Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеноструктурный анализ, дифракция нейтронов, дифракция электронов

    В книге, состоящей из 40 глав, основное место, естественно, уделяется описанию различных методов исследования полимеров. Представлены все методы определения молекулярных весов полимеров, их молекулярновесового распределения, обсуждаются разнообразные спектральные методы, применяющиеся для анализа строения и структуры гомо- и сополимеров УФ-, ИК-, КР-спектро-скопия, эмиссионная спектроскопия, спектроскопия ЯМР, масс-спектроскопия, спектроскопия ЭПР, нейтронное рассеяние, аннигиляция позитронов. Ряд глав посвящен хроматографическим методам, таким, как газовая и жидкостная хроматография, в том числе и при высоких давлениях, тонкослойная хроматография, ионообменная хроматография, ситовая хроматография, включая гель-про-никающую хроматографию, хроматография с обращением фаз. Методы анализа структуры полимеров обсуждаются при рассмотрении электронной микроскопии, рентгеноструктурного анализа, дифракции электронов и ряда других методов. Физические свойства полимеров оцениваются с помощью таких методов, как дилатометрия, определение температур плавления и стеклования полимеров, их электрических характеристик, анизотропии, диффузии и поверхностного натяжения. Представлены также методы исследования различных видов деструкции полимеров. [c.6]


    Неравномерность зависимости интенсивности от угла рассеяния позволяет использовать дифракционный эффект для структурных исследований веществ в любом агрегатном состоянии. Сказанное в одинаковой мере относится к дифракции рентгеновских лучей, электронов и нейтронов. Помимо рентгеноструктурного анализа кристаллов наибольшее распространение и признание получили рентгенография стекол и особенно электронография газов и паров. [c.174]

    А. РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ, ДИФРАКЦИЯ НЕЙТРОНОВ, ДИФРАКЦИЯ ЭЛЕКТРОНОВ [c.81]

    Обратимся к распределению молекул во льду. Структура льда или обыкновенного льда, подробно изучена методами рентгеноструктурного анализа, дифракции электронов и нейтронов. Первые два метода определяют положение атомов кислорода. Установлено, что лед кристаллизуется в гексагональной сингонии и что расположение атомов кислорода во льду изоморфно положению атомов кремния в р-тридимите. [c.410]

    Структуру кристаллов изучают в разделах естествознания, называемых кристаллофизикой и кристаллохимией. Содержанием кристаллохимии является установление зависимости условий образования и физико-химических свойств кристаллов от их структуры и состава, изучение энергетики и выяснение природы химической связи в кристаллах. Основным методом исследований в кристаллохимии является рентгеноструктурный анализ, использующий явление дифракции рентгеновского излучения на кристаллах, открытое М. Лауэ и др. (1912). В последние десятилетия получили широкое распространение методы электронографии (дифракция быстролетящих электронов на кристаллической решетке) и нейтронографии (дифракция медленных, тепловых нейтронов на кристаллах). Каждый из этих методов обладает спецификой применения, ввиду чего совокупность их позволяет проводить структурные исследования самых различных образцов, существенно различающихся по своей природе. [c.319]

    Изучение кристаллических структур проводится чаще всего-двумя методами рентгеноструктурным анализом, основанном на дифракции рентгеновских лучей кристаллической решеткой вещества, и электронографическим анализом, основанном на дифракции электронов или нейтронов Используя эти методы, было [c.238]

    Исследование структуры кристаллов с помощью дифракции нейтронов и электронов свободно от некоторых недостатков рентгеноструктурного анализа. Длина волны нейтронов, излучаемых атомным реактором, определяется соотношением де Бройля  [c.56]

    Межатомные расстояния (длины связей) в молекулах и кристаллах можно определить методами спектроскопии (включая микроволновую спектроскопию), рентгеноструктурного анализа, методами дифракции электронов и нейтронов, методом ядерного магнитного резонанса. Описание этих методов выходит за рамки данной книги. За последние сорок лет были определены длины связей для многих сотен веществ, и полученные значения оказались весьма полезными при рассмотрении электронных структур молекул и кристаллов. [c.163]


