Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая реакция в паровой фазе

    Задача 4. В подогреваемом трубчатом реакторе осуществляется химическая реакция в жидкой фазе. Тепло, поступающее в реактор от греющей рубашки, расходуется на то, чтобы поддерживать в реакторе температуру, равную температуре кипения реакционной смеси. Будем считать, что при кипении испаряются только компоненты С и О, причем С испаряется более интенсивно. Жидкая фаза в реакторе при этом обогащается компонентом О, являющимся основным продуктом реакции. Паровая фаза отводится в нескольких местах, отстоящих на некотором расстоянии по длине реактора. [c.216]


    При жидкофазном нитровании парафинов энергия, необходимая для ионного разрыва химических связей, сообщается растворителем, который благодаря своему полярному характеру сольватирует ионы. Как отмечает Бахман с соавторами [2] и Уотерс [62], большинство газовых реакций протекает по радикальным механизмам. Бахман с соавторами 2] в недавно опубликованных статьях привел много экспериментальных данных в пользу свободно радикального механизма реакций, идущих при парофазном нитровании пропана и бутана при 420—425°. Они показали, что прибавление ограниченных количеств кислорода или галоида, которые, как известно, увеличивают концентрации свободных радикалов в паровой фазе, также повышает степень нитрования тетраэтилсвинец, образующий при нагревании этильные радикалы, также благоприятствует нитрованию, Существенно также, что факторы, понижающие концентрацию своб.дных алкильных радикалов в паровой фазе, например присутствие окиси азота или чрезмерные количества кислорода или галоидов, снижают и степень нитрования. [c.81]

    Исчерпывающий обзор реакций нитрования парафиновых углеводородов в паровой фазе, конечных продуктов и их физических и химических свойств см. [704.  [c.147]

    На характер протекания химической реакции большое влияние оказывает качество смешения компонентов. Если в аппаратах периодического действия смешение производится в самом реакторе, то для непрерывно действующих реакторов, особенно при реакциях в паровой фазе, необходимо предварительное смешение. Нами уже упоминались смесители, применяемые при хлорировании. На рис. 48 показано несколько конструкций камер предварительного смешения они могут быть соединены с реактором или смонтированы отдельно от него. [c.122]

    Первой стадией взаимодействия паровой и газообразной фаз с поверхностью насыщаемого металла является их хемосорбция. Химическая реакция взаимодействия газовой и жидкой фаз, содержащих наносимый элемент Ме в виде химического соединения, с поверхностью насыщаемого металла Ме протекает по типу (для случая хлоридов) [c.118]

    Гомогенные процессы основаны на реакциях между реагентами, находящимися в одной фазе, и не имеют поверхности раздела отдельных частиц системы друг от друга. В промышленных печах гомогенные процессы осуществляются в основном в газовой фазе. К ним относятся окислительные экзотермические реакции горения различных газов, протекающие в пламенах (например, окисление метана, сероводорода, оксида углерода, водорода, синтез хлористого водорода и т. д.). Условно к гомогенным процессам можно отнести окисление паров серы, фосфора, жидких топлив, потому что непосредственно химическая реакция протекает между паровой фазой окисляемого реагента и газовой средой окислителя, которые совместно образуют горючую газовую фазу. На эти реакции могут быть распространены закономерности гомогенных процессов. [c.23]


    Горение жидкого горючего происходит только в паровой фазе, и ему предшествует испарение горючего, смешение его с окислителем, прогрев горючей смеси до температур, обеспечивающих достаточно большую интенсивность химических реакций окисления. [c.35]

    За исключением определенных реакций в твердых фазах, которым приписано слишком общее название "пожары" и которые будут кратко обсуждены в этой главе, предполагается, что химическая природа пожаров заключается в окислении газовой или паровой фазы. [c.138]

    Автор подчеркивает то обстоятельство, что при воспламенении жидких и твердых веществ сама химическая реакция горения протекает в паровой фазе над поверхностью (либо в парах) горючего материала. Таким образом, интенсивность горения в значительной степени определяется скоростью испарения конденсированного вещества. - Прим. ред. [c.139]

