептидными цепями. Сенгер расщепил молекулу на несколько более коротких цепей и проанализировал каждую из них методом бумажной хроматографии. Восемь лет продолжалась кропотливая работа по складыванию мозаики , но к 1953 г. был установлен точный порядок расположения аминокислот в молекуле инсулина. Позднее таким же способом было установлено детальное строение даже больших молекул белка [c.130]


    Такие белки, как инсулин и гемоглобин, обладают рядом специфических свойств, благодаря которым приобретают особо важное значение для организма. Инсулин — гормон, способствующий процессу окисления сахара в организме животного. Гемоглобин обратимо связывает кислород, присоединяя его в легких и отдавая в тканях. Эти точно установленные функции наглядно показывают, что молекулы белка должны обладать специфическим строением. [c.394]

    Если белки в чем-то и проявляют общность в химическом поведении, позволяющем отнести их к одному классу веществ, то это только по отношению к протеолитическим ферментам. Подробно о становлении и развитии энзимологии, а также о механизме ферментативного расщепления белков говорится в следующем томе настоящего издания. Сейчас важно отметить, что в рассматриваемый период в этой области произошли глубочайшие изменения. Обратим внимание лишь на два события, которые оказали решающее влияние на изучение химического строения белковых молекул. Первым из них явилось установление Дж. Самнером (1926 г.) и Дж. Нортропом (1930 г.) белковой природы ферментов, что привело к совмещению задач химического и пространственного строения последних с задачами остальных белков. Второе событие заключалось в строгом доказательстве Э. Вальдшмидт-Лейтцем (1930-е годы) исключительно аминокислотного состава белкового гидролизата, полученного при дробном ферментативном гидролизе, т.е. комбинированном действии представительного набора ставших известными к тому времени протеолитических ферментов. Э. Вальдшмидт-Лейтц показал, что белки являются линейными полипептидами, звенья которых состоят из двадцати стандартных аминокислот с -конфигурацией центрального углеродного [c.66]

    Изложенный эмпирический метод основан на экспериментально установленных корреляциях между первичной последовательностью и структурой белка и на представлениях о блочном характере строения белков. Строго говоря, здесь не учитываются в явном виде энергия и механизмы взаимодействия между соседними остатками в основной цепи. Это, в частности, относится и к конформациям боковых цепей, составляющих по числу атомов 2/3 всего белка, для которых недостаточно эмпирических корреляций их структурного положения. В эмпирическом методе ставится на первом этапе задача предсказания в общих чертах модели всего белка с последующим ее уточнением путем минимизации энергии при вариации степеней свободы. Очевидно, дальнейший прогресс на этом пути может быть достигнут при накоплении большого экспериментального материала и соответствующих статистических корреляций между аминокислотной последовательностью и особенностями белковой структуры. Не меньшее значение имеют разработка методов обобщенного топологического описания структур белковых молекул. [c.209]

    Пессимизм в отношении возможностей органической химии решить задачу химического строения белков удалось развеять Э. Фишеру, самому авторитетному химику конца Х1Х-начала XX в. Он выдвинул эвристическую идею о полипептидном строении белков, которая включала ряд постулатов, необходимых для формулировки принципов структурной организации молекул этого класса. После создания гипотетической модели Фишером составлена обширная программа ее опытной проверки. При ее реализации не было получено ни одного результата, который бы противоречил априори выдвинутому предположению о химическом типе белков. Все они свидетельствовали о том, что белковые молекулы представляют собой линейные полимеры, построенные из аминокислотных остатков, соединенных пептидными связями. Таким образом, можно было утверждать, что химический тип белков установлен и следует приступить к решению других вопросов первой фундаментальной задачи проблемы -разработке методов анализа и синтеза природных аминокислотных последовательностей. [c.62]

    С органическими соединениями, молекулы которых отличались внушительными размерами, дело обстояло сложнее. Используя методы начала XIX в., было очень тяжело, вероятно и невозможно, установить точную эмпирическую формулу даже такого довольно простого по сравнению, например, с белками органического соединения, как морфин. В настоящее время известно, что в молекуле морфина содержатся 17 атомов углерода, 19 атомов водорода, 3 атома кислорода и 1 атом азота ( ijHisNOa). Эмпирическая формула уксусной кислоты (С2Н4О2) намного проще, чем формула морфина, но и относительно этой формулы в первой половине XIX в. не было единога мнения. Однако, поскольку химики собирались изучать строение молекул органических веществ, начинать им необходимо было с установления эмпирических формул. [c.74]

