Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды как кислоты и основания Углеводороды как кислоты

    МЫХ углеводородах. Устойчив к действию кислот и оснований даже при повышенных температурах, к растворам солей при температурах выше 100 °С, к растительным маслам, водостоек. Заметное воздействие оказывают на него только сильные окислители — хлорсульфоновая кислота, олеум, дымящаяся азотная кислота, галогены. [c.13]


    В течение девяти лет мы проводили систематические исследования по улучшению способов окисления парафиновых углеводородов в синтетические жирные кислоты и спирты. Основная цель нашей работы сводилась к отысканию более дешевых и доступных источников сырья и к разработке более совершенного технологического процесса окисления. Нам удалось разработать оригинальную технологию производства синтетических жирных кислот и спиртов, основанную на непрерывном окислении жидких парафинов. Одновременно нами установлен ряд новых положений, позволяющих в значительной степени расширить представления [c.3]

    Бесцветная маслянистая жидкость со своеобразным запахом в свету коричневый оттенок частично растворяется в воде, полностью—в эфире, алкоголе, углеводородах сильное основание, с кислотами образует кристаллизующиеся соли [c.71]

    Диаграммы, приведенные на рис. 12,13, отражают ход анализа экстракция кислотой (основания), экстракция щелочью (фенолы), ректификация нейтрального остатка на фракции, хроматографическое разделение на группы углеводородов и нейтральные кислородные соединения (ИКС) с последующим кольцевым анализом углеводородов (А — ароматическое кольцо, N — нафтеновое кольцо, цифра указывает число колец данного типа). [c.169]

    Синтез высших жирных кислот основан на окислении парафинов С — gj, хорошо очищенных от ароматических углеводородов. Такие парафины получаются, в частности, в процессе депарафинизации смазочных масел и содержат в своем составе до 18—25% (масс.) углеводородов изомерного строения. С наибольшим выходом синтетические кислоты Сщ—С о могут быть получены при окислении жидких н-парафинов, выделяемых мочевиной или цеолитами из дизельных фракций нефтей и содержащих не более 3—5% (масс.) парафинов изостроения  [c.175]

    В зависимости от природы, стадии химической зрелости и состава твердых топлив в их первичных смолах содержится различное количество парафиновых, ароматических и гидроароматических углеводородов, фенолов, многоядерных ароматических соединений, органических оснований, карбоновых кислот, кетонов, спиртов и сложных эфиров. [c.246]

    Объемный сернокислотный способ. Данный способ — один из наиболее старых способов определения ароматических углеводородов в бензинах прямой гонки. Он принят также для определения содержания в готовых продуктах пиролиза предельных и нафтеновых углеводородов. Способ основан на том, что концентрированная серная кислота, в особенности дымящая, относительно легко сульфирует ароматические углеводороды, не затрагивая при этом нафтенов и парафинов. [c.479]


    Поэтому к способам, основанным на количественном удалении одних непредельных углеводородов кислотой или адсорбентом (не затрагивая при этом ароматических), следует относиться крайне осторожно. [c.505]

    Изучение группового углеводородного состава светлых нефтепродуктов, как мы видели выше, базируется в основном на удалении ароматических и ненредельных углеводородов серной кислотой или адсорбентами. На основании анилиновых или нитробензольных точек или изменения показателя преломления или других констант определяется групповой углеводородный состав нефтепродукта. Вследствие высокой реакционной способности отделение ароматических углеводородов от метано-нафтеновых смесей в светлых нефтепродуктах не представляет затруднений, хотя, как мы видели, кислотная обработка может затрагивать также и метано-нафтеновую часть продукта. В высококипящих масляных фракциях, в которых содержится значительное количество сложных по своей природе молекул, состоящих одновременно из ароматических и нафтеновых колец с метановыми цепями, отделение смолисто-асфальтовых веществ и ароматических углеводородов при помощи серной кислоты менее приемлемо, так как кислота наряду с ароматической частью переводит в кислотный слой и метано-нафтеновую [c.522]

