Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение углеводородов и химическая связь

    Электронное строение. Для объяснения химических свойств предельных углеводородов рассмотрим особенности их электронного строения. Вспомним электронное строение атома углерода, его валентные возможности, типы химических связей и геометрию молекулы метана. В молекуле метана каждая молекулярная орбиталь (МО) образуется сложением атомной р- -орбитали углерода и х-орбитали водорода  [c.124]


    Многообразие типов химических связей в углеводородах требует различных теоретических подходов дая описания строения и свойств этих молекул. Поэтому наряду с классической теорией локализованных химических связей — теорией валентной связи (ВС), в органической химии необходимо использование теории делокализованной химической связи — теории молекулярных орбиталей (МО). Без применения этой теории невозможно понять специфику органической материи.  [c.6]

    Предельные углеводороды. Гомологический ряд предельных углеводородов. Метан, строение, природа химической связи, химические свойства. [c.330]

    Ни одно физическое свойство не дает более точной информации о химическом строении углеводородов, чем спектр поглощения в инфракрасной области, особенно для простых алифатических соединений. Большинство полос поглощения возникает при резонансных вибрациях валентных связей и поэтому зависит от действительной инерции атомов и атомных групп в молекуле и сил между ними. В этой же области наблюдаются вращательные и вращательно-колебательные спектры, но они имеют меньшее значение [185]. Полосы, появляющиеся вследствие алифатических С—Н связей, особенно интересны, так как их частоты зависят от атомных весов атомов, с которыми связаны три другие валентности углерода [186—190]. [c.189]

    Связь между структурой углеводородов и их антидетонационными свойствами установлена давно. В 1921 г. Рикардо определил толуоловые числа для 13 индивидуальных углеводородов и отметил некоторые закономерности влияния химического строения углеводородов на их детонационную стойкость. В 1934 г. были опубликованы данные об антидетонационных свойствах 171 индивидуального углеводорода, а в 1938 г. в американском Нефтяном институте была определена детонационная стойкость 325 углеводородов различного строения [1]. Накопленный к настоящему времени экспериментальный материал (табл. 20) позволяет выявить некоторые закономерности. [c.109]

    Резюмируя материал, изложенный в первых двух главах, следует еще раз отметить, что между пространственной конфигурацией стереоизомеров в циклических углеводородах и термодинамической устойчивостью этих соединений существует четкая и однозначная связь. Из всех физико-химических характеристик, связанных со строением углеводородов, термодинамическая устойчивость является наиболее важной в стереохимическом смысле, [c.97]


    Вязкость, являющаяся важнейшей эксплуатационной характеристикой масла, непосредственно связана с температурным интервалом кипения данной масляной фракции, ее средним молекулярным весом и с групповым химическим составом и строением углеводородов. [c.112]

    В последнее время в связи с интенсивным развитием нефтехимической и микробиологической промышленности процессы разделения нефтяного сырья по химическому составу (строению углеводородов) или выделения из него индивидуальных углеводородов приобретают большое самостоятельное значение. Современные [c.13]

    Цикл Взаимосвязь состава, строения и свойств включает телепередачи по теоретическим вопросам курса органической химии для учащихся 10-х классов ( Углеводороды , Строение и свойства спиртов , Теория А. М. Бутлерова в свете электронных представлений , Свойства белков и др.) и передачи телевизионного факультатива Строение вещества и химическая связь . При разработке содержания этого цикла учебный материал подобран таким образом, чтобы максимально привлечь внимание учащихся к трудным для усвоения вопросам и дать возможность учителю в дальнейшей работе закрепить полученные знания на сериях контрольных вопросов и упражнений. [c.92]

    Одним из важных результатов квантовой теории химической связи является объяснение пространственного строения органических молекул. Известно, что расположение валентности углерода в различных рядах соединений различно. Так, в насыщенных углеводородах (и их производных) валентности углерода направлены к вершинам тетраэдра. В этиленовом ряду и в ароматических соединениях наблюдается не тетраэдрическое, а тригональное направление валентности. Три одинарные связи углерода расположены в одной плоскости под углом 120° друг к другу, поэтому молекулы бензола, нафталина и других ароматических соединений являются плоскими. Молекула ацетилена линейна. [c.479]

    Химические связи в молекуле бензола. Типичным ароматическим углеводородом является бензол СвНе. Химические свойства ароматических соединений обусловлены особенностью строения бензольного [c.257]