    Химические взрывы (энерговыделение в которых обусловлено экзотермической химической реакцией между горючим и окислителем. - Перев.) могут быть разных типов и рассматриваются подробно ниже. При взрывах конденсированного ВВ атомы углерода и водорода в молекулах вещества замещаются атомами азота. В объемных взрывах горючее (в твердой, жидкой или газовой фазе. - Перев.) рассеивается в воздухе (содержащем окислитель -кислород), образуя пылевые облака, паровые облака (топливовоздушные смеси. - Перев.) или газовые смеси. При некоторых обстоятельствах возможны неконтролируемые реакции, сопровождающиеся возрастанием давления в реакционном сосуде, который может полностью разрушиться, если нет предохранительного клапана. При этом могут образоваться ударная волна и осколочное поле. [c.244]

    Катализаторы могут ускорять химические реакции в сотни тысяч и в миллионы раз. Благодаря их применению стало возможным проводить при не очень высоких температурах такие экзотермические реакции, которые без катализаторов были просто невозможны из-за того, что реакция могла бы начаться с заметной скоростью лишь при очень высоких температурах, соответствующих полному сдвигу равновесия в сторону исходных веществ, т. е. практически к нулевому выходу продукта. К реакциям такого типа, промышленное осуществление которых было бы невозможно без катализаторов, относятся, в частности, окисление сернистого ангидрида, синтезы аммиака, метанола, этанола в паровой фазе и многие другие важнейшие промышленные процессы. [c.8]

    В паровой фазе, объем которой за счет происходящей конверсии меняется в реакторе от 57 до 90 % (табл.), наряду с реакциями термического крекинга происходят, в том числе, и реакции присоединения между предельными углеводородами, алкильными радикалами и непредельными углеводородами с образованием средних дистиллятов, близких по химическому составу прямогонным (йодные числа бензина не превышают 40 -50 г / 100 г).Изменение в зависимости от времени пребывания фракционного состава продуктов промышленного процесса висбрекинга с выносной реакционной камерой с восходящим потоком сырья (рис.) подтверждает образование средних и тяжелых дистиллятных продуктов висбрекинга за счет реакций присоединения. С увеличением времени пребывания сырья в реакционной камере растет выход дистиллятных продуктов с одновременным снижением выхода газа и бензина, то есть углеводороды, выкипающие в пределах бензиновой фракции, расходуются на реакции присоединения с образованием углеводородов большей молекулярной массы. [c.63]

    Нафтены вступают во все химические реакции парафинов, описанные в гл. 4—6 следует отметить, что по исследованию реакций нафтенов в паровой фазе опубликовано мало работ. В жидкой фазе нафтены легко хлорируются, но нитруются н сульфируются с трудом. Они вступают в различные [c.236]

    Так, например, математическое моделирование и расчет разделения многокомпонентных азеотропных и химически взаимодействующих смесей методом ректификации сопряжены с определенными вычислительными трудностями, вытекающими из необходимости рещения системы нелинейных уравнений больщой размерности. Наличие химических превращений в многофазных системах при ректификационном разделении подобных смесей приводит к необходимости совместного учета условий фазового и химического равновесий, что значительно усложняет задачу расчета. При этом основная схема решения подзадачи расчета фазового и химического равновесия предусматривает представление химического равновесия в одной фазе и соотнесения химически равновесных составов в одной фазе с составами других фаз с помощью условий фазового равновесия. Для парожидкостных реакций можно выразить химическое равновесия в паровой фазе и связать составы равновесных фаз с помощью уравнения однократного испарения. Для реакций в системах жидкость-жидкость целесообразнее выразить химическое равновесие в той фазе, в которой содержатся более высокие концентрации реагентов. Для химически взаимодействующих систем с двумя жидкими и одной паровой фазой выражают химическое равновесия в одной из жидких фаз и дополняют его условиями фазовых равновесий и материального баланса. Образующаяся система уравнений имеет вид  [c.73]


    Во второй половине XIX в. с развитием основ химической термодинамики стало очевидным, что различия между физическими процессами (плавление, возгонка, испарение и т. п.) и химическими реакциями не столь велики. Например, возгонку и испарение можно рассматривать как химические процессы. Переход вещества в пар сопровождается изменениями в характере связи между атомами, что служит признаком химического превращения, особенно если испарение к тому же сопровождается ассоциацией или диссоциацией в паровой фазе (например, образование в паре молекул Р4, Аз4, За и т. п.). При растворении происходит не только распределение частиц растворенного вещества в растворителе (физический процесс), но и химическое взаимодействие между ними. Это показывает единство и глубокую внутреннюю взаимосвязь между физическими и химическими превращениями. Отсюда следует, что физические и химические процессы в термодинамическом отношении описываются однотипно. В результате успехов физической химии стала очевидной возможность единого рассмотрения физико-химических превращений и, в частности, изучения химических взаимодействий в системе при помощи физических методов. [c.322]