    Атом обладает способностью рассеивать падающее на него излучение. Лучи света, потоки электронов, нейтронов, рентгеновское излучение — все известные виды излучения, падая на атом, рассеиваются им. Лучи, рассеянные отдельными атомами, усиливают или ослабляют друг друга в зависимости от взаимного расположения. Это явление называется дифракцией излучения на атомах. Ясно, что дифракция излучения приносит нам сведения о строении вещества. Определяя направления и интенсивность рассеянных лучей, можно получить ценные сведения о строении молекулы, и прежде всего о ее геометрии, т. е. о взаимном расположении центров атомов. Наиболее плодотворным в последнем отношении способом исследования является метод рентгеноструктурного анализа кристаллов органических веществ. [c.352]

    К интерференционно-дифракционным методам относятся дифракция рентгеновских лучей под большими и малыми углами. (рентгенография, рентгеноструктурный анализ), дифракция электронов (электронография), дифракция нейтронов (нейтронография) и рассеяние света. [c.75]

    Рентгеноструктурный анализ служит основным методом изучения строения твердых тел. В некоторых случаях используют дифракцию электронов (электронографический анализ), а также нейтронов. В настоящее время метода.ми рентгеноструктурного анализа изучено строение десятков тысяч неорганических и орга нических веществ, имеющих практическое и научное значенне. Большие успехи достигнуты в расшифровке структур биологическя важных веществ (напрнмер, гемоглобина). Благодаря при.ченен 1Ю [c.160]

    История исследований природы связей металл — водород в гидридных комплексах переходных металлов примечательна тем, что, как показали недавние рентгеноструктурные данные и результаты экспериментов по дифракции нейтронов, выводы, сделанные на основании многих из этих исследований, крайне сомнительны. Первая работа в этой области появилась в 1939 г., но до 1955 г. этот раздел химии не привлекал значительного интереса исследователей. Первое рентгеноструктурное исследование, посвященное гидриду переходного металла, было опубликовано в 1960 г., а первая работа с применением метода дифракции нейтронов — в 1964 г. В этой главе сначала будут обобщены структурные данные, полученные при применении методов ИК- и ЯМР-спектроскопии и метода дифракции электронов, и кратко перечислены первые работы по рентгеноструктурному анализу и дифракции нейтронов, последовавшие за этими исследованиями. [c.38]

    Это три наиболее прямых и надежных метода определения стереохимии применительно к гидридам металлов они детально рассматриваются в гл. 3. Чаще всего используется рентгеноструктурный анализ благодаря его простоте и точности, однако он применим только для соединений в твердой фазе и не дает прямой информации о структуре в растворе кроме того, этим методом обычно трудно определить положение атомов водорода с высокой точностью. В подходящих случаях положение атомов водорода можно определить с высокой степенью точности методом дифракции нейтронов, но такие измерения можно проводить только на твердых веществах. Методом дифракции электронов можно исследовать соединения в парообразном состоянии, и такие исследования могут дать точную информацию о геометрии молекулы. [c.81]

    Полная структурная характеристика молекул основана на дифракции рентгеновских лучей. Сообидение о первой структуре карбонила металла Ре2(С0)д появилось в 1927 г. за последние 60 лет в указатели были включены еш,е 4600 структур, причем 857о из этого числа приходится на последнее десятилетие [77]. Установление структуры такого большого числа соединений стало возможным благодаря развитию быстрых рутинных автоматизированных методов рентгеноструктурного анализа. Дифракция нейтронов в настоящее время становится важным инструментом, особенно для изучения гидридов переходных металлов [78]. Напомним, что дифракция нейтронов на большинстве элементов происходит примерно одинаково, тогда как рассеивание рентгеновского излучения зависит от электронной плотности, которая определяется атомным номером элемента. [c.25]

