Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура и свойства поливинилового спирта

    СТРУКТУРА й Свойства поливинилового СПИРТА [c.103]

    Ряд работ [94—106] посвящен исследованию молекулярной структуры, определению удельных объемов и других. свойств поливинилового спирта. [c.444]

    Кристаллическая структура и физические свойства поливинилового спирта..............183 [c.166]

    КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ФИЗИЧЕСКИЕ СВОЙСТВА ПОЛИВИНИЛОВОГО СПИРТА [c.183]


    Структура и свойства поливинилового спирта [c.169]

    Свойства структуры ВМ ПАВ. Прочность адсорбционных слоев сапонина исследована в работе Трапезникова и Зотовой [30]. В серии работ Ребиндера и Измайловой с сотрудниками [29] изучены реологические свойства поверхностных слоев белков и поливиниловых спиртов, а также показан параллелизм между прочностными [c.425]

    Перспективной и быстро развивающейся областью использования стабилизации дисперсных систем различной природы являются процессы микрокапсулирования порошков и капель жидкости. Микро-капсулирование — это создание на поверхности малых капель или частиц защитных пленок, предотвращающих контакт защищаемого вещества с внешней средой. Такие пленки, образованные высокомолекулярными веществами, в некотором смысле близки по структуре и назначению к мембранам клеток. Основными путями микрокапсулирования являются адсорбция пленкообразующих высокомолекулярных веществ, либо выделение на поверхности частиц пленки новой жидкой фазы (коацервация) пленки подвергаются обработке (введение дубителей, изменение pH, температуры) с целью придания им твердообразных свойств. Для получения пленок используются различные природные н синтетические вещества белки (желатина, альбумин), полисахариды, производные целлюлозы, поливиниловый спирт, поли-винилацетат и др. [c.304]

    Возникновение конденсационных структур составляет сущность процессов застудневания растворов различных природных и синтетических высокомолекулярных соединений. Оно может сопровождаться изменением конформационного состояния макромолекул (застудневание желатины и других биополимеров) или химическими взаимодействиями. Например, при частичном ацеталировании поливинилового спирта формальдегидом (в кислой среде) в условиях пересыщений выделяются и срастаются волокна поливинилформалей, развивающаяся при этом сетчатая структура по свойствам близка к коже и х)ставляет основу синтетического материала — искусственной кожи. [c.385]

    В настоящее время поливиниловый спирт (ПВС) как волокнообразующий материал приобрел большое значение. Промышленные волокна ПВС изготовляются главным образом методом гидродинамической и термомеханической ориентации. От условий изготовления в значительной степени зависят структура и свойства волокон. Несомненный интерес-представляет изучение возможности получения фибриллярных структур-ПВС непосредственно из растворов без какой-либо дополнительной ориентации. [c.119]


    При взаимодействии эквимолекулярных количеств поливинилового спирта и полиметакриловой кислоты образуется ассоциат, обладающий фибриллярной структурой и рядом новых физико-химических свойств. [c.131]

    Особенно большое распространение в последнее время получило применение поливинилового спирта и его дериватов при производстве синтетических волокон и синтетических кож. Структура поливинилового спирта предоставляет широкие возможности для химической модификации, что открывает реальные пути для создания ряда сортов волокон н кожзаменителей с повышенной эластичностью, открытой пористостью, гигроскопичностью, улучшенной окрашиваемостью и рядом других свойств. [c.177]

    Анализ представленных экспериментально полученных данных приводит к заключению о весьма слабом структурировании исследуемой системы. Если трехмерная пространственная сетка и пронизывает всю систему 10% раствора поливинилового спирта в воде, подобно тому как это обычно имеет место в жидкообразных структурированных системах типа гелей нафтената алюминия в органических растворителях, подробное изучение реологических свойств которых нами было проведено в более ранних работах [11], то локальные связи ее, обеспечивающие структуру сцепления, очень слабы, вследствие чего кривые кинетики нарастания напряжения во времени с включением начальной стадии деформирования отвечают монотонной зависимости, без максимумов, соответствующих прочности системы, даже в области высоких градиентов скоростей. Возможно, что пространственная сетка в водных растворах поливинилового спирта низких концентраций (до 10%) отсутствует совсем. Область же эффективной, падающей вязкости в среднем диапазоне напряжений сдвига связана скорее с ориентационным эффектом в стационарном потоке, чем с разрушением структуры системы. [c.181]