    Способ, при котором для отделения спиртов от углеводородов используют борную кислоту, основан иа том, что последняя со всеми спиртами легко образует триалкилбораты. Борные эфиры нелетучи и термически весьма устойчивы, поэтому углеводороды можно от них отогнать. Последние остатки нейтрального масла рекомендуется удалять перегретым водяным паром. В заключение сложные эфиры борной кислоты гидролизуют горячей водой, выделяя таким образом спирт и регенерируя кислоту. Этот метод, который после метода перегопки является паиболее распространенным, потому что ои применим во всех случаях, также пригоден для выделения в чистом виде высших спиртов с 12—20 атомами углерода. [c.551]

    На основании большого числа исследований И. П. Цукерваник [32] установил механизм алкилирования ароматических углеводородов спиртами в присутствии кислых катализаторов. Он нашел, что спирты сперва образуют с катализаторами оксониевые комплексы, которые затем превращаются в смешанные алкоголяты (если катализаторами служат галогенпроизводные металлов) или кислые эфиры (в присутствии минеральных кислот). Далее алкоголяты или кислые эфиры непосредственно алкилируют ароматические углеводороды по примерной схеме  [c.475]

    При взаимодействии с кислотами этиленовые углеводороды выступают в роли основания и при этом образуются карбониевые ионы  [c.158]

    Не следует рассматривать воду с энергией присоединения протона 778-10 Дж/моль (186 ккал/моль) как нижнюю границу основности. Могут быть еще более слабые основания с еще меньшим сродством к протону. Они будут проявлять свои основные свойства только по отношению к очень сильным кислотам. Точно так же не следует рассматривать сродство иона NHз как верхнюю границу основности. Могут быть еще более сильные основания, которые будут проявлять свои основные свойства по отношению к таким кислотам, как углеводороды. [c.290]

    Полипропилен имеет высокие физико-механические и диэлектрические показатели (молекулярная масса 60 000—200 000, темп, пл. 164—170 °С, плотность 920 кг/м ). Он стоек к действию кислот, оснований и масел даже при повышенной температуре. При обычной температуре он ни в чем не растворяется, при температуре выше 80 °С растворяется в ароматических углеводородах и хлорированных парафинах. [c.305]

    Химические продукты, которые получают при переработке нефти и других горючих ископаемых, представляют собой многокомпонентные смеси углеводородов, принадлежащих к различным гомологическим рядам. Для правильного использования этих смесей необходимо знать процентное содержание в них предельных, непредельных и ароматических углеводородов. Один из методов приближенного определения группового состава основан на различном отношении предельных, непредельных и ароматических углеводородов к концентрированной серной кислоте при комнатной температуре. [c.221]

    Полиэтилен при комнатной температуре устойчив к воздействию большинства минеральных кислот, оснований и растворов солей, а также ко многим органическим жидкостям, но набухает в углеводородах, а при 60—70°С растворяется в них. При 20°С полиэтилен нестоек к ацетону, бензину, керосину, сероуглероду, нефти, трихлорэтилену, концентрированному раствору йода, хлору. С повышением температуры среды химическая стойкость полиэтилена снижается. В большинстве случаев химическая стойкость полиэтилена является наивысшей для средних концентраций среды и меньшей для низких и высоких концентраций. Полиэтилен горит под воз-действием открытого пламени [c.202]


    Для проверки высказанного им взгляда относительно действия нитрующих смесей М. Усанович исследовал в трех сериях опытов нитрование ароматических углеводородов (на примере толуола) в присутствии растворителей трех родов, из которых одни — основания, другие — кислоты, третьи —индифферентны по отношению к НМОз. [c.145]

    Так, например, альдегид, образующийся при окислении первичного спирта (разд. 16.7), вполне может быть загрязнен карбоновой кислотой. Эту кислоту. можно легко отмыть разбавленным водным раствором основания. Карбоновая кислота, получаемая при окислении алкилбензола (разд. 12.11), вполне может быть загрязнена непрореагировавшим исходным веществом карбоновую кислоту можно перевести в раствор обработкой водным раствором основания, отделить от нерастворимого углеводорода и регенерировать добавлением минеральной кислоты. [c.556]

    Химическая деструкция протекает под действием кислот, оснований, спиртов, воды, кислорода и др., она наиболее характерна для гетероцепных полимеров и протекает избирательно. Углерод-углеродная связь более устойчива к действию химических агентов, чем углерод-гетероатом, и поэтому полимерные углеводороды достаточно устойчивы к химической деструкции. [c.108]

