Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры при высоких и низких температурах

    Так, перескакивая на все более глубокие уровни, электрон одного возбужденного атома водорода может последовательно испустить фотоны нескольких серий. Поэтому в спектре испускания раскаленного водорода присутствуют все серии линий. Однако при измерении спектра поглощения атомарного водорода при низких температурах следует учитывать, что практически все атомы водорода находятся в основном состоянии. Поэтому почти все поглощение связано с переходами с уровня и = 1 на более высокие уровни, и в результате в спектре поглощения наблюдаются только линии серии Лаймана. [c.349]


    Исследование неустойчивых промежуточных веществ. Обнаружение неустойчивых промежуточных частиц, образующихся в ходе химического превращения, их идентификация и кинетические характеристики дают очень ценную информацию, необходимую для установления детального механизма химического превращения. Часто эту информацию можно получить методом ИК-спектроскопии. При этом используют различные методики снимают спектры в струевых условиях, когда создается достаточно высокая концентрация промежуточных частиц стабилизируют эти частицы быстрым охлаждением реагирующей смеси до очень низкой температуры в окружении инертных молекул (метод матричной изоляции) используют импульсные методы в сочетании с быстроскани-рующим ИК-спектрометром и т. п. Например, с помощью последнего метода в продуктах газофазного импульсного фотолиза дифтордибромметана при записи спектра примерно через 1 мс после вспышки была обнаружена и идентифицирована частица Ср2, а в продуктах фотолиза трифториодметана обнаружен три-фторметильный радикал. Кинетическими измерениями методом ИК-спектроскопии было показано, что энергия активации рекомбинации двух радикалов F3 отлична от нуля. [c.218]

    Правильная оценка роли отдельных составляющих нефтей в процессе образования смол и асфальтенов при высоких температурах требовала исследования высокотемпературных процессов превращения нефтепродуктов, содержащих основные компоненты (углеводороды, смолы, асфальтены) в неизменном состоянии и в широком спектре их количественных соотношений. С этой целью отбензиненная ромашкинская нефть разделялась на концентраты с различным содержанием углеводородных и неуглеводородных компонентов. Для разделения был использован предложенный М. А. Капелюшниковым метод так называемой ретроградной конденсации, или холодной перегонки [16]. В качестве растворителей были использованы углеводородные газы под давлением, и все компоненты нефти, кроме асфальтенов, удалось перевести при сравнительно низких температурах (не выше 100—140° С) в надкритическое состояние. Затем при ступенчатом снижении давления в системе осуществляется фракционирование, которое идет в обратном, по сравнению с горячей перегонкой, порядке — сначала выделяются наиболее высокомолекулярные компоненты, затем средние и т. д. Были получены образцы широкого фракционного состава (200°—к.к.) и не менее широкого компонентного состава образец 1 содержал 94,8% углеводородов и 5,2% смол образец 2— 72,4% углеводородов, 25,6% смол и 2,0% асфальтенов, образец 3— 38,7% углеводородов, 47,0 % смол и 14,3 % асфальтенов. [c.30]


    Если тело нагрето, оно излучает теплоту. Тепловое излучение, так же как и видимый свет, является одним из видов электромагнитных волн. Однако оно обычно состоит из волн с большей длиной и, следовательно, с меньшей энергией, чем видимый свет. Было замечено, что энергия излучения от нагретого тела распределяется по непрерывному спектру, зависящему от температуры тела. При низких температурах спектр состоит в основном из излучения с низкой энергией, т. е. соответствует инфракрасной области. Однако при повышении температуры спектр меняется, и в нем усиливается область, отвечающая высоким энергиям. Это легко заметить, если иметь в виду, что при нагревании тела его излучение соответствует видимой области спектра. Сначала тело становится красным, а затем при повышении температуры — белым, например таким, как нити в лампах накаливания. [c.17]