    Изменение структурно-механических свойств водного раствора поливинилового спирта при введении пластифицирующей добавки высокой концентрации в зависимости от формирования и тиксотропного восстановления структуры (, 3,1 10 2 сек ) [c.184]

    Изменение структурно-механических свойств водного раствора поливинилового спирта при введении пластифицирующей добавки высокой концентрации в зависимости от формирования и тиксотропного восстановления структуры (ё 0,3 сек ), подвергшейся предварительному разрушению при е 770 се/с"  [c.185]

    Детальное изучение изменения реологических свойств в процессе формирования структуры свежеприготовленных растворов поливинилового спирта в воде при содержании дисперсной фазы более 10% по весу привело к выявлению ряда интересных особенностей структурно-меха-нических свойств водных систем на основе поливинилового спирта средних концентраций. [c.186]

    Стабилизирующие свойства структур ВМ ПАВ. Зависимость стабилизирующих свойств частично ацетилированных поливиниловых спиртов от молекулярного веса и числа гидрофобных групп изучена в достаточно широких пределах. При этом все исследования проведены на эмульсиях с одинаковым дисперсионным составом [4, 24], так как стабильность экспоненциально зависит от среднего [c.424]

    В работе [16] проводится исследование реологических свойств пластифицированных систем, в частности поливинилового спирта. Значительное снижение вязкости при увеличении градиента скорости сдвига, по мнению авторов, свидетельствует о наличии в системе структуры. [c.157]

    Проведено сравнительное гравиметрическое исследование пиролиза ориентированных и неориентированных образцов ПАН и ПВС с целью выяснения роли вторичной структуры полимера в этом процессе. Дана кинетическая характеристика процесса термического разложения ПАН и ПВС. По результатам исследования кинетики термического разложения полиакрилонитрила и поливинилового спирта сделан вывод о более высоких реакционных свойствах аморфных областей полимеров. [c.304]

    Рассмотрим теперь некоторые конкретные результаты, полученные при исследовании состава и структуры полимеров и их поверхностных слоев методом смачиваемости. Прежде всего нужно подчеркнуть, что энергетические свойства поверхности полимера очень чувствительны к его природе. При этом существенны как химическая структура основной цепи макромолекулы, так и тип боковых заместителей. Например, в ряду полиамидов (10 -8 6) с ростом относительного содержания амидных групп возрастает от 32 до 42 мДж/м2. С другой стороны, замещение одного атома водорода у каждого второго метиленового звена макромолекулы полиэтилена на полярную группу приводит к росту стз от 31 до 39 мДж/м2 в случае поливинилового спирта и до 44 мДж/м у полиакрилонитрила. [c.222]

    Химические свойства поливинилового спирта обусловлены наличием в его структуре большого количества [38,64% (масс.)] регулярно расположенных гидроксильных групп. Поливиниловый спирт вступает в реакции, типичные для многоатомных спиртов. Он способен образовывать сложные и простые эфиры, взаимодействовать с металлическим натрием, альдегидами и кетонами. Наибольшее значение в практическом отношении имеет реакция поливинилового спирта с альдегидами, приводящая к образованию по-ливинилацеталей [см. реакцию (7.40)]. [c.356]


    По химической природе носители ФАВ представляют собой функциональные полимеры. Практически все они содержат вставку или ее часть в виде боковых цепей, от 1 до 5—7 и более атомов. Несмотря на неспособность к биодеструкции, кар-боцепные полимеры широко используются как носители ФАВ вследствие простоты синтеза и больших возможностей варьирования структуры. Молекулярная масса карбоцепных полимеров-носителей должна быть ограничена указанными выше пределами. Среди гомополимеров наибольшее распространение получили поливиниламин, поли(мет)акриловая кислота, поливиниловый спирт и поли-Н-(2-гидроксипропил)акриламид [И]. Первые два полимера представляют собой полиэлектролиты и обладают соответствующей собственной активностью. Свойства поливинилового спирта и поливиниламина зависят от степени завершенности соответствующей полимераналогичной реакции при их получении. При синтезе ФАП на основе гомополи-мерных носителей для связывания ФАВ используется только часть функциональных групп, в то время как другая часть этих групп остается свободной и обеспечивает растворимость ФАП в воде. Контролировать распределение вводимых остатков по полимерной цепи в этом случае трудно , [c.46]

