Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окислительно-восстановительные реакции ионов с молекулами

    Ионно-электронный метод. Ионно-электронный метод составления уравнений окислительно-восстановительных реакций применяется для ионных окислительно-восстановительных процессов и основан на составлении частных уравнений реакций восстановления иона (молекулы) — окислителя и окисления иона (молекулы) — восстановителя с последующим суммированием их в общее уравнение. Для этого необходимо составить ионную схему реакции, руководствуясь общими правилами составления ионных уравнений, т. е. записать сильные электролиты в виде ионов, а неэлектролиты, слабые электро- [c.246]


    Уравнивание окислительно-восстановительных реакций этим методом требует знания формул исходных веществ и продуктов реакции, умения рассчитывать степени окисления элементов в молекулах и ионах и строгого соблюдения очередности действий. Проиллюстрируем это на конкретном примере окисления сульфита калия дихроматом калия в кислой среде. [c.263]

    Суммирование (6.2) и (6.3) дает уравнение химической реакции (6.1). Вполне понятно, что при суммировании необходимо предусмотреть, чтобы в соответствии с законом электронейтральности раствора число электронов, отдаваемых восстановителем, было точно равно числу электронов, принимаемых окислителем. На этом основан, в частности, электронно-ионный метод подбора коэффициентов в окислительно-восстановительных реакциях, наиболее наглядный и универсальный. Если в результате реакции происходит перестройка сложной многоатомной частицы, содержащей, например, атомы кислорода (МпОГ, Н2О2 и т. д.), для уравнивания числа атомов в уравнение полуреакции в качестве участника процесса могут быть включены ионы водорода, гидроксид-ионы или молекулы воды. Если реакция происходит в кислой среде, в уравнение полуреакции можно включать ионы Н" , если в щелочной — ОН -ионы. [c.104]

    В окислительно-восстановительных реакциях наряду с окислителями и восстановителями могут участвовать ионы или молекулы среды. Например, в реакции окисления сульфита калия перманганатом калия участвует серная кислота  [c.180]

    Гомогенный катализ. Сюда относятся каталитические процессы, в которых реагирующие молекулы и катализатор в форме атомов, молекул или ионов находятся в одной фазе и образуют гомогенную химическую систему. Многие реакции, протекающие в растворах, являются гомогенными каталитическими реакциями. К ним, например, относятся реакции кислотно-основного катализа, катализа комплексными соединениями и окислительно-восстановительного катализа ионами металлов. Гомогенные каталитические реакции в газовой фазе в чистом виде встречаются редко. Условно сюда можно отнести реакции рекомбинации радикалов с участием третьей частицы  [c.616]

    В заключение следует отметить, что рассмотренный метод составления уравнений окислительно-восстановительных реакций, основанный на изменении степени окисления, применим для любых систем. Он может быть использован для окислительно-восстанови-тельных процессов, протекающих как в растворах и расплавах, так и в твердых системах гомогенного и гетерогенного характера, например при сплавлении, обжиге, горении и т. д. Вместе с тем вследствие формального характера самого понятия степень окисления используемые при этом схемы также являются формальными и применительно к растворам не отражают реально протекающих в них процессов. Более правильное представление о процессах окисления — восстановления в растворах дает метод электронно-ионных уравнений, который, как видно из самого названия, рассматривает изменения реально существующих в растворах молекул и ионов. [c.118]


    Окисление — это процесс отдачи электронов атомом, молекулой или ионом. Восстановление — процесс присоединения электронов. В любой окислительно-восстановительной реакции процессы окисления и восстановления могут протекать только одновременно. Не может быть окисления без одновременно [c.101]

    При записи уравнений окислительно-восстановительных реакций целесообразно указывать состояние атомов элементов или ионов в составе соединений с помощью некоторых чисел — степени окисления. Для атомарных ионов степень окисления равна заряду иона. У молекул и комплексных ионов определение степени окисления не всегда однозначно, так как атомы в их составе могут быть не только ионами, но и частицами с нецелочисленным относительным зарядом. Можно лишь гипотетически представить себе, что эти частицы состоят из ионизированных атомов, и, исходя из этого, считать заряд ионов равным степени окисления атома соответствующего элемента в соединении. Вообще говоря, такой подход не совсем соответствует действительности, однако вполне оправдан при составлении стехиометрического баланса окислительно-восстанови-тельных реакций. Для определения степени окисления следует пользоваться следующими правилами  [c.409]