    Интерес к изучению состава твердых парафинов, смазочных масел, газойлей и тяжелых керосинов привел к необходимости разработки различных систем ввода, а также других приспособлений, необходимых для получения масс-спектров при повышенных температурах. Одной из проблем, с которой приходится при этом сталкиваться, является требование, чтобы образец полностью испарялся в системе ввода. Это означает, что нельзя допустить образования холодного пятна , на котором часть образца могла бы конденсироваться и, следовательно, теряться .При исследовании средних дистиллятов и парафинов низкого молекулярного веса это условие может быть легко выполнено, однако для полного испарения парафинов высокого молекулярного веса ы смазочных масел требуются температуры около 370°. В таких случаях довольно существенным является однородность тем- [c.351]

    ЗМ колебаний в кристалле — это связанные колебания. Точное решение задачи о колебаниях решетки достаточно сложно, поэтому найти колебательный спектр кристалла весьма трудно. Однако знать полное решение не всегда необходимо. Дело в том, что наиболее трудные для расчета высокочастотные колебания в кристалле возбуждаются только при высоких температурах, когда все теории теплоемкости дают практически совпадающие результаты. При низких температурах эти степени свободы заморожены и, каков бы ни был вид спектра в высокочастотной области, эуо сравнительно мало сказывается на величине теплоемкости при низких температурах. Тем самым в первом приближении при расчете низкотемпературных теплоемкостей из анализа можно исключить самую трудную часть задачи о колебательном спектре кристаллической решетки. Для низкочастотных колебаний длина волны вели- [c.228]

    Основан он на том, что между двумя электродами, изготовленными в виде проволочек из данного металла и помещенными под водой, возбуждают электрическую дугу (рис. 180). При этом материал электродов распыляется в окружающую воду. Для получения устойчивого золя в воду предварительно добавляют немного щелочи. Исследования А. В. Думанского показали, что в действительности этот метод является в большей степени конденсационным, чем дисперсионным (по крайней мере в отношении наиболее высокодисперсной части золя). Дело в том, что, как указывают цвет и спектр дуги, при такой высокой температуре металл переходит в парообразное состояние и, попадая в дисперсионную среду, благодаря низкой температуре последней тут [c.529]

    Релаксационная спектрометрия полимеров в настоящее время находится в начальной стадии развития, но ей принадлежит, по-видимому, большое будущее. Важны развитие и разработка новейших методов получения непрерывных и дискретных спектров и применение их для расчетов и прогнозирования вязкоупругих свойств полимерных материалов. Очевидно, что разработка современных методов расчета и прогнозирования невозможна без знания всех релаксационных механизмов и их кинетических характеристик для различных полимерных материалов и особенно для тех, которые находятся в условиях длительной эксплуатации. В настоящее время можно считать установленными основные релаксационные пере ходы в полимерах, которые необходимо учитывать при прогнозировании их свойств. В частности, это относится к новым данным по релаксационным переходам (а -, Хг, кз- и ф-переходы), находящимся по шкале времен релаксации между а-процессом (стеклованием) и б-процессом (химической релаксацией). Для прогнозирования эксплуатационных вязкоупругих свойств эластомеров при относительно низких температурах наиболее важную роль играют медленные физические процессы релаксации ( - и ф-процессы), так как в течение длительного промежутка времени (до 50 лет) химической релаксации практически не наблюдается. Однако при высоких температурах для длительного прогнозирования основную роль начинает играть химическая релаксация. [c.144]


    Для выяснения тонкой структуры спектров флуоресценции их исследуют при низких температурах (например, при температуре жидкого азота 77 К), при этом подбирают растворители, в которых наиболее отчетливо проявляется структура спектров. Этот метод измерения квазилинейчатых спектров в твердой матрице при низких температурах был предложен Э. В. Шпольским. Особенно успешно он был применен к исследованию полициклических ароматических углеводородов. Получаемые квазилинейчатые спектры флуоресценции ароматических углеводородов в растворах алифатических углеводородов являются очень характерными и позволяют получать информацию о колебательной структуре основного электронного состояния ароматических углеводородов. Квазилинейчатые спектры флуоресценции обладают рядом важнейших свойств. Прежде всего квазилинейчатые спектры в каждом случае носят ярко выраженный индивидуальный характер (специфичность). В отличие от обычных размытых спектров поглощения и флуоресценции они существенно различаются даже у близких по строению молекул. Это отличие оказывается значительным и для изомерных молекул. Другая важная особенность квазилинейчатых спектров заключается в очень высокой селективности таких измерений. Благодаря малой ширине и высокой интенсивности линий квазилинейчатые спектры позволяют определять индивидуальные соединения в сложной смеси даже тогда, когда они входят в многокомпонентную смесь в ничтожно малых концентрациях. Третьей характерной особенностью квазилинейчатых спектров флуоресценции является чрезвычайно высокая чувствительность методов, основанных на их применении. Измерение квазилинейчатых спектров позволяет при прочих равных условиях увеличить чувствительность люминесцентных измерений примерно в 100 раз. [c.72]