    При реакции низкомолекулярных спирта и кислоты образуется сложный эфир определенного строения, тоже низкомолекулярный. Если же реагирует, например, полиакриловая кислота с низкомолекулярным спиртом или поливиниловый спирт с низкомолекулярной кислотой, то в каждый момент времени реакции и по ее завершении в цепях содержатся сложноэфирные и непрореагировавшие кислотные или гидроксильные группы в разных соотношениях. Таким образом, каждая макромолекула содержит в своей структуре разные функциональные группы, а полимер в целом ком-пизиционно неоднороден. В результате реакционноспособность соседних функциональных групп повысится или понизится вследствие наличия рядом прореагировавшей функциональной группы ( эффект соседа ), а свойства продуктов эте-рификации будут различны. [c.221]

    Полимераналогачные превращения происходят в результате химических реакций, обычно функциональных групп, а иногда других реакционноспособных центров полимеров, приводящие к получению полиме-раналогов приблизительно с той же длиной макромолекул и прежним химическим строением основной их цепи. Эти реакции часто используют на практике для модификации свойств полимеров. В результате полимераналогичных превращений образуются новые функциональные боковые группы, сложные фуппировки в виде циклов и других структур, а также, наоборот, происходит раскрытие боковых циклических группировок. Очень часто невозможно достигнуть полного превращения исходного полимера в целевой продукт из-за сложности конверсии функциональных групп, являющихся частью всей макромолекулы, которые имеют сложное пространственное строение. Типичным примером полимераналогичных превращений с образованием новых функциональных фупп является получение поливинилового спирта из поливинилацетата [c.99]

    Механические свойства межфазных слоев, образующихся из водных растворов водорастворимых полимерных веществ — поливинилового спирта (ПВС) и его производных поливинилформаля (ПВФ), поливинилбутираля (ПВБ) и поливинилкеталя (ПВК) на разных границах раздела фаз, рассмотрены в ряде работ [112, ИЗ]. В этих работах также была сделана попытка установить связь между механическими свойствами (т. е. межфазной прочностью) адсорбционных слоев и временем жизни капель углеводорода у поверхностей раздела и подвергнут обсуждению механизм образования адсорбционных межфазных двухмерных структур. В работе использован ПВС молекулярного веса 37 ООО, содержащий 2,8% ацетильных групп, переосажденный из водного раствора ацетоном, и растворимый ПВФ с малой степепыо метилирования (не выше 10%), который был синтезирован из того же образца ПВС путем выдерживания смеси растворов ПВС, рассчитанного количества формалина и серной кислоты в качестве катализатора до полного исчезновения свободного формальдегида. [c.191]

    Хотя набухание самого поливинилового спирта и поливинилформаля невысокой степени ацеталирования при комнатной температуре приводит к поглощению влаги не свыше 100% (к весу полимера), набухание высушенных (непористых) криптоконденсационных структур, сопровождаемое их разворачиванием под действием внутренних напряжений, приводит к поглощению влаги до 1000%. При этом полимер теряет прозрачность и вновь превращается в микрогетерогенную эластичную белую массу. Такие превращения при набухании и высушивании могут быть повторены любое число раз. Как известно, сходными свойствами обладают некоторые биологические структуры, например недубленая натуральная кожа, которая при высушивании теряет пористость и превращается в полупрозрачный пергамент. [c.98]

    Таким образом, в отличие от водных растворов поливинилового спирта более низкой концентрации (менее 10%), водные системы поливинилового спирта в диапазоне средних и тем более высоких концентраций могут быть охарактеризованы как системы с довольно заметным проявлением прочностных свойств в области средних и высоких скоростей деформации. Прочность 15% раствора поливинилового спирта при изменении скорости деформации от 15 до 30 сек достигает значений в 2000—4000 duhij M- . Но при этом необходимо отметить, что проявление прочностных свойств наблюдается, как это видно из рис. 6, только на 8-й день после изготовления данной системы, когда структура системы полностью сформировалась. [c.186]