    Кислый гудрон, образующийся при сернокислотной очистке нефтепродуктов, имеет очень сложную природу, даже когда очистке подвергается бензин или керосин. В кислом гудроне содержатся эфиры и спирты, которые образуются при взаимодействии кислоты с олефинами сульфокислоты, которые образуются прп сульфировании ароматики, нафтенов и фенолов соли, которые образуются при реакции кислоты с азотистыми основаниями нафтеновые кислоты, сернистые соединения и асфальтены, для которых серная кислота является селективным растворителелк К этому перечню соединений следует еще добавить продукты окислительно-восстановительных реакций, т. е. смолы и растворимые в кислоте углеводороды, а также воду и свободную серную кислоту. Гурвич [66] считает, что в кислом гудроне присутствует много непрочных соединений кислоты с углеводородами эти соединения легко разлагаются при хранении кислого гудрона или при разбавлении его водой. Очевидно, что соотношение между перечисленными компонентами кислого гудрона будет различным в различных конкретных случаях и зависит как от природы очищаемого нефтепродукта, так и от технологического режима очистки и от крепости применяемой кислоты. [c.236]

    Полиароматические карбоновые кислоты, т. е. кислоты, молекулы которых содержали бы более двух бензольных колец, до сих пор не выделены из нефти. На основании своего исследования Дж. Кнотнереус приходит к вполне обоснованному выводу, что высшие нефтяные кислоты следует рассматривать как карбоксильные производные всех основных структур углеводородов, присутствующих в нёфтях. Так как старое название нафтеновые кислоты не соответствует больше новым, более широким научным представлениям о составе и строении выделенных из нефти кислот, то Кнотнереус предлагает ввести уже неоднократно предлагавшееся и раньше (Аскан, Гурвич, Наметкин, Добрянский) название нефтяные кислоты. Это более широкое определение охватывает все содержащиеся в нефтях карбоксильные производные углеводородов. Несколько более точным, но близким по значению определением является название карбоновые кислоты нефтей. [c.324]

    Триэтаноламин — бесцветная вязкая, гигроскопическая з жидкость. /пл = 21,2°С /кип=277ч-279 °С (при 20 кПа) 360°С при 0,1 МПа р=1,124. Обладает слабым запахом] аммиака. Хорошо растворим в воде, ацетоне, этаноле, хло-1 роформе, дихлорметилене, бензоле. Мало растворим в эфи- ре и в углеводородах. Сильное основание с кислотами об- i разует соли. Темнеет на воздухе. Нелетуч с парами воды. Очищается перегонкой под вакуумом. Товарный реактив содержит не менее 98 % триэтаноламина. Водньга раство- ры триэтаноламина поглощают диоксид углерода и диоксид серы из воздуха. [c.214]

    Цианиды, фенолы, смолообразные компоненты, угольный шламм Смазки, цианиды, протравливающие вещества, углеводороды, растворители Гуминовые вещества, частицы угля, цианиды, роданиды, фенолы углеводороды, пиридиновые основания Жирные кислоты, спирты, в частности метанол, фенол Масляные эмульсии, нафтеновые кислоты, фенолы, сульфонаты Метанол, цимол, фурфурол, растворимые углеводороды, лигниносульфоновые кислоты Меркаптаны и сульфиды, спирты, терпены,, лигнии, смоляные кислоты, растворимые углеводы [c.24]

    Литература, рассматривающая вопросы вязкости, довольно обширна. В таблицах Ландольта и I. С. Т. (International hemi al Tables) приведены данные, относящиеся к вязкости однородных жидкостей, воды, растворов, органических соединений, коллоидов, масел, газов, паров, газовых смесей, ожиженных газов, нефтепродуктов, охлаждающих рассолов, расплавленных металлов, а также данные, касающиеся влияния давления и температуры на вязкость. В новейшей периодической литературе можно найти вязкости кислот, оснований, углеводородов и сжатых газов. [c.17]