    Спектры триплет — триплетного поглощения в твердых растворах или в стеклах при низкой температуре могут быть получены обычными методами при одновременном облучении образца светом высокой интенсивности. [c.160]

    Современные ИК-спектрометры позволяют снимать ИК-спектры газообразных, жидких и твердых веществ при высоких, комнатных и низких температурах, высоких или низких давлениях, очень малых количеств соединений, неустойчивых промежуточных продуктов реакции и т. п. [c.205]

    Принципы устройства и действия спектрометров ЭПР сходны со спектрометрами ЯМР, а отличия связаны в основном с различиями области частот и диапазона напряженности магнитного поля. Обычно стандартные приборы рассчитаны на получение спектров ЭПР при частотах 9,5 ГГц (Х-полоса), 25 ГГц (Л -полоса) и 35 ГГц (Р-полоса), а индукция магнитного поля меняется в диапазоне 0,34... 1,25 Т. Работа на X полосе ведется обычно с растворами и при изучении систем, не требующих очень высокого разрешения спектров, а при высоких частотах и напряженности поля чаще исследуются твердые образцы малого размера и при низких температурах. [c.77]

    Непрерывное горение дуги, большая мощность и энергичное испарение электродов обеспечивают высокую яркость дугового разряда. Относительно низкая температура плазмы приводит к появлению в спектре дуги линий, главным образом с невысокими потенциалами возбуждения. Наиболее интенсивные линии, возбуждаемые в дуговом разряде, расположены в видимой, а также в ближайшей и средней ультрафиолетовой областях спектра. [c.60]

    Модель жесткий ротатор — гармонический осциллятор , однако, является лишь первым приближением. Хотя эта модель хорошо объясняет основные свойства инфракрасных и комбинационных спектров, для описания некоторых тонких деталей спектров она недостаточна. Модель не годится для описания энергетических уровней -молекулы с высокими квантовыми числами, в особенности состояний, близких к диссоциации (в приближении гармонических колебаний нельзя объяснить и самого явления диссоциации). Поэтому, если для сравнительно низких температур, когда переходы происходят практически только между состояниями с небольшими квантовыми числами, использование модели жесткий ротатор — гармонический осциллятор допустимо, то для высоких температур необходимо пользоваться более строгими приближениями. [c.215]

    За последние годы была разработана особая техника собирания в матрицах из инертных газов и замораживания в них при очень низких температурах таких обычно ускользающих от более подробного исследования мимолетно существующих эфемерных двухатомных образований, например, молекул (SiO), (ОН), (SO), (СН), ( S), (PN) и т. п. В этих условиях удавалось подробно изучить спектры эфемеров, процессы их полимеризации (при легком повышении температуры, когда молекулы начинали диффундировать в твердой матрице и встречаться друг с другом) и многое другое. Родилась особая ветвь неорганической химии — низкотемпературное исследование многочисленных весьма неустойчивых в обычных условиях веществ — соединений с высокой реакционной способностью. [c.295]

    В прогрессии, которая наблюдается в поглощении при низкой температуре. В первом случае интенсивность падает очень быстро начиная с первой полосы, во втором — она сначала возрастает до максимума и затем уменьшается, а в третьем — интенсивность очень мала для низких значений V и лишь постепенно возрастает, достигая в конечном счете максимума последний лежит или при высоких значениях у, или, возможно, даже с длинноволновой стороны предела сходимости полос, где расположен сплошной спектр, соответствующий диссоциации (гл. 5). [c.70]