    Химики-органики с удовлетворением могут отметить, что именно теория химического строения молекул в значительной мере способствовала развитию теории графов. Так, класс нециклических графов — так называемых деревьев — впервые был установлен еще в середине прошлого века в работах Кэли на основании молекулярной структуры разветвленных предельных углеводородов. Использование топологических представлений может разрешить затянувшийся спор между химиками и некоторыми физиками последние упорно отказывают структурным представлениям химии в физической обоснованности. До сих пор ведется дискуссия на тему о том, имеет ли молекула вид , существуют ли химические связи и т.д. [c.5]

    В схеме отражено усложнение элементарного состава, химического строения, электронного и пространственного строения. Например, для молекул предельных углеводородов характерны а-связи и зр-гибридизация, для этиленовых углеводородов — л-связь и ар-гибридизация. У диеновых углеводородов уже новая характеристика — сопряженные связи, у ацетиленовых — новый тип гибридизации — ер и две я-связи и т. д. Усложняется и пространственное строение меняются валентные углы, появляются пространственные изомеры и т. д. [c.245]

    Глава 10. Строение углеводородов и химическая связь [c.320]

    Строение углеводородов полностью определяется типом химической связи, которая в них реализуется. В зависимости от гибридного состояния атома углерода или зр в молекулах образуются а-связи и различные [c.320]

    Как уже известно, молекулы углеводородов, их электронное и геометрическое строение составляют основу структ)фной химии, учения о химической связи и реакционной способности всех классов органических соединений. Таким образом, можно сказать, что они являются теоретической базой органической химии. [c.408]

    Эта схема весьма упрощена. В ней не учтена специфика строения углеводородов (например, наличие в молекулах двойных связей, приводящее к образованию окисей олефинов), а также новые элементарные реакции сложного процесса окисления углеводородов [61. Однако из схемы видно, что механизм окисления углеводородов сложен, а количество продуктов достаточно велико. Многие из них в реальной реакционной системе образуются несколькими путями, превращаясь в новые химические индивидуумы. [c.49]

    Использование кинетической теории применительно к углеводородам, имеющим сложное строение, связано с рядом трудностей [214, 215]. Во-первых, достаточно разработанная теоретическая картина взаимодействия при столкновении имеется для простых сферически симметричных частиц, тогда как данные о химическом строении углеводородов не свидетельствуют об их сферической симметрии. Во-вторых, даже для простых и симметричных частиц нет универсальной потенциальной функции, удовлетворительно описывающей их свойства переноса в широком диапазоне температур. [c.147]


    Товарные авиационные керосины почти на 90% состоят из фракций нефти, выкипающих выше 150—175° С, и в некоторых из них содержится более 10% высокомолекулярных углеводородов, в том числе с температурой кипения выше 250° С, а топлива Т-5 и Т- почти целиком состоят из углеводородов с пределами выкипания 200—320° С. Поэтому в реактивных топливах некоторых сортов в отличие от бензинов могут содержаться углеводороды сложного строения бициклические, в том числе с конденсированными кольцами, моноциклические с длинными боковыми цепями, нафтеноароматические, а также небольшое количество трициклических углеводородов нафтенового и ароматического ряда. Определение групп углеводородов в таких топливах сопряжено со значительными трудностями и, кроме того, дает очень приблизительное представление о составе топлив, поскольку углеводороды сложного строения не имеют свойств, характерных для определенной химической группы, например парафиновых или ароматических, а наделены свойствами, присущими как тем, так и другим углеводородам. В связи с этим углеводородный состав керосино-газойлевых топлив характеризуют не только содержанием отдельных групп углеводородов, но и структурным составом, позволяющим представить соотношение циклов и парафиновых цепей в средней молекуле топлива, а также относительное содержание ароматических и нафтеновых колец. [c.15]

    Типы структур, из которых построены молекулы нефтяных смол, и типы химических связей, входящих в эти структуры, по-видимому, не отличаются от структур и связей в молекулах асфальтенов. Среднечисловой молекулярный вес смол, выделенных из остатка нефти, выкипающего выше 200 °С при 3—5 мм, рт. ст., примерно в З раза меньше среднечислового молекулярного веса асфальтенов из этой же нефти (примерно 700 и 2100 соответственно). Меньшая ароматизованность смол относительно асфальтенов определяется главным образом большей долей углерода, содержащегося в парафиновых и нафтеновых структурах. Наиболее существенное отличие смол от асфальтенов заключается в том, что смолы полностью растворимы во всех жидких углеводородах. Это отличие связано как с меньшей долей углерода, содержащегося в ароматических структурах, так и, по всей вероятности, с большей длиной алкильных цепей и долей циклических полиметиленовых структур. Принципиальных же различий в химическом строении смол и нативных нефтяных асфальтенов, по-видимому, нет. [c.37]