    При изучении тиксотропных свойств полностью сформировавшегося 15% водного раствора поливинилового спирта было установлено полное тиксотропное восстановление структуры, т. е. явления тиксолабильности, как это было нами обнаружено в пластифицированном 10% растворе [c.187]

    Миграционная теория защиты боковых граней печатающих элементов при эмульсионном травлении разработана в 1963—1964 гг. Позднее механизм ингибирования рассматривался Ю. Н. Березюкомссотрудниками, в результате чего основное положение — ингибирование боковых граней печатающих элементов за счет миграции на грань адсорбционных структур ПАВ — углеводород с металла пробелов и эмали кислотоупорных покрытий — было полностью подтверждено [47]. В дальнейшем они выдвинули положение о существовании бортика эмали в концентрации на гранях адсорбционных структур, мигрирующих с пробелов. Справедливо полагая, что этот бортик , образующийся в результате стравливания, служит механическим препятствием, способствующим задерживанию на гранях защитных веществ, Ю. Н. Березюк вместе с тем отрицает роль в ингибировании граней миграции адсорбционных структур с эмали кислотоупорного покрытия [48]. Зависимость результатов травления от вида кислотоупорных покрытий он объясняет разными прочностными свойствами покрытий и, следовательно, различной величиной бортика эмали. Покрытие на основе хромированного поливинилового спирта признается им наиболее прочным на излом, в связи с чем бортик не обламывается в процессе травления и, имея в сравнении с другими покрытиями большие размеры, способствует наилучшей защите боковых граней. Каких-либо экспериментальных данных в подтверждение этого не приводится. [c.135]

    Итак, при объединении реакционных групп обоих сортов в линейные последовательности реагенты приобретают качественно новое свойство — способность к кооперативному взаимодействию друг с другом. Это неудивительно, ибо сами полимерные цепочки являются линейными кооперативными системами. Кооперативные реакции между полиэлектролитами с этой точки зрения не являются уникальными. Хорошо известные и подробно описанные в литературе взаимодействия между макромолекулами имеют, как известно, кооперативный характер. Особенно ярко это проявляется, например, в процессах образования и разрушения двухтяжных спиральных структур из цепочек ДНК, боковые группы которых способны образовывать водородные связи. В работах [28—35] убедительно показано, что кооперативное взаимодействие высокомолекулярных полимерных кислот — полиакриловой (ПАК) и полиметакриловой (ПМАК) с высокомолекулярными полиэтиленгли-колем (ПЭГ), поливиниловым спиртом (ПВС) и поливинилпир-ролидоном (ПВПД) обусловливает образование соответствующих поликомплексов в водных средах. Звенья комплементарных макромолекул в таких поликомплексах образуют межмолекулярные водородные связи  [c.236]

    Большое влияние оказывает структура волокна и на его термостойкость. В отличиё от природных волокон, которые вследствие своей полярности разлагаются без плавления, синтетические волокна в большинстве случаев термопластичны. Некоторые из них достаточно устойчивы при нагревании выше температуры плавления, что позволяет проводить формование волокна прямо из расплава полимера (таковы, например, найлон-6, найлон-6,6, полиэтилентерефталат и полипропилен). Формование волокон из термически нестойких полимеров, особенно полиак-рилонитрила, ацетатов целлюлозы, поливинилового спирта и поливинилхлорида, производится более трудоемким способом полимер растворяют в подходящем растворителе и полученный раствор выдавливают через отверстия фильеры в поток горячего воздуха, вызывающего испарение растворителя, или в осадительную ванну. Безусловно, формование из расплава (там, где оно возможно) является наиболее предпочтительным методом получения волокна. Низкоплавкие волокна во многих случаях имеют очевидные недостатки. Например, одежда и обивка мебели, изготовленные из таких волокон, легко прожигаются перегретым утюгом, тлеющим табачным пеплом или горящей сигаретой. Желательно, чтобы волокно сохраняло свою форму при нагревании до 100 или даже 150 °С, так как от этого зависит максимально допустимая температура его текстильной обработки, а также максимальная температура стирки и химической чистки полученных из него изделий. Очень важным свойством волокна является окрашиваемость. Если природные волокна обладают высоким сродством к водорастворимым красителям и содержат большое число реакционноспособных функциональных групп, на которых сорбируется красящее вещество, то синтетические волокна более гидрофобны, и для них пришлось разработать новые красители и специальные методы крашения. В ряде случаев волокнообразующий полимер модифицируют путем введения в него звеньев второго мономера, которые не только нарушают регулярность структуры и тем самым повышают реакционную способность полимера, но и несут функциональные группы, способные сорбировать красители (гл. Ю). Поскольку почти все синтетические волокна бесцветны, их можно окрасить в любой желаемый цвет. Исключение составляют лишь некоторые термостойкие волокна специального назначения, полученные на основе полимеров с конденсированными ароматическими ядрами. Матирование синтетических волокон производится с помощью добавки неорганического пигмента, обычно двуокиси титана. Фотоинициированное окисление [c.285]