    ПО этим колебаниям, но и все их комбинации. На рис. 61 приводится диаграмма уровней энергии для двух полносимметричных колебаний, иллюстрирующая это положение. Показаны только переходы с самого низкого колебательного уровня основного состояния, что соответствует поглощению излучения при низкой температуре. Ясно, что колебательная структура спектра даже в таком простом случае, как линейная несимметричная трехатомная молекула типа XYZ, значительно сложнее, чем у двухатомной молекулы, для которой должна наблюдаться только первая прогрессия, изображенная на рисунке слева. При поглощении излучения при более высокой температуре будут происходить аналогичные переходы со многих других колебательных уровней основного состояния. [c.103]

    Анализ экспериментальных данных по излучению СОг и НгО, которые, как известно, не являются средой с простейшими оптическими свойствами, так как для них коэффициенты поглощения и излучения К зависят от длины волны и температуры, приводит к важному выводу о том, что локальные величины коэффициентов излучения и поглощения, осредненные по всему спектру излучения или по его отдельным полосам, не могут быть непосредственно использованы в общем уравнении для слоя, ибо дают результаты, противоречащие физической природе процесса. Например, при таких расчетах можио получить, что излучение в сторону низких температур больше, чем в сторону высоких и т. п. [c.306]

    Как показано в разд. 11.2, процесс перехода начинается с селективного усиления двумерных возмущений. Возмущения в пределах некоторой полосы частот имеют более высокую скорость усиления, чем в остальной части спектра. В случае низкой температуры воды процесс перехода также начинается с селективного усиления возмущений, движущихся вниз по течению. Однако полоса частот усиливающихся возмущений шире. На рис. 11.14.2 показаны траектории движения трех возмущений с различными частотами Ь, с п й. Видно, что частота возмущения, усиливающегося с наибольшей скоростью, возрастает с увеличением расстояния по течению. Траектория этого возмущения пересекает изолинию значений А в точке, где величина д минимальна. Соответствующая средняя безразмерная частота возмущения й, наиболее быстро развивающегося при естественной конвекции воды, равна примерно 1,50. Эта величина связана с размерной физической величиной Р следующим соотношением  [c.154]

    Из низкотемпературных Ш1Р-спектров можно получить также дополнительные сведения о параметрах конверсии. Если соединение представляет собой равновесную смесь, его спектр при низкой температуре в действительности является результатом наложения двух спектров отдельных конформеров при высоких же температурах мы имеем один спектр усредненной конформации. Переход от спектра при низких температурах к спектру при высоких температурах происходит в сравнительно узком температурном интервале, из которого можно определить температуру коалесценцип (слияния отдельных пиков в один). Согласно Гутовскому и Холму [127], температура коалесценцип связана с константой скорости следующим соотношением  [c.190]

    В послевоенный период происходит еще более интенсивное развитие физической химии. Этому способствовало быстрое расширение области использования ее методов и выводов и сильное увеличение ее экспериментальных и теоретических возможностей Доступные пределы температур расширяются до 0,00001 К в сто рону низких температур и десятков тысяч К в сторону высоких Становятся доступными давления до 100 килобар и выше и ва куум до 10 мм рт. ст. Чрезвычайно обогатились методы иссле дования строения и свойств молекул. Сюда относятся, в частности, развитие техники инфракрасных спектров, исследование спектров при низких температурах, возможность использования достижений электроники и радиотехники, элек -ронного парамагнитного резонанса (ЭПР), ядерного магнитного резонанса (ЯМР), применение автоматики, широкое использование быстродействующих электронных вычислительных машин, развитие метода масс-спектрометрии, использование радиоактивных изотопов и ядерных излучений, квантовых генераторов (лазеры). Возможность использования в лабораторных исследованиях новых видов материалов (полупроводники, полимеры и др.). [c.24]