    Окислительно-восстановительные реакции ионов с молекулами [c.311]

    ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ ИОНОВ С МОЛЕКУЛАМИ [c.435]

    Скорость окислительно-восстановительных реакций с участием органических соединений зависит от строения органической молекулы. Например, изомеры СбН120в реагируют с иодат-ионом Юг в кислой среде (pH = 4,5) по единому кинетическому уравнению второго порядка [c.336]

    Переход электрона от одного иона к другому в растворе не может происходить при средних энергиях реагирующих ионов, так как, согласно принципу Франка — Кондона, процесс перехода электрона более быстрый, чем изменение расположения ядер. Предположим, что переход электрона осуществляется между ионами со средней энергией, тогда возникшие в результате окислительно-восстановительной реакции ионы должны обладать избыточной энергий. Расстояния между ядрами в них не будут соответствовать минимуму потенциальной энергии. Например, при реакции аква-ионов Fe + и Fe + должны будут образовываться возбужденные ионы. Исходные ионы со средней энергией гидратированы молекулами воды, находящимися на расстояниях, которые соответствуют минимальным значениям потенциальной энергии, эти расстояния не должны, по принципу Франка — Кондона, измениться в результате перехода электрона, т. е. происходящий процесс можно записать уравнением  [c.235]

    Отправной пункт этих представлений — реакционная способность не есть свойство молекул вещества, а есть свойство, проявляющееся только во взаимодействии с участниками химической реакции. Электронное взаимодействие в процессе химической реакции, для которого характерны координационное взаимодействие донора и акцептора электронов или обмен электронов в окислительно-восстановительной реакции, имеет место только в том случае, если участники реакции — ионы, атомы или молекулы — обладают различными функциями электронной плотности. Только с этой точки зрения можно представить себе в целом электронное состояние системы, состоящей из реагирующих между собой частиц. [c.453]

    В настоящее время считают, что в процессе окислительно-восстановительной реакции Канниццаро одна молекула альдегида является донором гидрид-иона  [c.153]

    Для составления уравнения окислительно-восстановительной реакции надо знать, от каких атомов, молекул или ионов и к каким атомам, молекулам или ионам переходят электроны и в каком количестве. Эти данные часто находят экспериментально. [c.51]

    Остановимся подробнее на методе электронно-ионного баланса . В уравнениях окислительно-восстановительных реакций, протекающих в водных растворах, коэффициенты гораздо удобнее подбирать с помощью электронно-ионных уравнений. Они отличаются от электронных уравнений тем, что в них записывают ионы или молекулы того состава, который действительно отве- 1ает существованию их в водном растворе с точки зрения теории электролитической диссоциации. Кроме того, электронные уравнения не учитывают характер среды (кислая, нейтральная, щелочная), а, как известно, окислительно-восстановительные реакции зависят от кислотности (основности) среды, в которой они протекают.  [c.199]

    Характер промежуточных соединений с катализатором различен. Для кислотно-основных реакций, когда электронные пары перемещаются без разобщения электронов (гетеролитический разрыв валентных связей) — это комплексы типа солей для окислительно-восстановительных реакций, когда электронные пары разделяются (гомолити-ческие или радикальные реакции), это, как правило, комплексы с участием молекул или ионов, содержащих металлы переменной валентности. К первой группе относятся процессы, в которых катализатором служат кислоты или основания это реакции присоединения (отщепления) полярных молекул. Ко второй группе относятся процессы, в которых катализаторами служат ионы -элементов или образованные ими комплексы (в частности, реакции с участием атомов И или О). В последних перенос электрона [c.123]


    Окислительно-восстановительными реакциями называются такие реакции, при которых происходит переход электронов от одних молекул, атомов, ионов (восстано- [c.129]