    При осуществлении процесса в паровой фазе суммарная скорость происходящих реакций в большинстве случаев определяется стадией химического взаимодействия адсорбированных молекул на поверхности катализатора, а не скоростями диффузии, адсорбции исходных соединений или десорбции продуктов реакции. Очевидно, между газовой фазой и адсорбированными компонентами устанавливается равновесие, вследствие чего скорость адсорбции или десорбции любого компонента не может быть стадией, определяющей суммарную скорость реакции. [c.53]

    Вполне точно установлено, что хотя каталитическое гидрирование может протекать по многочисленным различным механизмам, при всех реакциях, вероятно, имеются следующие стадии 1) диффузия реагирующих компонентов-из основного ядра фазы к поверхности катализатора через конденсированную на поверхности или внутри пор пленку 2) адсорбция реагирующих компонентов на активных центрах поверхности катализатора 3) собственно реакция, т. е. взаимодействие адсорбированных молекул с образованием целевых продуктов 3) десорбция продуктов реакции 5) диффузия продуктов реакции через поверхностную пленку и из пор катализатора в основное ядро фазы. Реагирующие формы адсорбируются и образуют на поверхности активированные комплексы, которые в результате еще не выясненного механизма диссоциируют, вновь соединяются и рекомбинируются с образованием новых комплексов, обладающих меньшей энергией. Последние затем десорбируются с поверхности. Изучение многочисленных реакций в паровой фазе приводит к общему выводу, что суммарная скорость подобных реакций в больишнстве случаев определяется стадией химического взаимодействия адсорбированных молекул на поверхности катализатора, а не скоростями диффузии, адсорбции исходных соединений или десорбции продуктов реакции. [c.146]

    Следует упомянуть также метод химического осаждения из паровой фазы. Обработка состоит в том, что изделие при относительно высокой температуре (800-1300 °С) подвергают воздействию относительно разреженного газа, из которого на поверхности металла выделяются продукты химической реакции. Метод применяют, в частности, для получения поверхностных покрытий из Т1С, TiN и на твердосплавных инструментах (рис. 80). [c.82]

    Другие авторы [175, 176, 177], принимая, что сгорание распыленного топлива происходит в паровой фазе, считают лимитирующим процессом химическую реакцию между парами топлива и окислителем, а дисперсность топливного факела рассматривают как второстепенный фактор. [c.154]

    Различают физическую абсорбцию и хемосорбцию. При физической абсорбции растворение газа (пара) не сопровождается химической реакцией. Абсорбция протекает до тех пор, пока парциальное давление поглощаемого компонента в газовой (паровой) фазе остается выше равновесного давления над раствором. При хемосорбции (абсорбции, сопровождаемой химической реакцией) поглощаемый компонент вступает в необратимую химическую реакцию с поглотителем и образует химическое соединение. [c.203]

    Для проверки данных о равновесии между жидкой и паровой фазой при наличии в последней любого типа химического взаимодействия предложен [113] метод, основанный на совместном решении уравнений Дюгема—Маргулеса и равновесия химической реакции. [c.135]

    Из разновидностей гетерогенного катализа наибольший интерес для наших целей представляют примеры применения твердого катализатора в жидкой среде и твердого катализатора в газовой или паровой фазе. Б гомогенном катализе участвует в реакции вся масса катализатора, и скорость реакции пропорциональна концентрации катализатора. В гетерогенном же катализе скорость реакции не находится в прямой пропорциональности массе катализатора, но зависит от величины его поверхности, его физических и химических свойств. Гетерогенный катализ представляет огромный интерес для химической промышленности вообще и для производства промежуточных продуктов в частности. Выше мы видели уже примеры этому, а в последующем будем иметь возможность разобрать еще некоторые. Тем не менее, несмотря на большое число исследований в этой области, она остается еще очень слабо теоретически освещенной, и достижения в ней завоевывались по преимуществу путем эмпирических проб и поисков, но не приложением научной теории. [c.467]

    Наиболее интересно проведение окислений углеводородов в паровой фазе при высокой температуре при наличии катализаторов. Химически это — реакции неполного сгорания углеводородов, с остановкой процесса на получении определенных промежуточных продуктов на пути полного окисления всего углерода в СОа и всего водорода в воду ). [c.504]