    Распределение и структура парафиновых боковых цепей в тяжелых нефтяных фракциях изучены совершенно недостаточно. Присутствие длинных парафиновых боковых цепей нормальной (линейной) структуры (выше С а) по крайней мере в товарных смазочных маслах с низкой температурой застывания, по-пидимому, невозможно. Известные алкиларомати-ческие и циклопарафиновые углеводороды с длинной нормальной боковой цепью обладают высокими температурами плавления и могут быть отделены от твердого парафина при помощи дспарафинизации. Алкилциклические углеводороды с длинными разветвленными парафиновыми боковыми цепями должны иметь низкую температуру застывания и могут встречаться в смазочных маслах. Однако более вероятно, что атомы углерода в боковых цепях распределяются между несколькими боковыми цепями. В настоящее время исследование спектров поглощения в инфракрасной и в ближней инфракрасной области служит единственным методом, который может дать известное представление о распределении парафиновых боковых цепей, по определению среднего числа СНд-, СН - и СН-групп, приходящихся на одну молекулу. [c.37]

    Плазма тлеющего разряда внутри катода имеет температуру около 800 К- Благодаря относительно малому давлению и низкой температуре лоренцевское и доплеровское уширение линий испускания в лампе с полым катодом существенно меньше (на 2 порядка), чем в применяемых атомизаторах, например в пламени. Поэтому лампы с полым катодом удовлетворяют требованиям, предъявляемым к источникам в атомно-абсорбционном анализе, т. е. линии в спектре испускания являются очень узкими. Эффективность работы лампы с полым катодом зависит от ее конструкции и напряжения, которое подводится к электродам. Высокие напряжения и соответственно высокие значения тока приводят к увеличению интенсивности свечения. Однако это преимущество часто приводит к увеличению эффекта Доплера для линии испускания атома металла. Более того, кинетическая энергия иона инертного газа, бомбардирующего внутренние стенки полого катода, зависит от массы иона, напряжения на электродах лампы и числа соударений в единицу времени, которые происходят по мере движения иона инертного газа к катоду. Чем выше значение тока, тем больше относительное число невозбужденных атомов в облаке, вырванном в результате бомбардировки стенок полого катода ионами инертного газа. Невозбужденные атомы материала катода способны поглощать излучение, испускаемое возбужденными атомами. В результате наблюдается самоноглощение, которое уменьшает интенсивность в центре линии испускания лампы. [c.144]

    В самое последнее время удалось получить простые ионы карбония из спиртов или галогенидов при низких температурах (от —40 до —78° С) в средах с очень высокой кислотностью, как, например, НР— —5ЬРб(Но = —15,2), РЗОзН—ЗОа—ЗЬРб, были измерены спектры [c.41]

    Дебай рассматривал частицы, образующие кристалл, как систему связанных осцилляторов. Колебания с малой частотой (большой длиной волны) относятся уже к звуковым волнам. Условием, выполнение которого необходимо для возможности такой интерпретации, является требование, чтобы длина волны значительно превышала расстояние между частицами. Спектр колебаний в области звуковых волн становится непрерывным. Дебаи распространяет это допущение и на область высоких частот. Кристалл в его теории представляет собой упругое изотропное тело. Найденная им функция распределения осцилляторов по частотам предполагает непрерывное изменение частот. Совпадение теории с опытом, вполне естественЕю, относится прежде всего к низким температурам, при которых возбуждаются преимущественно низкие частоты. Более совершенная теория была развита в работах Борна и Кармана, учитывающих факторы дискретности, — она согласуется с опытом гораздо лучше грубой модели Дебая. [c.274]

    Коэффициент г может быть обусловлен зависимостью от температуры как первичного акта, в результате которого образуются активные реакции, так и вторичных процессов. Температурную зависимость первичного акта нужно, в частности, ожидать, когда реакция проводится в спектральной области, расположенной вблизи границы, ра.чделяющей сплошной и дискретный спектры поглощения, или же вблизи границы предиссоциации. В этих случаях, благодаря увеличению числа молекул на болсс высоких колебательных уровнях, те длины волн, которые при низких температурах приходятся на дискретный участок спектра поглощения, при повышении температуры могут окязаться в области сплошного поглощения или в области предиссоциации, в результате чего эффективность этих длин волн повышается. [c.169]