    Основной интерес химиков и биологов сосредоточен на установлении взаимосвязи строения и функции белка. Пептиды и белки могут содержать в молекуле как основные (—NH2, O2 ), так [c.299]

    В настоящем изложении не ставится цель датъ исчерпывающее перечисление реакций, оно посвящено рассмотрению общего вопроса о подходе к установлению строения молекулы белка. [c.460]

    Следующей задачей при определении строения пептидов является установление характера связи и последовательности аминокислотных остатков в молекуле пептида или белка. Эта задача, трудно выполнимая в настоящее время для белков с большим молекулярным весом, облегчается тем, что в природе встречается значительное число относительно низкомолекулярных соединений, представляющих собою пептиды. Виланд предлагает различать три группы природных пептидов олигопептиды, состоящие из 2—10 аминокис/ют, полипептиды, состоящие из 10—100 аминокислот, и макропептиды, к которым относятся собственно белки. Изучение природных пептидов представляет собой важный этап в подходе к изучению строения белка. Исследование обычно начинают с определения числа цепей, входящих в состав объекта изучения. Для этого пользуются одним из ранее приведенных методов, например диннтрофенилированием, действием азотистой кислогы или аминопептидазы для определения Н-концевой аминокислоты и восстановлением, гидразинолизом или действием карбоксипептидазы для определения С-концевого остатка (см. стр. 510 и далее). [c.514]

    В истории химии белка обращает внимание прежде всего беспрецедентная продолжительность поиска решения структурной задачи Только на установление химического типа белковых молекул потребовалось с момента выделения первого белкового препарата (1728 г) более двухсот лет. На достижение тех же целей, касающихся жиров, углеводов и нуклеиновых кислот, затрачено значительно меньше времени и сил Химические типы первых двух были установлены в 80-90-е годы XIX в Хотя принцип построения молекул нуклеиновых кислот стал известен практически одновременно с белками, выделены они были только в 1859 г (Ф Мишер), а обратили на себя серьезное внимание лишь в 30-е годы XX в (П Левин) Целенаправленное изучение химического строения нуклеиновых кислот как молекулярной первоосновы генетического материала началось после исследования О Эвери в 1944 г и завершилось классическими работами Э Чаргаффа уже в 1961 г, когда был окончательно установлен химический тип молекул ДНК [c.59]

    К середине 1940-х годов пептидная теория белков Фишера и Вальд-шмидт-Лейтца была почти повсеместно принята. Встал вопрос о точном знании деталей химического строения, т.е. о конкретном порядке расположения аминокислот в белковых цепях. Впервые такое сложное исследование удалось провести в течение десятилетия (1945-1954 гг.) ф. Сенгеру, определившему аминокислотную последовательность инсулина. Вторым белком была рибонуклеаза А. Полная структура этого фермента расшифрована С. Муром, К. Хирсом и У. Стейном (1960 г.). Вскоре идентификация химичекого строения белков стала производиться с помощью автоматических секвенаторов и приобрела рутинный характер. Однако достижения в решении первой фундаментальной задачи проблемы белка не принесли удовлетворения. Сначала не вызывало сомнений, что химические и физические свойства белков получат свое объяснение, как только станет известно химическое строение их молекул. Однако основанная на опыте всей органической химии и биохимии надежда на то, что установление химического типа и строения молекул окажется достаточным для понимания хотя бы в общих чертах их специфического функционирования, не оправдалась. Тем самым определение структуры из конечной цели исследования превратилось в необходимый для последующего изучения белков начальный этап. Утвердилась мысль, что химическая универсальность и практически необозримое многообразие свойств соединений этого класса при строгой специфичности его отдельных представителей связаны с особенностями пространственных структур белковых молекул. [c.67]