    Реакция термораспада как средство осаждения проводниковых, резистивных и диэлектрических пленок может протекать как в жидкой, так и в паровой фазе исходных химических соединений. В радиоприборостроении применяется жидкофазная технология ввиду ее относительной простоты, безопасности, а также производительности технологического оборудования в условиях мелкосерийного и многономенклатурного производства. [c.75]

    На аппаратах, заполненных газом (паром) или жидкостью с паровой фазой над ней, установка предохранительного клапана может не применяться, если расчетное давление аппарата равно или более максимально иозможного давления в питающем источнике и если в аппарате исключена возможность новыщения давления сверх допутимого за счет химической реакции или обогрева. Поэтому в отдельных случаях целесообразно рассматривать вопрос о повыщении расчетного давления какого-либо аппарата для того, чтобы избежать установки на нем предохранительного клапана. [c.148]

    Гийо впервые показал на примере бензола, что сульфирование можно осуществить полностью, если применять повторное пропускание углеводорода в паровой фазе через кислоту, удаляя таким образом воду, образующуюся во время сульфирования в виде азеотропной смеси. В этохМ методе перегонки с использованием парциального давления сочетаются превосходные выходы с простотой операций, поэтому он стал господствующим промышленным методом сульфирования таких стойких низкокипящих ароматических углеводородов, как бензол, толуол и ксилолы. Метод можно распространить также и на более высококипящие соединения путем добавления соответствующего инертного низкокипящего вещества, образующего смесь, например четыреххлористый углерод или лигроин. Воду можно также удалять при помощи инертного газа с применением вакуума или же с использованием химической реакции с веществами типа ВГз, который обпазует стойкий гидрат. [c.520]

    У11-12. Мейс и Бонилла1 5 исследовали процесс прямой каталитической гнд тации этилена в паровой фазе при 140 ат. Авторы пришли к выводу, что стадией, определяющей скорость, является химическая реакция на поверхности без адсорбции этанола  [c.239]

    Физико-химические процессы, происходящие вблизи поверхности при химико-термической обработке, заключаются в образовании диффундирующего вещества в атомарном состоянии вследствие химических реакций в насыщенной среде или на границе раздела среды с поверхностью металла (при насыщении из газовой или жидкой фазы), сублимации диффундирующего элемента (насыщение из паровой фазы), последующей сорбции атомов элемента поверхностью металла и их диффузии в поверхностные слои металла. Концентрация диффундирующего вещества на поверхности металла возрастает с повышением температуры (по экспоненциальному закону) и с увеличением продолжительности процесса (по параболическому закону). Диффузионный слой, образующийся при химикотермической обработке деталей, изменяя i тpyктypнo-энepгeтичe кoe состояние поверхности, оказывает положительное влияние не только на физико-химические свойства поверхности, но и на объемные свойства деталей. Химико-термическая обработка позволяет придать изделиям повышенную износостойкость, жаростойкость, коррозионную стойкость, усталостную прочность и т. д. [c.42]

    Рассмотрим кинетику массопередачи в процессе многокомпонентной хеморектификации, принимая следующие предположения а) химическая реакция протекает только в жидкой фазе б) кинетика реакций может быть сведена к линейной относительно вектора, составов. Принятые предположения не снижают общности поставленной задачи, так как, во-первых, в большинстве хеморектифи-кационных процессов реакции протекают в жидкой фазе или химическое взаимодействие в паровой фазе настолько мало, что им можно пренебречь без ущерба для точности расчетов, и, во-вторых,, кинетика любых реакций может быть сведена к линейной относительно вектора составов [78]. [c.349]

    Основу математического описания массопередачи в процессах хеморектификации составляют уравнения, определяющие диффузионные потоки компонентов (7.219). Для расчета коэффициентов-массоотдачи в паровой фазе можно воспользоваться, как и ранее, решением уравнений Максвелла—Стефана, а коэффициенты массоотдачи в жидкой фазе г) с учетом химической реакции определяются следуюпщм образом. [c.349]

