Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамика переходного состояния

    Термодинамика переходного состояния [c.50]

    Теория абсолютных скоростей реакций 9. Термодинамика переходного состояния 10. Расчет стерического коэффициента [c.313]

    ТЕРМОДИНАМИКА ПЕРЕХОДНОГО СОСТОЯНИЯ [c.80]

    Набухание соответствует неравновесному переходному состоянию системы от чистых сополимера и растворителя к их полному взаимному смешению. Согласно законам термодинамики самопроизвольное течение изобарно-изотермических процессов сопровождается уменьшением термодинамических потенциалов, поэтому можно считать, что причиной сорбции является стремление системы к выравниванию химических потенциалов компонентов. Набухание — это замедленный процесс смешения двух фаз. Из-за разницы в подвижности молекул компонентов набухание осуществляется диффузией растворителя в сополимер, тогда как макроцепи весьма медленно проникают в объем, занятый чистым растворителем. Диффузии сопутствуют процессы взаимодействия молекул растворителя со звеньями макроцепей, перемещения структурных элементов сополимера, изменение конформаций макроцепей. Полимеры (сополимеры) по своим механическим (реологическим) свойствам обладают ярко выраженной анизотропией (продольные свойства близки к свойствам твердых тел, в то время как поперечные приближаются к свойствам жидкостей), вследствие чего занимают промежуточное положение между твердыми телами и жидкостями. Силовое поле, наводимое диффузией растворителя в полимер, частично запасается в последнем, что приводит к возникновению комплекса релаксационных явлений или явлений вязкоупругости. [c.296]


    Техническая термодинамика изучает закономерности взаимопревращения теплоты и работы и переход систем из одного равновесного состояния в другое, не затрагивая также механизмов протекания процессов и переходные состояния систем между двумя равновесными состояниями. Установленные опытно зако- [c.5]

    Какие моли соответствуют размерности Речь идет о количествах, связанных со стехиометрическим изображением стадии, контролирующей скорость реакции. Численно Е можно найти и без знания лимитирующей стадии однако, когда Е сравнивают с аналогичными величинами, применяемыми в термодинамике, теории столкновений или теории переходного состояния, этот механизм необходимо знать и учитывать его стехиометрическое соотношение. [c.41]

    Классические воззрения на химические реакции, как на реакции, в основе которых лежат активированные молекулы и эффективные столкновения, для современной кинетики являются недостаточными, так как они не затрагивают поведения молекул в момент соударения и причин превращения одной реагирующей системы в другую. В результате развития статистической термодинамики было создано новое представление о переходном состоянии [33], так называемая теория активированных, комплексов, или теория абсолютных скоростей реакций. Основная идея этой теории заключается в том, что при реакциях исходные молекулы, активируясь, образуют активированный комплекс, в котором они находятся в особом переходном состоянии. Это позволяет системе легче перейти через потенциальный энергетический барьер, в результате чего происходит конечный распад. Например, реакцию следует изобразить таким образом [c.128]

    На основе положений формальной кинетики, метода переходного состояния и законов термодинамики были получены уравнения, описывающие закономерности кинетики простейших реакций. В кинетические уравнения входят константы гетерогенно-каталитических реакций, характеризующие процессы, которые протекают на поверхности, константа равновесия хемосорбционного процесса /Сад и предельное значение адсорбции (Г ), константа скорости химического акта (/гуд), а также константы, характеризующие процессы массопереноса (О, р и р). Теория каталитического процесса, протекающего на поверхности катализатора, должна раскрывать зависимость и куц от строения и свойств катализатора и реагирующих молекул. Проблема эта очень сложная и далеко еще не решенная. [c.654]


    Как видно из уравнения (XVI.36), для вычисления абсолютных скоростей реакций необходимо знание функций распределения исходных веществ и переходного состояния, определенных методами статистической термодинамики на основе спектроскопических данных. Величина функции распределения для переходного состояния может быть найдена, если известна поверхность потенциальной энергии. [c.340]

    Согласно термодинамике и теории переходного состояния константы равновесия К и константы скорости реакции к связаны со свободными энергиями равновесия и активации соотношениями  [c.254]