    Отражение рентгеновских лучей от атомов происходит в результате взаимодействия излучения с электронами поэтому определяемые рентгенографически центры атомов являются центрами тяжести электронных оболочек. Для многоэлектронных атомов эти центры практически совпадают с ядрами, однако для легких атомов положение ядер может заметно отличаться. Местонахождение ионов водорода — протонов, у которых отсутствуют электронные оболочки, вообще не может быть установлено рентгеноструктурным анализом. Для рещения этой задачи используют исследование дифракции нейтронов. Пучки нейтронов получают от атомного реактора. В отличие от рентгеновских лучей нейтроны не взаимодействуют со спаренными электронами, но они отражаются атомными ядрами. [c.259]


    Для установления молекулярной структуры главными являются дифракционные методы [60,61] дифракция рентгеновских лучей, электронов и нейтронов ведущее место принадлежит первому из этих методов. В последние десятилетия в развитии рентгеноструктурного анализа произошли сдвиги, качественно изменившие возможности и доступность метода. Внедрение автоматических дифрактометров в сочетании с ЭВМ и применение прямых методов [c.25]

    Основным и наиболее прямым методом определения структуры являются дифракционные методы, использующие рентгеновские лучи или же нейтронные или электронные пучки. Эти методы обычно применяются для исследования кристаллических образцов. Дифракция возникает тогда, когда излучение (в частности, это может быть видимый свет) проходит через узкую щель или через решетку, состоящую из параллельных близко расположенных щелей. При этом пучок отклоняется (дифрагирует), и дифрагированные пучки создают интерференционную картину светлых и темных полос. Характер интерференционной картины определяется длиной волны излучения и шириной щели или расстоянием между щелями в дифракционной решетке. Для получения интерференционной картины необходимо, чтобы длина волны излучения была сравнима с шириной щели или шагом решетки. Расстояния между атомами в кристаллической решетке того же порядка, что и длина волны рентгеновских лучей, поэтому кристаллы могут служить дифракционной решеткой для рентгеновских лучей. Техника рентгеноструктурного анализа кристаллов была впервые развита в 1912 г. М. Лауэ, а теоретическое обоснование этого метода было сделано В. Г. Брэггом и В. Л. Брэггом. [c.51]

    Два десятилетия (1960—1970-е годы) рентгеноструктурный анализ был единственным методом прямого исследования пространственного строения белков. Его роль и сейчас остается доминирующей. Однако в начале 1980-х годов появились новые методы, дополняющие рентгеноструктурный анализ. Они основаны на применении в кристаллографии белков дифракции нейтронов и гамма-лучей. Эти методы сходны с рентгеноструктурным анализом прежде всего использованием одного и того же состояния исследуемого образца — это также белковый монокристалл и изучаемым явлением — дифракцией, но дифракцией уже других излучений. Явления, происходящие во взаимодействии атомов, упорядоченных в кристаллической решетке молекул белков, с нейтронами и гамма-излучением, сильно отличаются друг от друга и от того, что имеет место при взаимодействии атомов с рентгеновским излучением. Поэтому получаемые от трех методов дифракционные картины не полностью совпадают между собой, а дополняют друг друга, раскрывая новые свойства белковых молекул. Рентгеновские лучи рассеиваются электронной плотностью. Рассеивающая 164 [c.164]

    Карта электронной плотности с разрешением, равным 4 А или еще лучшим, дает такие подробные сведения о структуре молекулы, которые нельзя получить ни одним другим методом и даже несколькими методами в совокупности (исключая, конечно, такие близкие методы, как дифракция электронов и нейтронов). При разрешении от 3 до 4 А можно определить состав, длину и ориентацию участков вторичной структуры. Если известна первичная структура, то при сопоставлении ее с картой электронной плотности можно оценить пространственное расположение каждого отдельного атома структуры. При разрешении 2 А карта электронной плотности настолько подробна, что большая часть первичной структуры следует прямо из данных рентгеноструктурного анализа. [c.186]