    Физические свойства. Во многих работах приведены данные исследований вязкости растворов поливинилового спирта [21—31]. Эвва [21] исследовал структурную вязкость и реологические свойства водных растворов поливинилового спирта. Скорость течения изменяется с напряжением t по уравнению q = Ах , где А vi п — константы, зависящие от температуры, концентрации и степени полимеризации. Саито [30] объясняет повышение вязкости растворов полимеров при добавлении детергентов образованием комплексов вследствие селективной адсорбции ионов детергента за счет дисперсионных сил и наличия сил притяжения между ионами детергента и диполем в полимере. Комплексообразование больше зависит от строения молекул детергента, чем от строения полимера. Исследованию молекулярной структуры и кристалличности поливинилового спирта посвящен ряд работ [32—39]. [c.340]

    При обработке целлюлозы, поливинилового спирта или др. полимеров, содержащих в макромолекуле группы с подвижным водородом (—ОН, —NH2, —NHR, —С0]ЧН2 и др.), веществами, способными в мягких условиях замещать атом водорода на длинные алифатические или алкилсилильные радикалы, можно придать материалу гидрофобные свойства и стойкость к действию микроорганизмов. При этом химич. обработка не вызывает деструкции и изменения морфоло-гич. структуры полимера. Так, при поверхностной обработке волокон, пленок и др. изделий из целлюлозных материалов 1—3%-ной водной коллоидной дисперсией окта- или гексадецилхлорметилата пиридина ( велан ) протекает реакция  [c.134]

    Ф. а. п., у к-рых фармакологически активные группы связаны с полимерной структурой химич. связями, следует рассматривать без деления на полимер-носитель и лекарственное вещество. Даже если в организме происходит отщепление лекарственной группы , поведение и функции полимерной основы м. о. иными, чем у исходного носителя. Роль носителя или пролонгатора не является пассивной и в случаях простых композиций. При применении лекарств в смеси с полимерами (в виде р-ров, гелей, суспензий и др.) заметного фармакологич. действия собственно полимера практически не наблюдается и его можно считать биоинертным. Однако физиологич. активность полимера не проявляется из-за того, что незначительны его абсолютные количества (дозы), или она незаметна на фоне действия основного лекарственного вещества. Установлено, что природа полимерной цепи существенно влияет на проявление действия лекарственного вещества, используемого в смеси с р-ром полимера. Так, плазмозаменители декстран и поливинилпирролидон в смеси с гепарином не оказывают заметного действия на свертывание крови по сравнению с физиологич. р-ром, содержащим гепарин. Смесь же гепарина с р-ром поливинилового спирта дает выраженное замедление свертывания. Создание смесей полимеров (или их конц. р-ров) с лекарственными веществами различной природы приводит к получе-. нию эффективных лечебных средств для внутреннего (таблетки, капсулы, р-ры) и наружного (мази, р-ры, аэрозоли, пленки) применения. При этом в ряде случаев физиологич. активность полимеров проявляется в активизации процессов всасывания и проникновения лекарственных средств через слизистые оболочки, кожу и др. Механизмы действия полимеров-носителей и причины влияния их структуры на физиологич. активность находящихся в смеси с ними низкомолекулярных соединений еще не выяснены и интенсивно изучаются. В фармацевтич. практике полимеры широко используют как основу мазей, таблеток или покрытий (см. Полимеры в медицине). В качестве гидрофобизаторов применяют различные нетоксичные кремнийорганич. полимеры. Накоплено много экспериментальных данных о биологической (физиологической) активности полимеров, об их влиянии на активность и сроки действия ряда фармакологич. препаратов при совместном применении, а также об особенностях свойств лекарственных веществ, ковалентно связанных с полимерами. Однако систематич. исследований, позволяющих связать проявление и специфичность физиологич. активности со структурными особенностями полимеров, проведено еще недостаточно, и они в большинстве случаев носят качественный характер. Следует отметить возрастающий интерес к физиологич. активности эле-Л1ентоорганич. полимеров полисилоксанов, полимеров. [c.372]