    Такой характер коксоотложений можно объяснить следуюхцим образом. Закоксовывание нижней половины труб потолочного экрана обусловливалось, очевидно, низкой агрегативной устойчивостью и расслоением коксуемого сырья. В последуюише годы на Ново-Уфимс-ком НПЗ и других НПЗ с прямогонными остатками стали смешивать ароматизированные добавки, такие как экстракты селективной очистки масел, тяжелые газойли каталитического крекинга и другие, что существенно повысило агрегативную устойчивость сырья коксования, удлинило безостановочный пробег печей. Снижение интенсивности закоксовывания труб на участке непосредственно после ретурбенда объясняется интенсивной турбулизацией парожидкостной реакционной смеси, а в концевых трубах - увеличением доли паровой фазы в результате протекания реакций крекинга с образованием низкомолекулярных продуктов (газа, бензина), т.е. за счет химического кипения реакционной смеси. Были разработаны и внедрены рекомендации, направленные на улучшение структуры парожидкостного потока в змеевике печи и регулирование паросодержания в потоке путем увеличения диаметра трансферной линии от печи до реакторов от 100 до 150 мм, осуществлена реконструкция схемы обвязки распределительного устройства на потоке коксуемого сырья, которая заключалась в замене двух четырехходовых кранов пятиходовым краном. Изменено место подачи турбулизатора. По проектной схеме турбули-затор подавался в трубу, соединяющую подовый и потолочный экраны. Путем поиска оптимального места ввода турбулизатора было установлено, что значительно уменьшить коксоотложение можно при его подаче в первую трубу на входе вторичного сырья в печь. В результате заметно понизилось давление в трубах на входе в потолочные экраны (с 2,4 до 2,1 МПа) и на выходе из печи (с 1,1-1,2 до 0,7-0,8 МПа), повысилась доля паровой фазы, улучшилась гидродинамическая структура и уменьшилось время пребывания сырьевого потока как следствие, значительно снизилась интенсивность коксоотложения в трубах и удлинился межремонтный пробег установки. [c.71]

    Благодаря особенностям гидродинамического режима течения в реакторе висбрекинга термолиз происходит в двух фазах - паровой и жидкой, отличающихся фракционным и химическим составом присутствующих там углеводородов. В жидкой фазе в мягких температурных условиях селективно протекает крекинг наиболее высокомолекулярных компонентов сырья. При этом низкомолекулярные продукты первичного распада и алкильные радикалы за счет огромной поверхности раздела фаз, обеспечиваемой гидродинамическим режимом течения в ректоре, легко разлетаются в газовую фазу и не участвуют во вторичных жидкофазных реакциях. Жидкая фаза за счет деалкилирования исходных высокомолекулярных углеводородов обогащается долгоживуцщми бензильными [c.63]

    Давление влияет на направление и скорость химических реакций, протекающих при крекинге, но это влияние изменяется в зависимости от условий процесса. Если крекинг протекает в л<идкой фазе — при использовании тял<елого сырья н при умеренных температурах (420—470° С), то давление практически не оказывает влияния па скорость и направление мономолекулярного распада. Одпако как только образующиеся продукты распада или исходное сырье переходят в паровую фазу, роль давлеиия повышается. При этом большое значение имеет абсолютная величина даиления. При умеренных давлениях скорость мономолекулярного распада практически ие изменяется. Поскольку крекинг протекает по радикально-цепному механизму, характер реакции обрыва цепе] изменяется в зависимости от абсолютной величины давления. М. Г. Гоникберги В. В. Воеводский показали, что при невысоких давлениях (порядка нескольких атмосфер) повышение его способствует увеличению константы скорости крекинга, а при высоких (порядка сотен атмосфер и более) наблюдается обратное явление. Так, по данным А. И. Динцеса , в процессе термического крекинга бутана при 575° С и глубине распада около 9—13% повышение избыточного давления с 3,9 до 10,8 ат вызывает увеличение константы скорости реакции с 0,007 до 0,022, т. е. примерно втрое. Г. М. Панченков и В. Я- Баранов , подвергая крекингу фракцию 300—480° С грозненской парафинистой нефти при 510° С и избыточном давлении 1 10 и 50 ат, установили, что максима.яьпое значение констант скорости реакции соответствует давлению около 10 ат-, дальнейшее повышение давления сопровождается снижением скорости разложения. [c.41]