    Физические свойства вещества зависят от атомного состава, структуры, характера движения и взаимодействия частиц. Для определения этих параметров используются разнообразные физические методы исследования. К ним относятся методы, основанные на явлении дифракции рентгеновского излучения, электронов п нейтронов. Явление дифракции рентгеновских лучей на монокристаллах было открыто М. Лауз в 1912 г. Оно явилось началом рентгеноструктурного анализа твердых тел, жидкостей и газов. Советские ученые А. Ф. Иоффе, С. Т. Конобеевский, Н. Е. Успенский, Н. Я. Селяков одними из первых применили рентгеноструктурный метод для определения геометрических размеров кристаллических решеток и их пространственной симметрии, нахождения координат атомов кристалла, обнаружения преимущественных ориентировок (текстур), возникающих при деформации твердых тел, исследования внутренних напряжений, построения диаграмм состояния. Их основополагающие работы в этой области получили дальнейшее развитие в трудах Г. В. Курдюмова, Г. С. Жданова, Н. В. Белова, В. И. Данилова, В. И. Ивероновой, А. И. Китайгородского, Б. К. Вайнштейна и др. [c.4]

    Другой способ их обнаружить — изучить дифракцию не рентгеновского излучения, а нейтронов. Эти частицы также обладают волновыми свойствами, причем тепловым нейтронам, которые излучает ядерный реактор, свойственны длины волн порядка 0,1 нм. Как раз то, что надо для рассеяния на кристаллах. Оно и происходит, подчиняясь тем же правилам, что и рассеяние электронов. Однако нейтроны отражаются в первую очередь не от электронов, а от ядер. Благодаря чему и становится доступным метод исследования (нейтронография), который дополняет рентгеноструктурный анализ примерно так же, как спектроскопия комбинационного рассеяния — инфракрасную. [c.205]

    Описанные основы структурного анализа кристаллов, его математический аппарат и частные методические схемы исследований, вообще говоря, одинаково применимы как в рентгеноструктурном (РСА), так и в электронографическом (ЭСА) и нейтронографическом (НСА) структурном анализе. Все три метода основаны на одном общем эффекте — дифракции волн, пропускаемых через кристалл,— и различаются лишь сущностью тех элементарных актов рассеяния, из которых складывается дифракция. Рентгеновские лучи рассеиваются электронами атомов (ядра атомов в этом рассеянии практически не участвуют). Поток электронов рассеивается в электромагнитном поле атомов, т. е. на электростатическом потенциале, создаваемом ядрами и электронами атомов. Поток нейтронов рассеивается только ядрами атомов. [c.125]

    Так. изучение колебательно-вращательных спектров различных изотопных форм изолированных молекул паров воды позволяет с очень высокой точностью найти геометрические размеры молекул (табл. 1). Измерения длин ОН-связей и углов между ними дифракционными методами связаны с определением пространственного расположения атомов. Исследования электронной дифракции на парах воды приводят к аналогичным величинам длины связи и угла, но со значительно меньшей точностью [387]. Рентгеноструктурные исследования позволяют получить координаты атомов водорода с точностью + 0,05 -ь 0,10 А, что чаще всего оказывается далеко не достаточным для структурно-химического анализа вещества. В этом смысле нейтронография, несмотря на ограничения, вызываемые отрицательной амплитудой рассеяния нейтронов протонами, требованием больших размеров образца и малой мощностью используемых потоков нейтронов является более удобным методом исследования, позволившим установить целый )яд важных предельных оценок параметров водородных мостиков 111]. [c.16]