    С 1861 г., т. е. с момента опубликования А. М. Бутлеровым статьи О химическом строении тел , начались непрерывные поиски изображения структурных формул молекул. Оказалось, что для изображения молекул алканов, алкенов, алкинов, алленов не существует проблем. Здесь достаточно эффективны классические формулы строения — плоскостные формулы Бутлерова, пространственные формулы Вант-Гоффа, конформащгонные проек-щш Ньюмена, зеркально-симметричные проекционные формулы Фишера для оптических изомеров. Перечисленные способы изображения геометрического и электронного строения молекул пригодны также для всех функциональных производных вышеперечисленных углеводородов, если только функциональные группы не дают сопряженных химических связей. [c.76]

    Алканы. Связь детонационной способности с химическим строением углеводорода наиболее подробно изучена в гомологическом ряду алканов. [c.19]

    Однако в настоящей работе мы не можем поставить себе задачей сколько-нибудь подробное освещение этих вопросов, так как они лежат вне той специальной области вопросов о связи химического строения углеводородов с их физико-химическими свойствами, которая является главной конкретной темой настоящей работы. [c.71]

    Химическая стабильность бензинов определяется составом и строением углеводородов [8]. Парафиновые, нафтеновые и ароматические углеводороды в условиях хранения и транспортирования окисляются относительно медленно. Наибольшей склонностью к окислению обладают непредельные углеводороды. Способность последних взаимодействовать с кислородом воздуха зависит от их строения, числа двойных связей и их расположения. Менее стабильными являются диолефиновые углеводороды с сопряженными двойными связями и MOHO- и диолефиновые углеводороды, содержащие бензольное кольцо. Олефиновые углеводороды с двойной связью в конце углеродной цепи окисляются труднее, чем олефины с двойной связью в середине цепи. Циклические олефины окисляются легче, чем олефины с открытой цепью, а олефины с разветвленной цепью окисляются легче, чем аналогичные углеводороды с прямой цепью. [c.24]

    Изучение процесса термической диссоциации на примере таких простых по химическому строению и составу соединений, какими являются алканы, важно для выяснения величин энергий индивидуальных химических связей органических соединений, а также решения тонкого вопроса о взаимном влиянии связей в молекуле с различной длиной и строением углеродной цепи. Весьма заманчиво использовать изучение термического распада регулярно построенных алканов в целях химической кинетики — выяснения влияния длины углеродной цепи и ее строения на динамические параметры реакций распада (энергия активации, стерический фактор и др.) и построения моделей или механизма превращений. Дястаточно напомнить, что учение о мономолекулярных реакциях и теория этих процессов — большой раздел химической кинетики, который в значительной степени опирается на экспериментальное изучение реакций термической диссоциации различных соединений, в том числе и углеводородов. [c.3]

    Наибольшее техническое значение имеют химические реакции непредельных полимерных углеводородов, приводящие к образованию полимеров пространственного строения и используемые для вулканизации природного и синтетического каучуков (полиизопрена, полихлоро-прена, полибутадиена и их сополимеров). Это — реакции каучуков с полифункциональными соединениями, главным образом с серой, или межмолекулярные реакции, протекающие с образованием химических связей между макромолекулами. [c.252]

    Бензол СбНб—простейший из огромного количества высоконенасыщенных циклических или полициклических углеводородов, химическое поведение которого отлично от поведения алкенов и носит название ароматичность . Строение бензола долгое время оставалось загадкой, которая сегодня полностью разрешена. Физические методы исследования (например, рентгеноструктурный анализ кристаллов бензола) показали, что молекула бензола представляет собой правильный плоский шестиугольник, образованный атомами углерода, каждый из которых связан с атомом водорода. Длины всех связей С—С в этой структуре равны. Симметричность молекулы бензола согласуется со многими исследованиями, где была установлена полная химическая эквивалентность всех атомов углерода (иными словами, для монозамещенных производных бензола не наблюдается изомерия положения заместителя). [c.47]

    Такие вещества получили название структурных изомеров. Простейшими структурными изомерами являются, например, углеводородын-бутан и 2-метилпропан. Порядок химической связи в этих углеводородах отображается следующими формулами химического строения  [c.29]