    Кислые мукогюлисахариды в соединительной ткани связаны с белка- ми (см. стр. 602), поэтому для их выделения, как правило, проводят предварительное разрушение белков протеолитическими ферментами или расщепление углевод-белковых связей щелочами, после чего полисахариды экстрагируют растворами солей . Белки, также переходящие при этом в раствор, удаляют с помощью денатурирования. Смеси мукополисахаридов можно разделить на компоненты фракционированным осаждением спиртом в виде солей с различными катионами , но лучшие результаты дает фракционированное осаждение цетавлоном или ионообменная хроматография . Особенности химического поведения мукополисахаридов сделали чрезвычайно сложной задачу установления их строения. Даже идентификация моносахаридов после полного кислотного гидролиза (обычно одна из самых простых операций) является в мукополисахаридах трудной проблемой. Наличие в одной молекуле уроновых кислот и аминосахаров приводит к тому, что полисахариды гидролизуются лишь в жестких условиях, при которых освобождающиеся уроновые кислоты подвергаются интенсивному разрушению. Поэтому в последнее время работу по установлению строения этих веществ проводят на модифицированных полисахаридах, в которых сульфатные группы удалены, а все карбоксильные группы уроновых кислот восстановлены в первичноспиртовые. Ряд других классических методов установления строения полисахаридов применим к мукополисахаридам с трудом это относится к перйодат ному окислению, вызывающему разрушение остатков уроновых кислот вследствие сверхокисления, к метилированию, в применении которого успехи достигнуты сравнительно недавно. Основными методами, позволившими выяснить строение мукополисахаридов, послужили методы частичного гидролиза и частичного ферментативного расщепления. [c.541]

    Т. е. для биополимеров, не имеющих регулярной структуры, необходимо установление общего плана построения молекул сюда относятся как сведения об архитектонике молекулы (число и относительное расположение разветвлений, природа и размеры внутренних и внешних цепей), так и данные о последовательности моносахаридов на каждом конкретном участке молекулы полимера. Нельзя не отметить, что задача установления общего плана построения полимерной молекулы при выяснении первичной структуры белков и нуклеиновых кислот (биополимеров с единственным типом межмономерной связи) не ставится и является характерной для полисахаридов, приобретая особое значение в случае смешанных углеводсодержащих биополимеров. В настоящее время для решения этой задачи применяют фрагментацию полисахаридной цепи на олигомеры посредством частичного расщепления гликозидных связей. Методы установления строения низших олигосахаридов, получаемых при такой фрагментации, в настоящее время разработаны достаточно хорошо и применимы к небольшим количествам вещества, но они весьма трудоемки. Поэтому требует внимания разработка прямых физико-химических методов идентификации и установления строения олигосахаридов. [c.633]

    Большой отрезок времени в истории науки о белке занимают поиски принципиальных общих черт строения молекулы белка. Этому периоду А. Н. Шамин и уделяет главное внимание. Читая книгу, невольно увлекаешься борьбой идей, логикой развития структурных представлений, видишь, как этап за этапом, непрерывно обогащаясь экспериментальными фактами, представления о строении белка постепенно переходят от смутных, неопределенных, грубых моделей в более четкие, конкретные, изощренные и, наконец, достигают вершины сегодняшнего дня — установления трехмерной структуры белка. Эта последняя часть выполнена или вернее выполняется сейчас не химическими методами, а методами рентгеноструктурного анализа. Тем не менее, результаты этих поисков основываются на прочной базе структурных представлений органической химии и их следует рассматривать как плод почти двухвековой напряженной работы человеческой мысли. Можно только удивляться, что человек, никогда не видя атомов, сумел разглядеть строение молекулы белка, состоящего из тысяч атомов, для каждого из которых уготовано свое определенное место. [c.4]

    Дальнейшая работа Д. Кендрью при разрешающей способности в 2 А привела к выяснению новых подробностей вторичной конфигурации полипептидной цепи миоглобина. Это представлялось чрезвычайно важным, так как могло привести исследователей к установлению закономерностей образования третичной структуры белков. Сам Кендрью сначала даже не предполагал, Что удастся идентифицировать и боковые радикалы. Но, как он сказал на V Международном конгрессе по биохимии в 1964 г., результаты превзошли все ожидания, поскольку оказалось возможным различать на рентгенограмме отдельные боковые цепи в виде оптически более плотных участков, отходящих от основной спиральной цепи. Более детальное их исследование зачастую позволяет довольно точно идентифицировать боковые цепи иногда остаются семнения в абсолютной правильности этой идентификации, но во всяком случае при установлении строения боковых цепей уже можно выбирать всего Из двух или трех возможных вариантов [23]. Такая высокая разрешающая способность позволила ученому точно идентифицировать около одной трети всех боковых радикалов, а остальные две трети — с бчень большой степенью вероятности [23]. Эти результаты говорили сами за себя — наука очень близко подошла к возможности непосредственного определения последовательности аминокислотных остатков в молекулах глобулярных белков методом лишь одного рентгшоструктурного анализа. Кендрью сообщил о сопоставимости результатов рентгеноструктурного анализа с предварительными результатами, полученными другими авторами при помощи чисто химических методов. Так было проведено сравнение последовательности аминокислотных остатков пептидов, выделенных из миоглобина. Кендрью обнаружил, что почти все полученные таким образом пептиды могут быть размещены вдоль полипептидной цепи построенной им модели, причем этот порядок размещения соответствовал порядку размещения пептидов вдоль цепи, предложенному на основании химического анализа. Несмотря на некоторые противоречия и несовпадения, можно надеяться, что увеличение разрешающей способности метода позволит однозначно решать вопрос о последовательности аминокислотных остатков с применением только рентгеноструктурного анализа. [c.152]