    Структуры В4Н10, В5Н9, В5Н11, ВбНю и ВюНи, которые были надежно установлены методами рентгеноструктурного анализа, дифракции нейтронов и электронов, а также ядерного магнитного резонанса, показаны на рис. 13.4. Расстояния В—Н в ВюНн измерены с очень высокой точностью нейтронно-дифракционными ме- [c.344]

    Поразительно, что еще в XIX в. химики сумели ввести такие понятия о структуре вещества, которые хорошо согласуются с современными представлениями, основанными на квантовой теории химической связи и на непосредственном определении структуры соединений методами дифракции электронов или нейтронов либо при помощи рентгеноструктурного анализа. Еще более поразительно то, что в появившейся в 1916 г. теории Косселя и Льюиса решающая роль в развитии представлений о возникновении химической связи отводилась электронам. (Напомним, что электрон был открыт Томсоном лишь за 19 лет до этого и что всего пятью годами раньше Резерфорд предложил планетарную модель атома.) Основными понятиями этой весьма успешной и продуктивной теории были электровалентность и ковалентность— качественные представления, которые до настоящего времени хорошо служат химии. На указанных представлениях о химической связи основана теория мезомерного и индуктивного эффектов, которая успешно применялась для объяснения данных, полученных в органической и неорганической химии (Робинсон, Ингольд, Арндт, Эйстерт). Несомненно также важное значение работ выдающихся ученых прошлого Кекуле, Купера, Бутлерова, Вернера и (по пространственному строению) Ле Бела и Вант Гоффа. [c.11]

    К оптическим и дифракционным методам относятся методы, основанные на взаимодействии электромагнитного излучения различной длины волны или потока частиц различной энергии с исследуемым веществом. Это оптическая и электронная микроскопия, рентгеноструктурный анализ (дифракция рентгеновских лучей) под обычными (>30°) и малыми (<5°) углами, рентгеновская микрорадиография, нейтроно- и электронография, электронная и ионная эмиссионная микроскопия (электронный и ионный проекторы). [c.24]

    Изучение кристаллических структур методами рентгеноструктурного (основан на дифракции рентгеновских лучей кристаллической решеткой вещества) и электронографического анализа (основан на дифракции электронов или нейтронов) показало, что реальные кристаллы отличаются от идеальных. В реальных кристаллах строгая пространственная периодичность нарушается из-за наличия дефектов кристаллической структуры. Многие свойства кристаллических тел объясняются наличием таких дефектов. Последние могут быть собственными, если они образуются вследствие теплового движения в кристалле, или примесными, если в кристалле появляются посторонние примеси, введенные случайно или преднамеренно. Дефекту. могут затрагивать одну или несколько элементарных ячеек или весь кристалл в целом. В технологии пигментов большой интерес представляют, например, такие дефекты, как ультрамикротрещины, определяющие прочность кристалла, что в свою очередь играет важную роль в процессах измельчения и диспергирования пигментов. Если в момент кристаллизации возникают механические помехи росту кристалла, в нем может возникнуть дефект, называемый дислокацией. При деформациях кристалла дислокации и их скопления могут перерастать в ультрамикротрещины. Во многих случаях в узлах кристаллической решетки могут отсутствовать структурные единицы, т. е. атомы, ионы или молекулы. Такие дефекты носят название вакансий. В пространстве между узлами (в междоузлии ) могут присутствовать атомы, ионы или молекулы, причем как свои собственные (принадлежащие веществу кристалла), так и примесные (принадлежащие другому веществу). Вакансии и наличие атомов, ионов или молекул в междоузлиях оказывают существенное влияние на оптические свойства пигментов (цвет, показатель преломления), их электропроводность, а также на скорость роста кристаллов, особенно при реакциях в твердой фазе. [c.182]