    Растворители можно разбить на доноры электронной пары (ДЭП) и акцепторы электронной пары (АЭП) в зависимости от их химического строения и химических свойств [65]. К сожалению, некоторые растворители нельзя отнести ни к той, ни к другой категории например, алифатические углеводороды не обладают свойствами ни ДЭП, ни АЭП. Растворители-ДЭП преимущественно сольватируют молекулы или ионы, являющиеся акцепторами электронной пары. Обратное справедливо для растворителей-АЭП. В этом отношении большинство взаимодействий растворенного вещества с растворителем можно рассматривать как обобщенную реакцию льюисовой кислоты с льюисовым основанием. Полярные молекулы растворенного вещества всегда 1 еют основный центр с повышенной электронной плотностью и кислотный центр с пониженной электронной плотностью. Для количественной оценки донорной и акцепторной эффективности растворителей Гутманн предложил так называемые донорные числа ОМ и акцепторные числа ЛЛ [65] см. разд. 2.2.6 и табл. 2.3 и 2.4. Благодаря способности образовывать координационные связи растворители-ДЭП н растворители-АЭП в общем случае хорошо ионизируют растворенные вещества (разд. 2.6). [c.111]

    Значительный процент в нефтях и нефтепродуктах приходится на долю парафиновых углеводородов. Химическое строение углеводородов парафинового ряда выражается формулой п 2п+2- Углеводороды до Сд составляют газовую часть нефти или ее легкую фракцию. Парафины же с большим числом углеродных атомов — от Сд и выше — находятся в бензиновых, керосиновых, дизельных, масляных и более высококипящих фракциях. Нормальные парафины (алканы) с числом углеродных атомов в молекуле от 5 до 17 при нормальной температуре и давлении находятся в жидком (жидкие парафины), а от 18 и выше — в твердом (твердые парафины) состоянии. Жидкие парафины содержатся в керосиновых и дизельных фракциях, выкипающих в пределах 180-310 С. Твердые парафины содержатся в мазуте и масляных фракциях, а также в гудронах. Удаление нормальных алканов из керосиновых, дизельных и масляных фракций (процесс депарафинизации) служит для улучшения низкотемпературных свойств нефтепродуктов. Поэтому процессы удаления нормальных парафиновых углеводородов в нефтепереработке занимают значительное место. Твердые парафины, извлеченные из масляных фракций, нашли широкое применение в фармацевтической промышленности, в бумажной — для пропитки отдельных сортов бумаги, используются для производства различных материалов электротехнической промышленности, спичек, искусственной вощины, гидроизоляционных материалов, вазели-нов, мазей. Жидкие парафины, извлеченные из средних дистиллятов нефти, являются ценным сырьем для производства основных составляющих любого синтетического моющего средства (СМС), в частности линейных алкилбензола (ЛАБ), алкилбензол-сульфоната (ЛАБС) и алкилбензолсульфоновой кислоты (ЛАБСК). Использование жидких парафинов для этих целей позволило высвободить сырье растительного происхождения (растительные масла). За последние годы в связи со значитель- [c.192]

    Во втором разделе Углеводороды и их функциональные производные , применяется новый, опробованный авторами интегральный способ описания химической связи, строения и свойств углеводородов без их дробления на классы и рассмотрения всего комплекса вопросов внутри каждого класса, ётрт способ преподавания с успехом используется на кафедре органической химии Ивановского государственного химико-технологического университета (ИГХТУ) в течение многих лет и зарекомендовал себя как экономный по [c.3]

    В зави Симости от природы каталитической поверхности превалирует одип из указанных типав реакций, но в принципе все катализаторы окисления полифункциональны, и изменением их химического состава можно усилить или подавить какую-либо реакцию. Центрами образования поверхностных соединений должны стать ионы или атомы, входящие в состав поверхности. В зависимости от строения окисляемого углеводорода под действием этих ионов олефины должны превратиться в л- и я-аллилшые комплексы, а парафины — в радикалы или дегидрироваться до олефинов, которые, в свою очередь, образуют поверхностные формы. Ароматические и алкилароматические углеводороды образуют комплексы с сохранением ароматического кольца или с его разрывом. Такой сложный спектр (поверхностных соединений требует и сложной матрицы поверхности. Во всяком случае, ионы-центры комп-леисоо бразования должны обладать такой электронной структурой, которая обеспечивала бы образование химических связей между окисляемой молекулой и соответствующим ионом. [c.307]