    Выделение и установление строения. Ангиотензиноген представляет собой белок, из которого при действии ренина образуется ангиотензин он содержится в аг-глобулиновой фракции белков плазмы крови [1734, 1737]. До настоящего времени ангиотензиноген удалось выделить лишь в частично очищенном состоянии [853, 2130]. Скеггс и сотр. [2130], основываясь на том факте, что вся молекула ангиотензиногена не является необходимой для проявления субстратной специфичности по отношению к ренину, подвергли обработке трипсином наиболее чистый препарат ангиотензиногена. Из продуктов триптического гидролиза этим исследователям удалось выделить хроматографически чистое вещество, названное ими полипептидным субстратом ренина , которое сохраняло способность расщепляться ренином. [c.32]

    Интерес к аминокислотам и пептидам обусловлен тесной внутренней связью этих веществ с белками и той Байтной ролью, которую они играют как основные компоненты почти всех биологических систем. Этот интерес усилился за последние годы, так как стало яснее, что удовлетворительное понимание химических и физических явлений в биологических системах основано на знании структурной химии белковых молекул. Исследователи многих специальных областей биологии, химии и физики принимают во все возрастающей мере участие в разре-щении вопроса о полной химической и физической картине строения белковой молекулы, в смысле идентификации и установления числа атомов, входящих в состав белка, и деталей их соединения друг с другом. В этом смысле до сих пор структура ни одной белковой молекулы еще не известна. Доказательства из различных источников привели к общепринятой картине молекулы белка, как состоящей из длинных полипептидных цепей, способных принимать более или менее вытянутые конфигурации или свернутых определенным, но до сих пор еще не установленным образом, в зависимости от химической структуры молекул и от действующих на них внешних и внутренних сил. Те же данные привели к ряду теорий и гипотез, рассматривающих силы взаимодействия между молекулами белка, от которых зависят характерные свойства как кристаллических, так и фибриллярных белков [4—6, 14, 17, 25]. Подробное обсуждение этих идей и их значения для будущего развития химии белков выходило за пределы данной статьи, в которой мы ограничимся обсуждением лишь тех результатов, которые дает [c.298]

    Последоаательность аминокислот и первичная структура белков. Основным направлением при изучении химического строения белков является выяснение последовательности расположения аминокислотных остатков в белковых молекулах, т. е. установление их первичной структуры. Подходы для изучения последовательности расположения аминокислотных остатков в молекуле белков были разработаны главным образом в работах Ф. Сэнгера (1956) . Для изучения строения инсулина Ф. Сэнгер использовал два метода. Первый метод — последовательное отщепление одного аминокислотного остатка за другим от азота или углерода концевого участка полипентидной цепи второй метод — расщепление молекулы белка на ряд более мелких облом- [c.32]

    Начатое незадолго до 1951 г. Астбери, Амброзе, Бэмфордом, Эллиоттом и другими изучение пространственного строения синтетических полипептидов получило после опубликования работ Полинга и Кори стремительное развитие. Повышенный интерес к таким соединениям был стимулирован результатами уже первых работ в этой области, которые вселили надежду, что исследование гомополипептидов может существенно помочь в решении одной из основных задач проблемы белка — установлении принципов пространственной организации белковых молекул. Такой оптимизм в то время казался вполне оправданным. Синтетические полипептиды состоят из тех же структурных элементов, что и белки, и, следовательно, конформации тех и других определяются одними и теми же видами взаимодействий. Учитывая одинаковую природу в обоих случаях взаимодействий между валентно несвязанными атомами, можно было полагать, что изучение структуры более простых по химическому строению синтетических полипептидов при относительной легкости целенаправленного моделирования аминокислотного состава, последовательности и длины пептидной цепи поможет выяснить основные факторы, ответственные за формирование пространственного строения белков. Особое значение эти соединения приобрели в связи с обнаруженной общностью между их структурами и структурами природных полипептидов — фибриллярных и глобулярных белков. Первые же исследования показали, что синтетические полипептиды образуют два главных типа структур, аналогичных а- и -формам кератина, миозина, фиброина шелка и др., которые, как и в случае белков, могут обратимо переходить друг в друга. После работ Полинга и Кори эти формы были интерпретированы как а-спираль и -структура складчатого листа. Еще более обоснованной стала выглядеть основная, а по существу единственная в то время структурная гипотеза белков, согласно которой их пространственное строение представлялось в виде [c.28]