    Высокие температуры при термодеструкции в паровой фазе необходимы для быстрого завершения всех реакций в течение короткого времени пребывания сырья в реакционной камере и образования углерода. Высокие температуры создаются при прямом контакте продуктов сгорания (топливного газа или части сырья) со всей массой тонко распыленного сырья. Выход нефтяного технического углерода и его качество зависят от химического и фракционного состава углеводородного сырья, отношенпя количества активных составляющих дымовых газов к количеству получаемого углерода, от коэффициента избытка воздуха в процессе горения, условий ведения процесса испарения исходного сырья н его термодеструкцин. В связи с жесткими условиями в паровой фазе деструкция углеводородного сырья идет с образованием легких продуктов п продуктов глубоких стадий уплотнения (углерода). Выход углерода, несмотря па частичное его реагирование с активными составляющими дымовых газов, относительно высок [c.237]

    Частичное окисление СНГ. При окислении отдельных углеводородов, особенно олефинов, наблюдается тенденция к образованию смеси сложных соединений. Однако преимущества гомогенной фракции по сравнению с неразогнанной смесью СНГ не всегда можно использовать. Окисление смеси СНГ, осуществляемое обычно в присутствии катализаторов, в итоге приводит к образованию избытка определенных химических соединений, откуда возникает проблема разделения продукта реакции и сырья. Хотя процесс разгонки сырья не является простым (в первую очередь из-за того, что точки кипения различных компонентов исключительно близки друг к другу), идентичный процесс окисления смесей СНГ с последующей разгонкой продуктов применяется довольно редко. В эксплуатации находятся четыре завода, работающих по этим технологиям, из которых три функционируют в США,, а один в Канаде. Все они принадлежат компаниям Селанеа Корпорейшн и Ситиз Сервис . На одном из заводов осуществляется частичное окисление пропана—бутана без катализатора при недостатке воздуха, температуре 350—450 °С и давлении 303— 2026 кПа. Реакция идет в паровой фазе. Основными продуктами являются формальдегид, метанол, ацетальдегид, нормальный про-панол, уксусная кислота, метилэтиловые кетоны и окислы этилена и пропилена. На другом заводе окисление происходит в жидкой фазе в присутствии растворителя. Основной продукт — уксусная кислота с некоторым количеством побочных продуктов метанола, ацетальдегида и метилэтиловых кетонов. Могут быть подобраны такие режимы, при которых в основном будут образовываться метилэтиловые кетоны. Сепарация продуктов в первом случае основана на различной растворимости веществ одни растворимы только в воде, другие — в углеводородах. Спирты и альдегиды сепарируются из кислот при щелочной экстракции, а отдельные соединения разделяются фракционной разгонкой. [c.245]

    Физико-химические условия абсорбции. Фазовая диафамма для тройной системы Н2О—Н2504—50з представлена на рис. 6.32. Особенностью этой системы является то, что в широком интервале концентраций раствора Н2504 в паровой фазе присутствуют почти чистые пары воды (левая часть фафика), а над олеумом (раствор 80з в 112804) в газовой фазе преобладает 50з (правая часть графика). Минимальное содержание воды в паровой фазе будет наблюдаться при значении концентрации серной кислоты равной 98,3% (азеотропная точка). Соответственно, при этой же концентрации будет проходить минимальное образование Н2804 в паровой фазе и наиболее полная абсорбция 80з. Если 80з поглощать раствором меньшей концентрации, то реакция (6.8) будет в большей степени протекать в паровой фазе — будет образовываться туман серной кислоты, который уйдет из абсорбера с газовой фазой, что приведет к потерям продукта, выбросам в атмосфе- [c.392]

    Любое объяснение процессов декатионирования и стабилизации различных цеолитов должно учитывать химические, структурные и стехиометрические особенности протекающих реакций. Большинство опубликованных исследований посвящено реакциям с аммонийными формами цеолитов, в особенности с NH4Y. Можно выделить два основных способа проведения процесса. Для первого характерно то, что разложение аммонийной формы и дегидроксилирование проводят в вакууме или в токе азота, т. е. в условиях, когда летучие продукты (вода и аммиак) удаляются из слоя цеолита. В обычных условиях реакции двух типов должны в значительной степени перекрываться. В реакциях второго типа прог дукты разложения удерживаются цеолитом в паровой фазе присутствуют пары воды и аммиак. Это характерно для описанных [c.530]


Смотреть страницы где упоминается термин Химическая реакция в паровой фазе: [c.192]    [c.6]    [c.461]    [c.201]    [c.80]    [c.37]    [c.15]    [c.163]    [c.190]    [c.176]    [c.146]   
Смотреть главы в:

Фонтанирующий слой -> Химическая реакция в паровой фазе




ПОИСК







© 2025 chem21.info Реклама на сайте