    Несколько иная двухфазная система с сильными связями на границах фаз получена на основе трехблочных сополимеров типа бутадиен-стирольного сополимера. Как показано в гл. 2, молекула такого сополимера состоит из твердых концевых блоков (стирол), соединенных центральными эластомернымп блоками (бутадиен). Блоки стирола накапливаются и образуют небольшие домены, которые выполняют роль сшивок, вызывая резиноподобную эластичность блочного сополимера ири температурах окружающей среды и обусловливают пластическую деформацию ири высоких температурах. Для выяснения механизма разрушения таких систем было бы полезно определить, в какой из фаз чаще всего происходит разрыв молекулярной цепи. Прямые пути решения данной задачи заключались бы в разрушении материала и анализе сверхтонкой структуры образующихся в результате спектров ЭПР. Однако в интервале температур от температуры жидкого азота до комнатной температуры деформирование растяжением не вызывает накопления свободных радикалов в количестве, достаточном для их обнаружения. Вследствие этого Деври, Ройланс и Уильямс [36] использовали менее убедительный, но более доступный метод сравнения спектра бутаднен-стирольных блочных сополимеров (5В5) с отдельными спектрами стирола и бутадиена. Эти исследования были выполнены при температуре жидкого азота путем измельчения материала с целью увеличения поверхности разрушения. При низкой температуре радикалы становились более стабильными и, по-видимому, замораживались на стадии первичных радикалов. Сравнение спектров трех материалов показало, что спектр 5В5 содержал все линии радикала бутадиена, но не содержал линий радикала стирола. Поэтому радикал системы 5В5 был отнесен к фазе бутадиена. К сожалению, в данных исследованиях не удалось выяснить, был ли радикал, полученный при измельчении в условиях низких температур, тем же самым, что и образовавшийся в нормальных условиях при комнатной температуре, и являлся ли обнаруженный радикал первичным или вторичным. [c.219]

    В XX в. развитие физической химии ускорилось благодаря возникновению статистической и квантовой механики, со аданию новых экспериментальных методов изучения спектров, получению глубокого вакуума, высоких давлений и низких температур применению электроники, радиотехники и автоматики, использованию метода меченых атомов и др. Крупнейшим достижением этого периода является создание [c.7]

    Хотя лампы с нитью накала находят ряд применений, когда лужно излучение с непрерывным спектром, значительно более высокие интенсивности почти монохроматического излучения получаются фильтрацией света ламп, испускающих больщую часть энергии в небольщом наборе узких полос или линий. Для этой цели можно использовать несколько типов газоразрядных ламп, наполненных инертными газами или парами летучих элементов (обычно металлов), дающих подходящие атомные линии испускания. При низком давлении почти вся излучаемая энергия может концентрироваться в резонансных линиях (соответствующих переходам из первого возбужденного состояния в основное). При этом достаточно монохроматичный свет может быть получен без применения фильтров. Типичными примерами являются лампы низкого давления с ксеноно-вым наполнением (Х= 147,0 нм) или ртутным наполнением (Я= 184,9 нм, 253,7 нм, ср. со с. 42). Во втором случае обычно присутствует небольшое количество инертного газа, который почти не дает вклада в испускаемое излучение. При повышенных давлениях и высокой рабочей температуре под действием разрядов через пары металлов в излучении ламп появляется большое число линий, уширенных давлением. Излучение собственно резонансной линии часто при этом поглощается более холодными парами металла вблизи стенок лампы. Ртутные разрядные лампы очень широко применяются в фотохимических экспериментах. В табл. 7.1 показаны относительные интенсивности основных линий для стандартных ламп низкого давления (интенсивность линии при >. = 253,7 нм принята за [c.180]


Смотреть страницы где упоминается термин Спектры при высоких и низких температурах: [c.190]    [c.160]    [c.218]    [c.259]    [c.16]    [c.82]    [c.237]    [c.80]    [c.462]    [c.462]    [c.259]    [c.197]    [c.86]    [c.156]    [c.60]    [c.388]    [c.457]    [c.125]   
Смотреть главы в:

Прикладная ИК-спектроскопия -> Спектры при высоких и низких температурах

Прикладная ИК-спектроскопия Основы, техника, аналитическое применение -> Спектры при высоких и низких температурах




ПОИСК





Смотрите так же термины и статьи:

Температуры высокие



© 2025 chem21.info Реклама на сайте