    Дифракционные методы. В дифракционных методах исследования рентгеновское излучение, поток электронов или нейтронов взаимодействуют с атомами в молекулах, жидкостях или кристаллах. При этом исследуемое вешество играет роль дифракционной решетки. А длина волны рентгеновских квантов, электронов и нейтронов должна быть соизмерима с межатомными расстояниями в молекулах или между частицами в жидкостях и твердых телах. Сама же дифракция (закономерное чередование максимумов и минимумов) представляет собой результат интерференции волн. Она зависит от химического и кристаллохимического строения, следовательно, соответствует структуре исследуемого вещества. Поэтому есть принципиальная возможность для решения обратной задачи дифракции, т. е. установление структуры вещества по его дифракционной картине. Обратная задача дифракции для рентгеновского излучения, дифрагирующего в конденсированных средах, называется рентгеноструктурным анализом. Методы применения электронных и нейтронных пучков вместо рентгеновского излучения называются электронографией и нейтронографией соответственно. Общим для этих методов является анализ углового распределения интенсивности рассеянного рентгеновского излучения, нейтронов и электронов в результате взаимодействия с веществом. Но природа рассеяния рентгеновских квантов, нейтронов и электронов не одинакова. Рентгеновское излучение рассеивается электронами атомов, входящими в состав вещества. Нейтроны же рассеиваются атомными ядрами а электроны — электрическим полем ядер и электронных оболочек атомов. Интенсивность рассеяния электронов пропорциональна электростатическому потенциалу атомов. [c.195]

    СТРУКТУРНЫЙ АНАЛИЗ - анализ структуры материала и его дефектов. Для исследования атомно-кристаллической структуры исполт,зуют дифракцию и рассеяние рентгеновских лучей (см. Рентгеноструктурный анализ), электронов (см. Электронографический анализ) и нейтронов (см. Нейтронографический анализ). Получили распространение методы анализа с использованием ориентационных эффектов при рассеянии тяжелых заряженных частиц (см. Ме-тодом ориентационных аффектов анализ), а также автоионный микроскопический анализ, в к-ром используют ионизацию атомов (или моле-ку.т) газа в неоднородном электр. поле у поверхности образца. При рассеянии потоков излучений атомами, находящимися в узлах идеальной кристаллической решетки, возникают резкие максимумы и диффузный фон вследствие комптоновского рассеяния. По положению и интенсивности максимумов определяют тип кристаллической решетки, размеры элементарной ячейки и расположение атомов в ней. Нарушения идеальности кристалла, напр, колебания атомов, наличие атомов различных хим. элементов, дислокаций, частиц новой фазы и др., изменяют положение, форму и интенсивность максимумов и вызывают дополнительное диффузное рассеяние, что дает возможность получать информацию об этих нару-шеннях. Дифракционными методалш изучают также строение веществ (напр., аморфных), пе обладающих строгой трехмерной периодичностью. Теории дифракции всех излучений имеют много общего, в то же время в них есть особенности, обусловли- [c.470]

    Один из основных моментов в понимании и расщирении использования этих материалов связан с возросшим осознанием влияния дефектности структуры на их свойства . Карбиды и нитриды не являются стехиометрическими соединениями. Каждая обсуждаемая ниже бинарная фаза обладает широкой областью гомогенности, и все ее свойства зависят от относительного содержания неметалла и металла и концентрации вакансий. И в тех случаях, когда это обстоятельство не учитывается, данные о значениях различных параметров очень противоречивы, что затрудняет выбор надежных сведений. В настоящей книге уделяется внимание не только зависимостям свойств от состава, но также и открытому недавно возможному упорядочению атомов углерода и азота в дефектных фазах и его влиянию на свойства карбидов и нитридов. Например, упорядочение атомов углерода, недавно открытое методами дифракции нейтронов, электронной микроскопии и рентгеноструктурного анализа, заметно меняет механическую прочность соединения УбС5. [c.11]