    Заметим в заключение, что кислотно-основные превращения не сопровождаются изменением степени окисления атомов какого-либо из компонентов превращения. Кислотами являются соединения, в которых атом Н связан с электроотрицательным элементом, чаще всего элементом шестой или седьмой группы главной подгруппы, т. е. уже имеет степень окисления +1, как и образующийся протон. Следовательно, не изменяется степень окисления образующегося сопряженного основания. В этом можно убедиться на примере любой кислоты. В уксусной кислоте кислород ОН-группы имеет степень окисления 2, поскольку связан с двумя атомами —С и Н, имеющими меньшую электроотрицательность. В ацетат-ионе тот же кислород связан с атомом С и, кроме того, имеет заряд, что в сумме также дает степень окисления —2. Это же относится и к частице, принимающей протон. В ионе оксония, образованном из молекулы воды при присоединении протона, степень окисления каждого атома водорода равна -f 1, поскольку они связаны с атомом О а степень окисления атома кислорода, несущего положительный заряд и связанного с тремя менее электроотрицательными атомами Н, равна 4-1—3=—2, как и в исходной воде. В то же время, как видно на примере окисления перманганатом, окислительно-восстановительные реакции могут сопровождаться кислотно-основными превращениями. [c.293]

    Эквиваленты одноатомных и многоатомных ионов равны их ионной массе, деленной на заряд. Эквиваленты солей, кислот и оснований в реакциях обмена выражаются через молекулярную массу, деленную на произведение абсолютного значения заряда одного из ионов на число их в соединении. Причем эквивалент кислоты равен ее молекулярной массе, деленной на ее основность в реакции (число водородных ионов, участвующих в химической реакции), а эквивалент основания — молекулярной массе, деленной на кислотность основания в реакции (число гидроксильных групп, принимающих участие в химической реакции). Аналогичный подход применяется и в других более сложных случаях. Например, в окислительно-восстановительных реакциях эквивалент окислителя (восстановителя) соответствует молекулярной массе, деленной на то число электронов, которое приобретается (теряется) одной молекулой окислителя (восстановителя) в рассматриваемой окислительно-восстановительной реакции. [c.26]

    Окислительно-восстановительные реакции характеризуются перемещением электронов или смещением (сдвигом) электронных пар от одних веществ (атомов, молекул или ионов) к другим. При этом они сопровождаются изменением степени окисления атомов или ионов. [c.63]

    При подборе коэффициентов окислительно-восстановительных реакций уравнивание атомов кислорода осуществляется при помощи молекул воды (или гидроксид-ионов в щелочных средах), а атомов водорода — при помощи ионов водорода, молекул воды (или гидроксид-ионов в щелочных средах). [c.260]

    Ионные реакции, сопровождающиеся изменением степени окис-ления атомов в молекулах реагирующих веществ, называются окислительно-восстановительными реакциями. Типичный процесс окисления-восстановления наглядно можно наблюдать в следующем эксперименте. [c.324]

    Диспропорционирование — это особый случай окислительно-восстановительной реакции, в ходе которой происходит переход одного и того же вещества средней степени окисления на более низкую и более высокую степень окисления. Вещество как бы само себя окисляет и восстанавливает. Это явление называют также редокс-амфотерностью. Реакции такого типа часто встречаются в химии галогенов. Например, при растворенг1И иода в растворе едкого натра молекулы иода сначала диспро-порционируют на гипоиодид- и иодид-ионы. Нестабильный ги-поиодид быстро диспропорционирует с образованием иодида и иодата  [c.418]

    Таким образом, с точки зрения электронной теории окислительно-восстановительными называют такие реакции, при протекании которых происходит переход электронов от одних атомов, молекул или ионов к другим. Поскольку электроны в окислительно-восстановительных реакциях переходят только от восстановителя к окислителю, а молекулы исходных веществ и продуктов реакции электронейтральны, то число электронов, отданных восстановителем, всегда должно быть равно числу электронов, принятых окислителем. Это положение называется принципом электронного баланса и лежит в основе нахождения коэффициентов в уравнениях окислительно-восстановительных, реакций. Согласно этому принципу, число молекул окислителя и число молекул восстановителя в уравнении окислительно-восстановительной реакции должны быть такими, чтобы количество принимаемых и отдаваемых электронов было одинаковым. [c.102]