    Р. Ивелл [86] недавно высказал мнение, что механизм реакции через радикалы неприемлем. Основанием такого заключения явился тот факт, что при нитровании этана вплоть до 27% образуется нитрометан, этиловый же радикал не распадается на продукт только с одним атомом углерода. Для объяснения факта появления низкомолекулярных нитропарафинов автор принимает образование продукта присоединения азотной кислоты и углеводорода, которьц может либо распадаться на спирт и низкомолекулярный нитропарафин, либо переходить в соответствующий целевой нитропарафин. [c.284]

    В практике нефтеочистки ранее наблюдались большие потери с образованием смолистых осадков при обработке дистиллятов смазочных масел концентрированной серной кислотой. Потери значительно снижались, если обрабатывались масляные дистилляты, полученные при перегонке под высоким вакуумом, когда крекинг незначителеп или вовсе отсутствует. Хотя нельзя сказать, что причины образования смолистых осадков прн действии концентрированной серной кислоты на вышекипящие нефтяные дистилляты стали внолпе понятны, несомненно, однако, что этот суммарный результат включает реакции серной кислоты с непредельными углеводородами, незначительное сульфирование углеводородов, содержащих в молекуле ароматические кольца, реакцию или растворение сернистых соединений, нафтеновых кислот, азотистых оснований и, возможно, других загрязнений. [c.98]

    Энгланд с сотрудниками [29], отмечая практически полное отсутствие литературных данных о влиянии условий процесса на выходы и соотношение изомеров при таком сульфировании, провел обширное исследование в лабораторных условиях в этом направлепии как основы для возможного развития промышленного процесса. Они пришли к выводу, что наилучшие результаты (суммарный выход изомеров 92—95 Уа) получались при B03M05KH0 быстром прибавлении 96 %-ной кислоты к углеводороду с последующим удалением образовавшейся в реакции воды перегонкой с избытком толуола на основе использования парциального давления компонентов. Конечная температура реакции поддерживалась ниже 150°. Большое влияпие температуры сульфирования па распределение изомеров показано в табл. 7 данные были получены на основании определения содержания изомерных крезолов, образовавшихся при щелочном плавлении. [c.531]

    Кислородные соединения керосиновых фракций нефти представлены в ис-новном нефтяными кислотами и фсиола.ми [15]. В незначительных количествах в топливных фракциях обнаруживаются эфиры, спирты, альдегиды, кетопы. Наиболее богаты нефтяными кислотами нефти нафтенового основания (их содержится до 1 /о в керосиновых фракциях). Нефтяные кислоты представляют собой карбоновые кислоты, в котор.ых карбоксильная группа соединена с углеводородными радикалами циклического или алифатического строения. Преобладают кислоты с пятичленными насыщенными циклами (нафтеновые кислоты), значительно меньше кислот жирного ряда. Нефтяные кислоты керосиновых фракций имеют насыщенный характер, число углеродных атомов обычно i2— i6, по молекулярной массе от 180 до 210 и плотности (0,98—0,99) они превосходят углеводороды топлива. В нафтеновых (фракция 195—330 °С) и парафиновых (фракция 180—330 °С) нефтях обнаружены в разных соотношениях изопреноидные кислоты состава С,2—Сго с метильными заместителями в положении 2,6 2,6,10 2,6,10,14 3,7 3,7,11 [157]. [c.78]

    При помощи анализа группового химического состава, применяемого для определения процентного содержания парафиновых, нафтеновых и ароматических углеводородов на основании физических онстант фракции до и носле удаления ароматических угле-водорэдов серной кислотой, нельзя получить надежных результатов Д.1Я масляных фракций. Углеводороды смешанного типа, содержащие в своем составе парафино-нафтено-ароматические углеводороды, растворимы в серной кислоте и определяются при таком аналнзе как чисто ароматические. С другой стороны, при сульфировании в стандартных условиях ароматических углеводородов, имею]цих длинные парафиновые цепи, сульфирование может происходить неполностью. [c.268]