    Среди многочисленных компонентов биосистемы молекулярного уровня белкам принадлежит исключительная роль в процессах, протекающих в клетках и организме. Поэтому 1юлучаемая с помощью рентгеноструктурного анализа информация о строении белков оказывает огромное влияние на развитие подавляющего большинства направлен-ний молекулярной биологии. Давно стало очевидно, что без знания пространственной структуры белков нельзя понять природу и специфичность их взаимодействий, представить и количественно описать механизмы процессов жизнедеятельности. Рентгеноструктурное изучение белков превратилось в неотъемлемую составную часть биологических исследований оно определяет их научный уровень и значимость получаемых результатов. Данные о расположении атомов в нативных конформациях белков служат незаменимой экспериментальной основой всех поисков решений таких фундаментальных проблем молекулярной биологии, какими являются проблемы структурной и структурно-функ-циональной организации белковых молекул. Первая из них заключается в установлении связи между аминокислотной последовательностью и ее пространственной физиологически активной формой и динамическими конформационными свойствами. Следовательно, она включает в себя [c.54]

    Определение аминокислотных последовательностей и расшифровка трехмерных структур миоглобина, гемоглобина, лизоцима и ряда других белков позволили в 1960-е годы сформулировать задачу установления зависимости между химическим и пространственным строением белковых молекул. Впервые стала возможной постановка исследований структурной организации белков, конечная цель которых заключается в априорном предсказании нативной конформации и динамических свойств белковых молекул по известной аминокислотной последовательности. Поиски решения этой задачи продолжаются с возраста-юш,ей интенсивностью более тридцати лет. С самого начала возобладал и по сей день остается господствующим, чуть ли не единственным, эмпирический подход. Его материальной основой служат главным образом данные рештеноструктурного анализа белков, а идейной -три гипотетических представления а-спиральная концепция Полинга и Кори [1, 2], классификация белковых структур на первичную, вторичную и третичную, предложенная Линдерстрем-Лангом [3], и гидрофобная концепция Козмана [4]. [c.229]

    Итак, решение конформационной задачи для линейной последовательности Leu - ys привело нас к рассмотрению одного из наиболее интересных вопросов пространственной организации белковых молекул. Он касается конформационных аспектов образования дисульфидных связей и их роли в стабилизации трехмерной структуры белка. В исследовании пространственного строения нейротоксина II, как и в исследовании всех других цистинсодержащих пептидов (см. гл. 10), мы исходили только из известного химического строения белка, не делая каких-либо предположений о сближенности соответствующих остатков ys и наличии четырех дисульфидных связей в молекуле. Предполагалось, что механизм свертывания белковой цепи является детерминированным, причем таким образом, что стерически возможными или энергетически наиболее предпочтительными становятся взаимодействия между вполне определенными остатками Суз. При справедливости этой гипотезы и правильности положенной в основу расчета нейротоксина II теории пространственной организации белка, а также при адекватности используемых потенциальных функций реальным атом-атомным взаимодействиям конформационный анализ линейной последовательности должен автоматически привести к установлению соответствующих цистеиновых пар-Рассмотрев конформационные возможности фрагмента Leu - ys , мы сможем оценить достоверность результатов расчета и отмеченных общих положений. Последовательность Leu - ys содержит три остатка цистеина, которые могут образовывать одну из трех дисульфидных связей ys - ys 7, ys - ys , ys - ys или оставаться вне взаимодействия. Рассмотрим возможности создания S-S-мостиков у иизкоэнергетических конформаций фрагмента, представленных в табл. IV.I. У двух конфор- [c.418]


Смотреть страницы где упоминается термин Установление строения белковой молекулы: [c.659]    [c.14]    [c.317]    [c.418]    [c.47]    [c.7]    [c.55]    [c.99]    [c.317]   
Смотреть главы в:

Химия природных соединений -> Установление строения белковой молекулы




ПОИСК





Смотрите так же термины и статьи:

Белки строение

Молекула строение

Молекулы белка



© 2025 chem21.info Реклама на сайте