    Ионы электролита, достигая соответствующего электрода (катионы— катода, а анионы — анода), в результате взаимодействия с ним уменьшают свой зэряд, большей частью теряя его и превращаясь в нейтральные атомы или атомные группы, которые или отлагаются на электроде, или, будучи в свободном состоянии неустойчивыми, вступают в какую-либо вторичную реакцию между собой, с молекулами растворителя, с другими растворенными веществами или, наконец, с материалом электрода. Такие вторичные реакции могут быть самыми разнообразными. Следует заметить при этом, что как первая фаза процесса, так и весь процесс в це лом всегда являются окислительно-восстановительной реакцией.. нод (положительный электрод) обладает меньшим числом электронов, чем его материал в нейтральном состоянии. Поэтому [c.443]

    Составление уравнений окислительно-восстановительных реакций. Уравнения окислительно-восстановительных реакций имеют очень сложный характер, и их составление представляет иногда трудную задачу. Предложено несколько методов составления этих уравнений. Рассмотрим метод электронного баланса, при котором учитывается а) сумма электронов, отдаваемых всеми восстановителями, которая равна сумме электронов, принимаемых всеми окислителями б) число одноименных атомов в левой и правой частях уравнения одинаково в) если в реакции участвуют атомы кислорода, то могут образоваться или расходоваться молекулы воды (в кислой среде) или ионы гидроксида (в щелочной среде). [c.187]

    Электролиз водного раствора соли, образованной малоактивным металлом и бескислородной кислотой с инертным анодом. Рассмотрим электролиз водного раствора бромида меди (II) с угольными электродами. В водных растворах электролитов кроме их катцонов и анионов имеются также ионы Н+ и ОН-, получающиеся при диссоциации воды. Поэтому при электролизе на катоде могут восстанавливаться катионы электролита и катноны водорода (воды), а на аноде могут окисляться не только анионы электролита, но и гидроксильные ионы воды. В случае если концентрация Н+ и ОН- мала, в окислительно-восстановительных реакциях принимают участие молекулы воды. [c.177]

    По аналогии с окислительно-восстановительными реакциями ионов металлов в растворах, часто протекающими через образование промежуточных комплексов, предложен чисто химический механизм каталитического пронесса осаждения металла. Предполагается образование комплекса ионов металла с восстановителем и внутримолекулярный процесс окисления — восстановления этого комплекса на поверхности катализатора с образованием свободного металла и других продуктов реакции [23]. В ряде растворов металлизации действительно образуются комплексы металлов, содержащие в качестве одного из лигандов восстановитель, например, Си (И) с СН2О, Ni (П) с N2H4. Однако нет доказательств, что процесс каталитического восстановления протекает именно при участии этих координированных молекул восстановителя. Более детальное изучение одной из таких систем (растворов никелирования, содержащих гидразин в качестве восстановителя) показало [24], что в растворе комплексного соединения Ni (И) с гидразином в отсутствие большого избытка свободного гидразина процесс осаждения никеля вообще не протекает, т. е. рассматриваемый механизм процесса не реализуется. Такой механизм восстановления металла более вероятен в случае гомогенного процесса восстановления металла в начальной стадии объемного разложения раствора. [c.93]

    Чтобы составить уравнение окислительно-восстановительной реакции, необходимо знать, от каких участвующих в реакции атомов, молекул или ионов и к каким атомам, молекулам или ионам переходят электроны и в каком количестве. Это можно установить на основе периодической системы Д. И. Менделеева, зная строение атомов и молекул, окислительно-восстановительные свойства реагирующих веществ (восстановителей и окислителей), условия протекания реакций, правила и методы их составления, значения ионизационных потенциалов, сродства к электрону, электроотрицательности атомов, окислительно-восстановительные потенциалы. [c.89]