    Касторовое масло применяется для изготовления главным образом смазок 1-13 (жировой) и 1-ЛЗ, а также различных бензоупорных и маслостойких смазок. Оно может служить основой для получения натриевых и кальциевых мыл или добавляется в смазки в виде присадки для повышения смазывающих и других эксплуатационных свойств. Получают его из семян клещевины. Оно состоит в основном из глицеридов рицинолевой кислоты хороню растворяется в ароматических углеводородах (бензоле, толуоле) и этиловом спирте, но плохо растворяется в бензине при низких температурах. С повышением температуры его растворимость в бензине повышается. Так, при 0° С в бензине растворяется 3—4% масла, а при 20° С — уже 10—12%. Бензин хорошо растворяется в касторовом масле при 0° С до 35%, а при 20° С — до 47—50% (по Панютину и Раппопорту). В минеральных (нефтяных) маслах, богатых ароматическими углеводородами, растворяется до 25% касторового масла, а в маслах парафинового основания — не более 0,5— 1,0%. С повышением температуры и вязкости минерального масла растворимость касторового масла повышается. В хорошо очищенных авиационных маслах растворяется не более 1% касторового масла. В зависимости от способа обработки техническое касторовое масло выпускается рафинированным и нерафинированным (табл. 12. 12). [c.677]

    Характерной чертой алюмосиликатных катализаторов (природных и синтетических) являются их кислотные свойства. Установлено, что с повышением кислотности активность катализатора возрастает. Это хороню согласуется с сбщенрин5 тым карбоний-ионным механизмом каталитического крекинга. Карбоний-ион является промежуточным продуктом каталитического крекинга и образуется в результате взаимодействия кислоты с углеводородом . Соответствие кислотных свойств катализатора к его активиссти подтверждается, в частности, тем фактом, что при нанесении на катализатор щелочных металлов или азотистых оснований его активность снижается. [c.146]

    На обратимости реакции сульфирования ароматических углеводородов, о которой говорилось выше, основан гидролиз (десульфирование) сульфокислот. При добавлении к сульфомассе воды образуются углеводороды и разбавленная серная кислота. Скорость гидролиза сульфокислот ароматических углеводородов Сд различна [121]. Наиболее легко гидролизуется л-ксилолсульфокис-лота. Гидролиз протекает при следующих температурах л-ксилол-сульфокислоты при 120—150 °С о- и п-ксилолсульфокислоты при 160—190 °С, этилбензолсульфокислоты при 180—200 °С [121, 128— [c.141]

    Разработанный в тридцатых годах процесс был основан на хлорировании фракции керосина в продукт, называвшийся керилхлоридом , которым затем алкилировали бензол и получали керилбензол . Фракцию керосина, кипящую при 220—245° и содержащую н-парафины с 12—13 атомами углерода, очищали от ароматических углеводородов обработкой растворителями и кислотой. Хлорирование проводили при 60°, стараясь получить 50%-ную конверсию в монохлорпроизводное (гл. 5, стр. 86). Последним алкилировали бензол при 50° в присутствии хлористого алюминия [52]. При этом в реакцию вступают парафины как нормального, так и изостроения, но что происходит с нафтенами остается неизвестным. Продукты разгоняли, выделяя керилбензол и возвращая непрореагировавшие бензол и керосин обратно в процесс. [c.266]

    Раствор этанола в этоц среде хорошо титруется хлорной кислотой. Даже углеводороды в безводном НР ведут себя как основания, например  [c.301]

    На основании этих положений можно сделать выводы о том, что для дифференцированного титрования смеси электролитов в качестве сред следует использовать кетоны, ацетонитрил, нитрометан, нитробензол, диметилформамид, диметилсульфоксид и смеси бензола и хлороформа с кетонами, ацетонитрилом и другими амфипротными н апротонными диполярными растворителями с большой протяженностью шкалы кислотности (высокошкальные). В среде этих растворителей получаются наиболее резкие скачки титрования и дифференцированно титруются многокомпонентные смеси кислот. Добавление углеводородов к спиртам (в особенности с изо-строением) способствует увеличению их дифференцирующего действия. [c.413]

    При электрофильном ароматическом замещении субстрат подвергается атаке электрофильного реагента, сродство которого к электронам связано с наличием координативно ненасыщенного атома, подобного имеющимся в соединениях типа кислот Льюиса — AI I3, ВРз, Fe ls и т. п. Субстрат же — ароматический углеводород — на первом этапе этих реакций ведет себя как основание, передающее свои электроны реагенту. Поэтому целесообразно рассмотреть строение продуктов, образующихся при действии на ароматические углеводороды кислот Льюиса и протонных кислот, моделирующих первый этап реакций. электрофильного ароматического замещения. [c.35]