    Другим преимуществом дифракции нейтронов по сравнению с дифракцией рентгеновских лучей является то, что дифракция нейтронов дает возможность легко различить два химически разных атома, имеющих почти (или полностью) одинаковое число электронов с помощью рентгеноструктурного анализа этого сделать нельзя. Например, для шпинели MgAljO методом дифракции нейтронов было показано, что атомы магния расположены 290 [c.290]

    Результаты различных дифракционных исследований тетрафторида ксенона дают интересный материал для сравнений. Очень сильное поглощение рентгеновского /(а-излучения Сп атомом инертного газа и сравнительно слабая рассеивающая способность атомов галогена существенно затрудняют рентгеноструктурные исследования, однако несмотря на эти препятствия в течение очень короткого времени было выполнено три рентгеноструктурные работы [9—11], а вслед за этим исследования структуры, проведенные методом дифракции нейтронов [14] и электронов [15]. В одном из двух подробных рентгеноструктурных исследований интенсивность измеряли визуально, а во втором — с помощью счетчика. При визуальном исследовании было измерено 268 отражений, но 54 из них был приписан нулевой вес остальные отражения были включены в анализ по методу наименьших квадратов, при этом был получен конечный фактор достоверности, равный 0,097 при включении анизотропных тепловых параметров. Однако следует отметить, что при использовании изотропных тепловых параметров эта величина получалась почти такой же (0,100), следовательно, физический смысл учета анизотропии теплового движения в данном кристалле остается неясным. С помощью счетчика было измерено 286 отражений, из них 96 имели значение, отличное от н /ля полагают, что они обусловлены только атомами фтора. Значение оказалось более низким, чем в случае визуальной оценки интенсивностей (0,059), однако различия между значениями расстояний Хе—F, найденными в двух независимых исследованиях (1,961 0,026 [10] и 1,921 0,021 [5]), незначительны. Из пространственной группы следует, что молекула должна быть плоской, но не обязательно квадратной тем не менее, судя по результатам обеих работ, молекула Хер4 является квадратной. [c.404]

    Рептгеноструктурный анализ служит основным методом изучения строения твердых тел. В некоторых случаях используют дифракцию электронов (электронографический анализ), а таюке нейтронов. В настоящее время методами рентгеноструктурного анализа г.зучено строение десятков тысяч неорганических и органических веществ, имеющих практическое и научное значение. Большие успехи достигнуты в расшифровке структур биологически важных вещестз (например, гемоглобина). Благодаря применению методов рентгеноструктурного анализа устанавливается молекулярное строение наследственного вещества живых организмов. [c.153]

    За последнее десятилетие гидридам переходных металлов посвящены многочисленные обзоры [83—96]. Гидриды могут либо быть лигандами у одного атома металла (терминальные гидриды), либо служить мостиками между двумя или тремя атомами металла, либо занимать положение внутри клетки из атомов металла. И хотя большинство гидридных комплексов содержит и другие лиганды, известно несколько соединений, в которых вся координационная сфера состоит из водородных лигандов это уже знакомый КеНд [97] и недавно описанные РШ4 [98] и РеНб [99]. Поскольку у гидридного лиганда локализуется неболыЬое число электронов, то точно установить их положение с помощью рентгеноструктурного анализа трудно. Наиболее точные структурные данные для этих комплексов были получены с помощью дифракции нейтронов для летучих гидридов использовалась также дифракция электронов [90]. [c.87]


Смотреть страницы где упоминается термин Рентгеноструктурный анализ, дифракция нейтронов, дифракция электронов: [c.144]    [c.253]    [c.983]    [c.110]    [c.397]    [c.414]    [c.26]   
Смотреть главы в:

Гидриды переходных металлов -> Рентгеноструктурный анализ, дифракция нейтронов, дифракция электронов




ПОИСК





Смотрите так же термины и статьи:

Анализ рентгеноструктурный

Дифракция

Дифракция нейтронов

Дифракция электронов

Нейтрон

Рентгеноструктурный анализ дифракция

Электронная дифракция



© 2025 chem21.info Реклама на сайте