    Факты, установленные указанными авторами [368—373], интересны и, очевидно, должны найти объяснение посредством теории электронных зарядов связей. Во всяком случае эти факты (а они, как это будет видно из 8, посвященного нитрованию углеводородов, не являются единичными) указывают на необходимость более гибкого толкования всем хорошо известного положения Бутлерова о зависимости химических свойств вещества от его химического строения. Очевидно, химическое строение вещества изменяется при изменении условий, поэтому неправильно оценивать реакционную способность вещества только по его дореакционному (или исходному) состоянию. [c.373]

    Г о л о д е ц Г. И., Пятницкий Ю. М., ГончарукВ. В. О связи между химическим строением углеводородов с открытой цепью и их реакционной способностью в процессах полного окисления на окисных катализаторах.— Теор. эксп. химия, 1957, 3, 830. [c.181]

    Совершенно очевидна связь люминометрического числа топлива, отражающего радиирующую активность пламени, с химическим строением углеводородов топлива. Местный перегрев стенки [c.307]

    У Крама и Хэммонда основной скелет учебника — реакции, их систематика и механизм, образование и разрыв химических связей, в особенности связей с углеродом, а собственно систематический материал органической химии — соединения, их родственные связи и т.д. — сообщается попутно и поэтому эпизодичен. Лишь некоторые большие группы соединений сконцентрированы в шести специальных главах (22—27). Это гетероциклы (в весьма лаконичном, чтобы не сказать поверхностном, изложении), углеводы и фенольные соединения растительного происхождения, аминокислоты, пептиды и алкалоиды, липиды, терпены и стероиды, полимеры, углеводороды нефти. Как видно, эти главы, посвященные отдельным группам соединений, носят выборочный характер и объединяют иногда непривычно разнородный материал — аминокислоты и пептиды с алкалоидами, углеводы с фенольными продуктами и т. д., используя те или другие линии логической связи разных групп веществ, которые всегда можно найти в органической химии — в первом случае, например, биогенез алкалоидов из аминокислот. Главы эти не могут содержать сколько-нибудь систематического материала, имея более чем скромный размер, однако в них приводятся очень свежий и интересный материал, причем сосредоточивается внимание в большей степени на новом и отбрасывается старое. Так, в разделе об алкалоидах подробно рассмотрено исследование строения хинина и цинхонина и дан исключительно громоздкий синтез резерпина, и, в сущности, этим исчерпывается раздел. В гл. 23 среди прочего материа.да о веществах, родственных сахарал , приводятся структуры стрептомицина, тетрациклина, левомицетина, но бегло и без доказательств. Хотя и эти главы (22—27) читаются с интересом, их роль чисто иллюстративная и весь центр книги сосредоточен на предыдущих главах, после необходимого фундамента (гл. 1—8) посвященных реакциям. Поскольку такое изложение ново, оно интересно отнюдь не только для начинающего изучать органическую химию. Книгу с интересом прочтет и взрослый химик. Этот интерес усугубляется тем, что подбор реакций очень свежий и здесь нашли место многие новые реакции крупного значения. Особенно важно то, что воедино систематически собраны по признаку механизма реакции, которые в обычном изложении оказываются резбросанными по курсу. Механизму реакций уделяется то пристальное внимание, которое характерно для нынешнего этапа развития органической химии. В связи с этим и стереох1Шии течения реакций уделяется большое место. Таким образом, этот раздел книги представляет собой наибольшую ценность независимо от того, действительно ли такое построение с педагогической стороны наиболее целесообразно. Сомнение в этом закрадывается на том основании, что нри таком изложении физиономия химического индивидуума расплывается и [c.5]

    А. М. Бутлеров специально разбирает этот вопрос в работе О химическом строении некоторых непредельных углеводородов . Анализируя возможные точки зрения на строение непредельных углеводородов, он приходит к прямому выведу в том, что в непредельных соединениях имеют место кратные связи —дзойные или тройные. Он пишет Таким образом, приходится признать это последнее (4-е) предположение (т. е. предположение о наличии в непредельных углеводородах кратных связей.— В. Т.) наиболее соответствующим современному состоянию фактических знаний,— годным для того, чтобы руководиться им при теоретических суждениях об изомерии непредельных углеродистых частиц, и заслуживающим ближайшего рассмотрения и опытной проверки ([2], стр. 234). [c.30]


Смотреть страницы где упоминается термин Строение углеводородов и химическая связь: [c.24]    [c.89]    [c.20]    [c.28]    [c.28]    [c.136]    [c.326]    [c.230]    [c.34]    [c.345]    [c.13]   
Смотреть главы в:

Курс современной органической химии -> Строение углеводородов и химическая связь




ПОИСК





Смотрите так же термины и статьи:

Строение химическое

Химическая связь

Химическая связь связь

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте