Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография ионов на бумаге

    В настоящее время получили распространение так называемые гибридные и комбинированные методы. В гибридных методах в одном приборе совмещается концентрирование или разделение и определение. Типичным примером гибридного метода является титриметрическая хроматография на бумаге, импрегнированной осадителем определяемых ионов, на которой происходит разделение этих ионов и вместе с тем автоматически фиксируются качественные и количественные результаты определения. [c.309]


    Количественное определение ионов методом осадочной хроматографии на бумаге. Пиковая хроматография [c.341]

    Более четкое разделение с лучшей воспроизводимостью результатов удается получить, если при разделении имеет местО какой-то один из механизмов. Очень удобен для количественного определения метод осадочной хроматографии на бумаге. В этом случае на бумаге происходит преимущественно образование малорастворимых соединений определенного состава. При равномерном нанесении осадителей на бумагу осадок, образующийся после хроматографирования, занимает площадь, пропорциональную количеству осаждаемого иона. Это используют для количественного определения ионов методом осадочной хроматографии. Для этого измеряют массу бумаги, вырезанной пО контурам зоны, площадь или длину зоны. [c.341]

    Этот способ был разработан для количественного исследования аминокислот, а позже применен для определения минеральных ионов. Количественное определение нитратов галлия, индия, кадмия и цинка методом распределительной хроматографии на бумаге (бумага марки Б ) методом измерения площади пятен может быть иллюстрировано данными табл. 16 и 17. [c.182]

    Техника получения бумажной осадочной хроматограммы мало отличается от техники и методики распределительной хроматографии на бумаге делают как линейные, так и круговые хроматограммы. Исследуемый раствор обычно наносят на импрегнированную бумагу капилляром, а затем промывают первичную хроматограмму чистым растворителем до стабилизации границ между зонами. Иногда, в случае разбавленных растворов, раствор смеси разделяемых ионов можно подавать на бумагу непрерывно, т. е. простым впитыванием раствора с одного конца бумаги. Техника тонкослойной осадочной хроматографии во многом сходна с техникой хроматографии на бумаге. [c.194]

    Осадочная хроматография на бумаге. Носителем служит полоска фильтровальной бумаги (или бумаги для хроматографирования), смоченная 4—5%-ным раствором реагента-осадителя. На высушенную на воздухе бумагу наносят некоторое количество исследуемого раствора и после его полного впитывания промывают хроматограмму 1—2 каплями воды, нанося ее в центр смоченного пятна. При необходимости хроматограмму проявляют, нанося на нее капилляром или пульверизатором 0,1%-ный раствор реагента-проявителя. В табл. 29 приведены условия получения осадочных хроматограмм некоторых ионов на бумаге. [c.234]

    Хроматографические методы подразделяют также по способу выполнения. Различают плоскостные и колоночные методы. К плоскостным методам относятся бумажная и тонкослойная хроматография. Здесь разделение веществ происходит в весьма тонком плоском слое. В бумажной хроматографии это бумага, на волокнах которой имеется тонкий слой воды, играющий роль неподвижной фазы. Следовательно, бумажная хроматография относится к распределительной. В, тонкослойной хроматографии порошкообразная неподвижная фаза (адсорбент, ионит, гель) тонким слоем наносится на стеклянную пластинку. Подвижная фаза вместе с разделяемыми веществами перемещается в этом слое. [c.255]


    При гидролизе с соляной кислотой обычно применяют 2%-ные ее растворы и нагревание (при слабом кипении раствора) в течение 3 ч. Соляную кислоту из гидролизатов удаляют выпариванием раствора при низкой температуре, обработкой его слабоосновными анионитами (например, АВ-17) или нейтрализацией карбонатом серебра с последующим удалением ионов серебра действием сероводорода. При использовании гидролизата для анализа хроматографией на бумаге можно ограничиться концентрированием рас-торов. Остающаяся при этом кислота не мешает хроматографиче- скому разделению моносахаридов и их определению. [c.62]

    Методом двумерной хроматографии на бумаге отделяли натрий от щелочных и щелочноземельных элементов [482]. В качестве первого растворителя использовали смесь (87 13) абсолютного этанола и воды, в качестве второго — фенол, насыщенный водой. Разделяемые ионы имеют следующие величины 7 / (при 19° С) 0,17 Ка 0,14 К 0,19 ВЬ 0,26 Сб 0,40 КЩ 0,25 Mg 0,09 Са 0,08 8г 0,80 Ва 0,07. [c.49]

    Сущность работы. Наряду с колоночной осадочной хроматографией анализ смеси ионов можно производить методом осадочной хроматографии на бумаге. В этом случае роль носителя играет фильтровальная бумага, которая предварительно пропитывается раствором выбранного осадителя. Неокрашенные осадки можно проявлять соответствуюш,ими реагентами. В остальном принцип получения осадочной хроматограммы на бумаге не отличается от ее получения в колонке. [c.130]

    Цель работы. Показать, что осадочная хроматография на бумаге позволяет определять содержание неорганических катионов не только качественно, но и количественно. Определить количество ионов никеля в исследуемом растворе. [c.131]

    Сущность работы. Если фильтровальную бумагу пропитать осадителем, а затем на высушенную бумагу нанести каплю раствора, содержащ,его ион, образующ,ий с осадителем нерастворимый осадок, то в месте нанесения капли раствора образуется окрашенное или неокрашенное пятно осадка. В случае, если в капле раствора содержится избыток иона, то этот избыток остается на бумаге. При промывании этого пятна чистым растворителем избыточные ионы увлекаются им, переносятся по бумаге и реагируют с новыми порциями осадителя. При этом за движущимся по бумаге растворителем образуется окрашенный или неокрашенный след осадка в виде пика. Наблюдения показывают, что высота пика связана с количеством иона в растворе. Последнее свойство может быть положено в основу количественного определения ионов в растворе методом осадочной хроматографии на бумаге. С целью получения надежных результатов количественное определение производят путем сравнения высот пиков, полученных для исследуемого раствора, с высотами пиков, полученных для стандартных растворов в тех же условиях. [c.131]

    Хроматография на бумаге часто применяется в аналитической химии золота, поскольку этот метод одновременно позволяет обнаружить золото и количественно определить его в присутствии большого числа ионов. Преимущества хроматографии на бумаге перед другими видами хроматографии — в возможности простого отделения золота от обычных спутников — платиновых металлов. [c.97]

    Хроматография на бумаге для разделения имеет ряд преимуществ по сравнению с колоночной хроматографией и с капельным анализом [324], так как в плоскостном варианте зоны, содержащие ионы, доступны для проявления. Имеется много работ по отделению ртути с помощью адсорбционной и осадочной бумажной хроматографии [68, 99, 143, 175, 233, 577, 775, 910, 978, 1016, [c.62]

    Подобно хроматографии на бумаге, при тонкослойной хромато графии также проводят разделение в двух направлениях под пря мым углом друг к другу. В одном направлении, как правило проводят электрофорез в электрофоретической камере с малым объемом для испарения контакт между слоем адсорбента и электрод ными отсеками в этих камерах обеспечивают фитили из фильтровальной бумаги. Из-за низкой теплопроводности стекла и связанным с этим слабым тепловым рассеянием может возникать проблема охлаждения хроматографической пластинки. Для снижения образования тепла рекомендуется работать на стеклянных пластинках минимальной толщины и применять буферные растворы по возможности минимальной ионной силы. [c.234]

    Для быстрого отделения мышьяка от большого числа ионов металлов использован метод восходящей распределительной хроматографии на бумаге Ватман № 1. С применением смесей муравьиной кислоты с соляной кислотой и ацетоном в отношении 3 3 4 мышьяк отделяется от многих металлов, в том числе от Ti, W, Au [1002]. С использованием бумаги Ватман № 1 и смеси (9 1) метанола с водой в качестве растворителя количественно разделяются мышьяк(1П), теллур(У1) и иодид-ион [594]. [c.135]

    Отделение магния. При разделении магния и кальция методом хроматографии на бумаге подвижной фазой служит обычно метанол или этанол с добавками кислот. Подвижность ионов магния обычно значительно выше подвижности ионов кальция, поэтому достигается четкое разделение этих ионов. Чаще всего используют как подвижную фазу смесь метилового спирта с соляной кислотой и водой (8 1 1). В этом случае значения Rf для кальция и магния равны соответственно 0,55 и 0,80 [730[. Если подвиж-. пая фаза содержит больше соляной кислоты, чем метанола, то значение Rf магния меньше, чем для кальция. Так, например, при использовании в качестве подвижной фазы смеси 8 N НС1, метанола и тетрагидрофурана (70 20 10) = 0,38—0,44, Rf = [c.180]


    Лауриновую, миристиновую, пальмитиновую и стеариновую кислоты, каждая в количестве 40 мкг, разделяли методом хроматографии на бумаге с обращенными фазами. Для разделения использовали бумагу, пропитанную смесью низкомолекулярных углеводо-дов точность определения от —1,3 до +1,4%) [119]. В этом методе ориентационную, калибровочную и основную хроматограммы проявляли и высушивали одновременно. После кондиционирования аммиаком в течение 6—8 ч ориентационную (калибровочную) хроматограмму погружали в 0,03%-ный водный раствор нерадиоактивного Со(ОАс)2 и проявляли хорошо разделенные пятна 1%-ным раствором сульфида аммония. Остальные хроматограммы после кондиционирования аммиаком разрезали на кусочки размером 3 см. Те кусочки, которые содержали часть идентифицированных одиночных пятен, погружали в раствор меченого реагента и промывали, в результате чего образовывался Со5. После этого определяли полную радиоактивность °Со5, полученного из каждой кислоты. Содержание каждой кислоты в пробе вычисляли по полной радиоактивности соответствующих пятен основной и калибровочной хроматограмм, принимая во внимание, что полная радиоактивность пропорциональна количеству данной кислоты в пробе. Во избежание ошибок необходимо строго контролировать величину pH раствора. При pH < 5,8 образование соли не является полным, а при pH > 6,0 на бумаге адсорбируются трудно десорбируемые ионы кобальта. [c.163]

    Для выделения анализируемого лекарственного вещества из многокомпонентной лекарственной формы используют хроматографию. Особенно перспективно применение для экспресс-анализа распределительной хроматографии на бумаге и тонкослойной хроматографии. После выделения лекарственного вещества из лекарственной формы выполняют химические реакции на ионы или функциональные группы, причем эти реакции могут быть выполнены прямо на хроматограмме. [c.249]

    Многочисленные и разнообразные примеры успешного применения в аналитической химии разделения катионов многих металлов приведены в обзорных статьях [119, 1211. Простота и доступность метода распределительной хроматографии на бумаге, возможности большого выбора элюентов способствовали широкому применению этого метода и для разделения разновалентных ионов одного элемента. Однако обычные разделения методом бумажной хроматографии производятся в течение 1—6 ч и лишь очень немно- [c.180]

    Осадочная хроматография ионов пользуется довольно разнообразными приемами разделения, очистки и концентрирования веществ. Один из простейших приемов состоит в избирательном поглощении одного или нескольких ионов из раствора, пропускаемого через соответствующим образом подготовленную хроматографическую колонку или им-прегнированную бумагу. Им широко пользуются как при концентрировании ионов из разбавленных растворов, так и для удаления из растворов некоторых мешающих примесей. И в том и в другом случае метод осадочной хроматографии обладает существенными преимуществами по сравнению с другими методами, применяемыми для этих целей. [c.188]

    Иногда вторичные явления используют для улучшения условий анализа. Например, если края окрашенных зон первичной или промытой хроматограммы неровные, то можно подождать до их выравнивания и точнее замерить высоту каждой зоны. Ионы серебра в виде иодида при их низкой концентрации трудно обнаружить методом осадочной хроматографии на бумаге вследствие малой интенсивности окраски Agi однако, если в анализируемый раствор ввести небольшое количество ионов Hg +, то очень четко обнаруживается ярко-желтая зона Ag2[Hgl4], окруженная при избытке ртути красным кольцом Hgl2. [c.230]

    Это свойство положено в основу количественного определения ионов в растворе методом осадочной хроматографии на бумаге. Дл я получения достоверных результатов количественное определение проводят путем сравнения пиков, полученных для исследуемого раствора, с высотами пиков, получшных для стандартных растворов в тех же условиях. [c.271]

    Составление методики количественного анализа возможно, если известен состав вещества, а также какие компоненты являются основными, а какие — примесями. Полуколичественную оценку содержания металлов и некоторых неметаллов можно провести методом эмиссионного спектрального анализа (см. гл. 6). Из хроматографических методов для качественного анализа наиболее подходят ионообменная хроматография и хроматография на бумаге. Однако эти методы пригодны лищь для анализа смесей, состоящих из небольшого числа компонентов, например, катионов одной-трех групп. Применение дробных реакций дает надежную информацию также в случае несложных смесей, кроме нескольких специфических реакций (на ионы аммония, железа). [c.198]

    Предполагалось, что атака иона XIV вторым компонентом—1,3,4,6-тетра-О-ацетил-Л-фруктофуранозой V не может поэтому проходить с инверсией у С]. Эта реакция была осуществлена при нагревании компонентов в бензольном растворе в запаянной ампуле ири 80—120°С в течение 72—168 ч. Выход по результатам анализа методом изотопного разбавления составлял всего 2—9%, однако при помощи препаративной хроматографии на бумаге носле деацетили1р01ва,ния продуктов реакции и хроматографии на магнезол-целите с последующим ацетилированием был выделен октаацетат XV, идентичный октаащетату сахарозы. [c.564]

    Частично деметилировать метилированные углеводы можно также бромистоводородной кислотой [147]. Для этой цели 10 мг 2,3,4,6-тетра-0-метил-Ь-глю-козы и 1 мл бромистоводородной кислоты (48%-НОЙ) нагревают в запаянной ампуле на кипящей водяной бане в течение 5 мин. Смесь разбавляют 10 мл воды, нейтрализуют добавлением небольших порций А 2СОз и фильтруют через уголь. Для удаления ионов серебра фильтрат насыщают сероводородом и снова фильтруют через слой угля. Раствор концентрируют в вакууме и исследуют хроматографией на бумаге, В растворе присутствует глюкоза, моно-, ди-и три-О-метилглюкоза. [c.98]

    К диализованному раствору, содержащему окисленный полисахарид добавляют 1,1 г боргидрида натрия и оставляют стоять при комнатной температуре в течение 10 ч. Затем к смеси добавляют по каплям 1 н. раствор соляной кислоты для разрушения избытка боргидрида и нейтральный раствор концентрируют в вакууме при 40° С до 150 м.л. К полученному нейтральному раствору полиола добавляют соляную кислоту до 0,5 и. концентрации и подкисленный раствор оставляют при комнатной температуре на 8 ч. Для удаления ионов хлора и натрия гидролизат последовательно обрабатывают анионитом А-4 (ОН -форма) и катионитом Щ-120 (Н+-форма), а затем упаривают досуха в вакууме при 40° С. Остаток трижды упаривают со 150 мл метанола для удаления борной кислоты в виде летучего метилбората. Исследование нейтрального гидролизата методом хроматографии на бумаге в системе пиридин — этилацетат—вода (2 5 7 по объему) показывает наличие в нем эритрита и ряда менее подвижных гликозидов эритрита. Для идентификации разделенных хроматографией веществ вырезают участки хроматограммы, соответствующие отдельным соединениям, элюируют водой, элюаты фильтруют и упаривают в вакууме досуха. В табл- 16 приведена характеристика очищенных продуктов. [c.115]

    Для щелочного расщепления раство"ряют полисахарид при 25— 38° С в известковой воде, не содержащей кислорода. Реакция протекает в течение нескольких недель или месяцев. Ионы кальция после расщепления полисахарида удаляют с помощью катионообменной смолы. Оставшийся нерасщепленный полисахарид выделяют осаж дением этанолом. Продукты распада разделяют фракционированным осаждением их кальциевых солей. Сахараты исследуют распределительной хроматографией на бумаге с растворителем этилацетат— уксусная кислота — вода 10 1,3 1). [c.121]

    Применение метода хроматографии на бумаге позволило идентифицировать ряд метафосфатных полимеров общей формулы (НРОз) . Использование этого аналитического метода заключается в том, что на поверхность обычного куска фильтровальной бумаги в углу наносится капля полимерной смеси. После высушивания капли край бумаги погружают в основной растворитель, который переносит по бумаге различные компоненты полимерной смеси с неодинаковой скоростью. Затем бумагу снова высушивают и погружают ее соседний край в кислый растворитель. Этот растворитель в свою очередь переносит различные фрагменты полимерной смеси вдоль бумаги с неодинаковой скоростью. В результате удается идентифицировать полимерные фрагменты вплоть до октаметафосфатного иона, как это показано на рис. 21.8. [c.382]

    Ионофоретический метод разделения аминокислот также базируется на их амфотерности. При различных pH раствора аминокислоты движутся к катоду или аноду, в соответствии с их изоэлектрическими точками и электрофоретической подвижностью Так при pH, близком к б, кислые аминокислоты направляются к аноду, основные к катоду, а нейтральные остаются неподвижными. Ионофорез также можно проводить в растворе или на твердом носителе. Первый метод позволяет раздел5ггь аминокислоты только на сравнительно крупные фракции — кислую, основную и нейтральную. Второй метод, так же как и распределительная хроматография на бумаге, дает возможность разделять любые аминокислоты. В качестве твердого носителя применялись силикагель, крахмал и бумага. Из них самым простым оказался ионо- [c.481]

    Метод хроматографии на бумаге широко используют для отделения марганца от других элементов. Миграция ионов Мп(П) на бумаге детально изучена для разнообразных систем подвижных фаз [810]. Для проявления марганца на хроматограмме используют неорганические и органические реагенты и их смеси [70, 124, 224, 310, 691, 773, 858 1002, 1070, 1071, 1177, 1214, 1318, 1333, 1427, 1430, 1517]. Из неорганических реагентов применяют аммиачный раствор AgNOg ]224], щелочной раствор HjOj ]1318], раствор KJO4 ]858] и другие из органических — бензидин [70, 691, 1002], оксихинолин [691, 1070, 1071, 1427], квер-цетин [691], хлораниловую кислоту [1517], ализарин, глицерин и другие [1517]. [c.142]

    Реагент Толленса, который широко используют для опрыскивания хроматограмм с целью качественного определения различных восстановителей, приготавливают так, чтобы избежать большого избытка аммиака, поскольку при высоких концентрациях свободного основания уменьшается чувствительность метода. В количественных радиохимических определениях альдоз, кетоз и других окисляющихся соединений с помощью хроматографии на бумаге концентрация серебра в реагенте должна быть гораздо выше той, которую используют в качественных определениях. Растворы, применяемые в этом методе [83], приготавливают путем растворения 9—17 вес.7о AgNOs в концентрированной гидроокиси аммония. Помимо высокой концентрации иона Ag+ в растворах, используемых в данном методе, должно быть также еще небольшое количество NaOH для воспроизводимого проявления пятен. После опрыскивания хроматограммы нагревают при температуре 105 °С. Продолжи- [c.114]

    Метод хроматографии на бумаге применен [638J для определения концентраций ионного и элементного золота. Подвижной фазой является смесь ацетон — вода (70 20), содержащая НС1 (pH 1,5—2,0). Коллоидное золото остается на старте, а ионное мигрирует (/г =1,0). [c.99]

    Золото определяют [719] полуколичественпо в рудах, почвах и породах после отделения от сопутствуюш,их ионов методом восходяш ей хроматографии на бумаге. Растворителем является смесь этанол — этилацетат — вода — HNO3 (20 20 20 0,7). Не мешают Ag и Hg. Распределительную хроматографию на бумаге применяют До1я определения золота в силикатных, глинистых и сульфидных рудах [1168, 1169], ювелирных сплавах [1403], монетных сплавах, содержаш,их Си и Fe [795], для обнаружения золота в присутствии платиновых металлов [82J. [c.101]

    Образование внутрикомплексных соединений при взаимодействии молибдата с различными фенолами (пирокатехин, 3,4-диоксибензальдегид, 3,4-диоксибензойная кислота, пирогаллол, галловая кислота) изучалось [793] методами ионного обмена, хроматографии на бумаге, электрофореза и спектрофотометрп-ческим методом. [c.26]

    Различные величины Rf ионов ртути и других элементов делают возможным разделение их при помощи распределительной хроматографии на бумаге. Для разделения применяют самые раз-нообраэные растворители, но чаще всего растворители, содержащие к-бутанол, содержащий НС1 различной концентрации [99, 538, 903, 904[. В табл. 14 даны примеры разделений смесей, содержащих ртуть, методом распределительной хроматографии на бумаге. [c.63]

    Значения Rf разделенных ионов даны в той же последовательности, в которой приведены ионы в первой колонке. Круговая хроматография. Фильтровальная бумага. Ватман 2. Бумага 2045а. Нисходящая хроматография. [c.65]

    V NH4OH (2 1 2) [7571 ацетон—пиридин—вода (4 2 1) [380]. На бумаге Ватман № 3 последняя из названных ПФ обеспечивает высокую эффективность разделения. Как и в предыдущих случаях, разделение осуществляют методом восходящей хроматографии полоски бумаги длиной 60 см и шириной 2,6 см с нанесенной на них анализируемой смесью помещают в вертикальном положении в стеклянные цилиндры с ПФ. После 24 час. хроматографирования полоски бумаги сушат, кондиционируют 30 мин. в атмосфере с влажностью 90% и проявляют 1 %-ным раствором AgNOg, а после освещения дневным светом измеряют Rf. Для ионов F , СГ, Вг и значения Rf соответственно равны О, 0,20 + 0,03, 0,36 + 0,06 и 0,69 0,06. В случае необходимости количественного анализа каждую зону после проявления элюируют 25 мл воды и измеряют радиочастотное сопротивление полученного раствора. В других случаях количественный анализ выполняют после сухого или влажного сожжения проявленных пятен в этнх методах отпадают возможные погрешности за счет неполноты элюирования. [c.65]

    Отделение других ионов. Для отделения Са от Ег методом хроматографии на бумаге применяется в качестве подвижной фазы дибутилфосфортионовая кислота [6601. [c.185]

    Исследован состав продуктов метаболизма золоторастворяю- Цих бактерий. Методом хроматографии на бумаге в натуральных Средах активных организмов установлено значительное количество аминокислот. С помощью методов вертикального электрофореза на бумаге ионного обмена и химического осаждения продукты етаболизма разделены на составляющие фракции. [c.153]

    Хроматография на бумаге возникла как вариант распределительной хроматографии на столбике целлюлозы. Фильтровальная бумага является носителем неподвижной фазы, а система растворителей — подвижной фазой, которая перемещается по хроматограмме под действием капиллярных сил. В ячейках бумаги протекает процесс, в какой-то мере аналогичный противоточному распределению. Скорость перемещения определяемого вещества по бумаге выражают величиной Рр (см. разд. 2.7). На значение Рр оказывают влияние следы посторонних ионов в растворителях, изменение температуры, неоднородность бумаги и т. д. Значения Нр для различных веществ в большинстве случаев пропорциональны их коэффициентам распределения. Консден, Гордон и Мартин [4] выявили зависимость между коэффициентом распределения и скоростью перемещения анализируемого соединения она описывается уравнением [c.21]

    В подавляющем числе случаев, говоря о хроматографическом разделении рзэ, имеют в виду ионный обмен, хотя из различных разновидностей хроматографического метода для разделения рзэ применяются также хроматография на бумаге и ее сочетание с элек-тромиграционными способами. Именно благодаря ионообменным методикам разделение всей группы родственных элементов приобрело ту надежную основу, которой нехватало для успешного изучения и освоения индивидуальных рзэ. В настоящее время, когда приготовление препаратов отдельных представителей ряда с чистотой, например, 99,9% осуществляется достаточно легко и уже не представляет той проблемы, которая примерно до 1940 г. разрешалась в течение почти двух столетии и для некоторых рзэ так и не была разрешена, многие исследования в области химии и анализа ряда объектов не представляются возможными без применения ионного обмена. [c.92]

    Описано определение РОГ в присутствии других ионов с применением хроматографии на бумаге [873]. Для анализа применяют бумагу ватман № 1, пропитанную последовательно растворами РЬ (N03)2 и KJ. Проявителем служит раствор KJ. Белое пятно, полученное на высушенной хроматограмме (осадок фосфата РЬ), вырезают и анализируют. Определение РОГ возможно в присутствии NS-, С1-, Br-, NO3, СОГ, J-, JO3, СН3СОО-, В4ОГ, F-, SbaOj", К+, NH4, ОН , Н+, тартрата и цитрата. Мешают [c.101]

    Определению мешают А1, 1п (образуют флуоресцирующие комплексы), Си, Со, N1 (собственная окраска ионов), соли Ре(1П), Т1(1П), хроматы (редокс-действие на краситель), оксикислоты, дикарбоновые кислоты, многоатомные спирты, сахар, фосфаты, фториды (образуют с галлием более прочные комплексы, чем реагент I). Галлий предварительно экстрагируют эфиром из 6 НСЬв присутствии Т1С1з. Следы железа, частично увлеченные в экстракт, отделяют методом хроматографии на бумаге или ионного обмена. Комплекс галлия с реагентом II в водном растворе практически не флуоресцирует, но в бутаноле, амиловом и гексиловом спиртах уже при дневном свете дает интенсивную кроваво-красную флуоресценцию, которая достигает максимума в растворе амилового спирта. Оптимальное значение pH экстракции 4,7. Интенсивность флуоресценции зависит от тех же факторов, которые указаны для соединения галлия с реагентом I, а также от содержания воды в слое амилового спирта. [c.139]


Смотреть страницы где упоминается термин Хроматография ионов на бумаге: [c.346]    [c.131]    [c.108]    [c.220]    [c.144]    [c.21]   
Смотреть главы в:

Таблицы и схемы аналитической химии -> Хроматография ионов на бумаге




ПОИСК





Смотрите так же термины и статьи:

Бумага ионитами

Бумага хроматограф

Ионная хроматография

Количественное определение ионов методом осадочной хроматографии на бумаге. Пиковая хроматография

Количественное определение ионов методом осадочной хроматографий на бумаге

Разделение ионов меди, висмута и кадмия методом распределительной хроматографии на бумаге

Разделение неорганических ионов хроматографией на бумаге

Хроматография на бумаге

Хроматография на ионитах

Хроматография хроматография на бумаге



© 2025 chem21.info Реклама на сайте