    Химические свойства предельных углеводородов. Предельные углеводороды отличаются химической инертностью, т. е. при обычной температуре не окисляются и не реагируют с концентрированной серной кислотой и рядом других энергичных реагентов. Этим объясняется их название—парафины (parum affinis), что в переводе на русский язык означает мало сродства . В результате более подробных исследований установлено, что предельные углеводороды инертны только по отношению к основаниям, минеральным кислотам средней силы п окислителям в водном растворе. К реакциям присоединения парафины неспособны, так как в этих соединениях все связи атома углерода насыщены. Однако они легко вступают в реакции замещения при взаимодействии с хлором и бромом, образуя соответствующие галоидпроизводные. Эти реакции происходят на рассеянном солнечном свету даже при обыкновенной температуре. [c.54]

    Углеводороды непохожи на обычные кислоты они не окрашивают лакмус в красный цвет и не имеют кислого вкуса, характерного для кислот. Однако нельзя забывать, что вода имеет сравнительно слабые основные свойства, а углеводороды начинают проявлять кислотные свойства лишь в при-еутс гвии оснований более сильных, чем вода. Кислотность ряда соединений представлена в табл. 9-1, из которой видно, что соляная кислота почти в 10 раз сильнее уксусной, а уксусная в 10 раз более сильная кислота, чем ацетилен. Таким образом, соляная кислота почти в 10 раз сильнее как кислота, чем ацетилен  [c.356]

    Рибоиуклеииовые кислоты (РНК) — нуклеиновые кислоты, полимеры нуклеотидов, в состав которых входят фосфорная кислота, рибоза и азотистые основания — аденин, цитозин и урацил содержатся главным образом в цитоплазме и микросо-мах животных и растительных клеток. РНК участвует в биосинтезе белка. Риформинг — способ переработки нефтепродуктов с целью получения высокооктановых бензинов, ароматических углеводородов, [c.113]

    Образование дегидрацетовой кислоты. Вскоре после открытия дикетена было установлено, что при 80—90° он димеризуется в дегидрацетовую кислоту (LII) [260]. Реакция катализируется основаниями. Дегидрацетовая кислота часто представляет собой побочный продукт при превращениях дикетена. Бёзе [28] в случае димеризации дикетена при 70—120° предложил применять третичные амины, например триэтиламин, и..алкоголяты натрия в качестве катализаторов и ароматические углеводороды в качестве растворителей. В результате тщательного исследования Бёзе и сотр. [32] установили, что при взаимодействии дикетена в кипящем бензоле образуются дегидрацетовая кислота (выход 547о), 2,6-диметилпирОн (LHI выход 4%) и соединение, которому предположительно приписано строение LIV (выход 8%). Нордт [192] проводил реакцию в [c.244]

    Олеиновая кислота смес . карбоновых кислот из окисленного парафина ( i8 —Сгз), высшие алкилсульфаты ( i6— is), керосин Четвертичные аммониевые основания, ненасыщенные жирные кислоты с ao—Сгч и их мыла, махагановый сульфонат нефти (содержит 30— 36% ароматических углеводородов мол. масса 460—570), смесь лаурата и капроната натрия смесь натриевой соли [c.77]


Смотреть страницы где упоминается термин Углеводороды как кислоты и основания Углеводороды как кислоты: [c.891]    [c.178]    [c.266]    [c.75]    [c.138]    [c.283]    [c.310]    [c.647]    [c.29]   
Смотреть главы в:

Изотопный обмен и замещение водорода в органических соединениях -> Углеводороды как кислоты и основания Углеводороды как кислоты




ПОИСК





Смотрите так же термины и статьи:

Описание некоторых новых органических оснований, полученных при действии сероводорода на соединения углеводородов с азотноватой кислотой

Органические кислоты отделение от спиртов, фенолов, оснований, углеводородов

Основания и кислоты

Углеводороды как кислоты и основания

Углеводороды как кислоты и основания

Углеводороды как основания



© 2025 chem21.info Реклама на сайте