    Коэффициенты диффузии, вычисленные по величинам поглощения растворителя полимером при различных температурах, показали, что все кривые зависимости сорбции от температуры имеют 5-образную форму с точкой перегиба вблизи температуры стеклования Изучены диффузионные явления в концентрированных растворах поливинилового спирта и другие физикохимические свойстваИсследованы спектры ЯМР высокого разрешения стереорегулярного поливинилового спирта, поливинилового спирта, облученного тепловыми нейтронами з- 57. Получены ИК- Спектры различных образцов поливинилового спирта и его модельных соединений 158-1б4 Посредством изучения УФ-спектров поглощения исследована структура многих видов поливинилового спирта 65-167, Описаны также рентгенографические исследования поливинилового спирта >68-178 д числе исследования реакции между поливиниловым спиртом и борной кислотой и другими веществами 176-178 Исследованы электрокинетические свойства (е-потенциал) образцов частично ацетилированных волокон из поливинилового спирта 179-181 [c.573]

    Есть основания полагать, что в синтетических волокнах в результате прививки происходят значительные изменения, сопровождающиеся явным улучшением вторичных свойств, однако при этом уменьшается прочность при растяжении. Это мнение было подтверждено в обзоре Коршака и др. [191]. Влияние микроструктуры на прививку на полипропиленовые волокна проанализировал Геледжи [192], который также отметил зависимость физических свойств от нарушений структуры. Нэгиси [193], однако, высказывает другое мнение, отмечая, что прививка улучшает прочность волокон из поливинилового спирта. [c.206]

    Химическое строение угольного веш ества зависит от природы исходного органического веп ества, подвергавшегося карбонизации. Наглядным примером этого могут служить структура и свойства продуктов термической карбонизации поливинилового спирта и целлюлозы, в состав которых входят одни и те же элементы С, Н и О. Различие в строении и свойствах коксов из указанных полимеров особенно подчеркивается при их высокотемпературной обработке (до 3000° С). Из кокса поливинилового спирта получается графит, в то время как из кокса целлюлозы образуется неграфитирующийся углерод. Этот пример указывает на спе-хщфические особенности процесса структурно-химических преобразований при карбонизации сравниваемых полимеров. [c.235]

    Химич. свойства М. связаны с природой функциональных групп, входящих в состав М. Специфическими химич. реакциями М. являются 1) деструкция полимеров, приводящая к разрыву цепей и снижению мол. веса 2) структурирование (см. Вулканизация), т. е. возникновение химич. связей между различными М., приводящее к возрастанию мол. веса и в пределе к образованию сплошной сетчатой структуры (см. Структурирование полимеров пространственное), 3) реакции присоединения и отщепления пизкомолекулярных веществ без изменения степени полимеризации, приводящие к образованию поли-мераналогов (напр., этерификация целлюлозы с получением простых и сложных эфиров целлюлозы, омыление поливипилацетата с получением поливинилового спирта, внутримолекулярное отщепление воды от полиакриловой кислоты с получением полиангидрида и т. п.). [c.518]


Смотреть страницы где упоминается термин Структура и свойства поливинилового спирта: [c.127]    [c.191]    [c.136]    [c.465]    [c.62]   
Смотреть главы в:

Полимеры на основе винилацетата -> Структура и свойства поливинилового спирта

Полимеры на основе винилацетата -> Структура и свойства поливинилового спирта

Синтетические полимеры и пластические массы на их основе 1964 -> Структура и свойства поливинилового спирта

Синтетические полимеры и пластические массы на их основе Издание 2 1966 -> Структура и свойства поливинилового спирта




ПОИСК





Смотрите так же термины и статьи:

Поливиниловый спирт



© 2025 chem21.info Реклама на сайте