    Протекающая в гальваническом э.лементе окислительно-восстановительная реакция представляет собой сложный процесс. Она включает собственно электрохимические стадии (превращения атомов, ионов или молекул на электродах), перенос электронов, перенос ионов. Все эти стадии сопряжены между собой и протекают с одной и той же скоростью число электронов, которые за единицу времени отдает цинк, равно числу электронов, принимаемых за это же время ионами меди. Поэтому скорость реакции, протекающей в гa.пьвaничe кo элементе, пропорциональна количеству электричества, перенесенного по цепи в единицу времени, т. е. силе тока в цепи. [c.270]

    Чтобы составить уравнение окислительно-восстановительной реакции, необходимо знать, от каких и к каким из участвующих в реакции атомов, молекул или ионов переходят электроны, а также в каком количестве. Это можно установить, зная строение атомов и молекул и руководствуясь периодическим законом Д. И. Менделеева. [c.190]

    Метод импульсного фотолиза широко применяется при научении окислительно-восстановительных реакций красителей. При импульсном возбуждении флуоресцеина наблюдается образование триплетных молекул, при взаимодействии которых образуются ион-радпкальные формы флуоресцеина. В присутствии восстановителя, например /г-фенилендиамина, наблюдается обратимое выцветание катиона и апиопа флуоресцеина. В результате импульсного возбуждения появляются характерные максимумы поглощения ссмихинона красителя А и радикал-катиона я-фенилендиамина (320 и 490 нм), свидетельствующих о чисто электронном межмолекуляриом переносе при фотовосстановлении. Аналогичные результаты были получены при импульсном возбуждении эозина в присутствии восстановителей фенола пли фенолят-иона. При использовании фенола в качестве восстановителя последний отдает атом водорода при этом наблюдается полоса поглощения, характерная для нейтрального феноксильного радикала РЬО-. С другой стороны, в щелочной среде присутствует анион РЬО- способный восстанавливать только передачей электрона. [c.177]

    Когда атомы отдают электроны при образовании ионов, это называется окислением. Обратный процесс приобретения электронов называется восстановлением. (Для повторения см. гл. II, разд. Г.З.) Электроны переходят от одних атомов молекул или ионов к другим. Все элементы могут быть окислены или восстаиоплены с образованием продуктов окислительно-восстановительной реакции - атомов, молекул или ионов. Реакции окисления - восстановления называют также редокс-реакциями. [c.517]

    Благодаря полярности молекул воды в ней растворяются и диссоциируют многие ионные и ковалентные вещества типа оснований, кислот и солей, больщинство солей вступают с водой в реакции обратимого гидролиза. Вода как растворитель способствует протеканию огромного числа обменных и окислительно-восстановительных реакций между веществами. Со многими безводными солями вода образует кристаллогидраты один из методов обнаружения воды основан на переходе во влажной атмосфере белого сульфата меди(11) USO4 в голубой медный купорос uS04-5H20. [c.112]

    Межмолекулярные (межионные) реакции. В этом случае элек-троноактивные частицы имеют различную химическую природу и находятся в разных веществах (в разных молекулах или ионах). К этому типу относятся все ранее рассмотренные окислительно-восстановительные реакции. [c.293]

    Степень окисления элементов при неорганических реакциях меняется потому, что чаще всего их атомы отдают или присоединяют электроны, образуя вещества с ионными связями. Принято считать, что в окислительно-восстановительных реакциях всегда происходит присоединение или отдача электронов атомами элементоБ-Окисление — это процесс отдачи электронов атомом, молекулой 1ли ионом. Если атом отдает свои электроны, то он приобретает положительный заряд, например  [c.189]


Смотреть страницы где упоминается термин Окислительно-восстановительные реакции ионов с молекулами: [c.217]    [c.204]    [c.200]    [c.206]    [c.178]    [c.88]    [c.102]    [c.130]   
Смотреть главы в:

Химическая кинетика -> Окислительно-восстановительные реакции ионов с молекулами




ПОИСК





Смотрите так же термины и статьи:

Ионы реакции с молекулами

Молекула ионная

Окислительно-восстановительные реакци

Окислительно-восстановительные реакции



© 2024 chem21.info Реклама на сайте