    Хотя понятия кинетически контролируемые реакции и термодинамически контролируемые реакции являются общеупотребительными, иногда при их использовании возникают недоразумения. В случае кинетически контролируемой реакции приемлемы и принципы термодинамики, однако этот процесс управляется свободной энергией переходного состояния, тогда как в термодинамически контролируемой реакции определяющей является свободная энергия основного состояния. Следует также указать, что кинетически и термодинамически контролируемые реакции не обязательно приводят к различным продуктам. [c.451]

    Эта широко известная книга написана одним из создателей физической органической химии, ставшей в последнее время по существу самостоятельной отраслью науки, основной задачей которой является установление количественной связи между строением и реакционной способностью органических соединений. В книге рассматриваются вопросы классической и статистической термодинамики химических реакций, интерпретации кинетических данных, влияния растворителя на реакционную способность, количественного изучения кислот и оснований. Большое внимание уделено теории переходного состояния, солевым эффектам, кислотно-основному катализу, корреляционным уравнениям и изокинетическим зависимостям. [c.4]

    Автор чрезмерно сужает формулировку принципа детального равновесия. В своем общем виде этот принцип отнюдь не является следствием теории переходного состояния, а представляет собой одно из основных положений статистической термодинамики. Принцип детального равновесия утверждает, что в истинно равновесной системе прямые и обратные микропроцессы (кстати, не обязательно химические) каждого вида компенсируют друг друга. Другими словами, число любых переходов из состояния 1 в состояние 2 равно числу обратных переходов — из состояния 2 в состоя- [c.182]

    Рассмотрение проблем термодинамики активации электропроводности следует начать с некоторых общих замечаний. Отметим прежде всего, что уравнения (1—43), (1—44), позволяя из температурного хода электропроводности определять энтальпии активации электропроводности и ДЯ , , не дают возможности рассчитывать энтропии активации, поскольку не известны абсолютные величины предэкспоненциальных множителей в этих уравнениях и их зависимость от температуры. Поэтому предложен ряд концепций, позволяющих теоретически рассчитывать величины ау, .. Среди них наибольшее распространение получила теория переходного состояния (ТПС), основы которой были сформулированы Эйрингом [111]. За последние годы эта концепция была распространена на транспортные процессы в растворах — вязкое течение, электропроводность, ионная миграция, диффузия [638]. Однако при этом часто не учитывали условный характер представлений ТПС, вследствие чего полученные выводы не всегда оказываются физически обоснованными. [c.32]

    Продолжая применять принципы термодинамики к переходному состоянию, можно записать [c.109]

    Для этого случая, являющегося обобщением случая, рассматриваемого законом действующих поверхностей, М. И. Темкин [118] вывел с помощью статистической термодинамики и метода переходного состояния общее уравнение  [c.137]

    В принципе энтальпия может быть вычислена стандартными методами статистической термодинамики в терминах статистических сумм реагентов и переходного состояния. На практике, однако, невозможно оценить колебательную функцию распределения переходного состояния без детального рассмотрения поверхности потенциальной энергии реакции. Это в свою очередь требует квантовомеханических методов, а решение уравнений для нахождения значений собственной энергии даже для трех- или четырехэлектронных систем представляет исключительные трудности. [c.11]

    Теория переходного состояния [11] постулирует наличие равновесия между основным и переходным состояниями, концентрация которого определяет скорость реакций (необычная конфигурация переходного состояния определяется особым способом). Эта квази-, термодинамическая система рассматривается далее с точки зрения законов классической статистической термодинамики [И]. [c.176]

    Указанные величины можно оценить, не прибегая к эксперименту. Для их расчета можно воспользоваться теорией абсолютных скоростей реакций (теорией переходного состояния), основанной на применении термодинамики и современных представлений о строении молекул [2, 3]. [c.10]


    Третья глава дает основные сведения в области кинетики и термодинамики органических реакций кратко излагается теория переходного состояния, дается понятие об элементарном акте реакций, [c.6]

    Модель эффективно приписывает зависимость ДС /Д5 от растворителя термодинамике воды в переходном состоянии. Хайн [462] дал качественное объяснение зависимости энтальпии активации от состава смешанного растворителя в терминах отбора переходным состоянием более полярного компонента растворителя. [c.440]

    Теория активированного комплекса, без сомнения, является развитием идей Аррениуса. Согласно этой теории, элементарная реакция протекает непрерывно от начального до конечного состояния и проходит через переходное состояние, характеризующееся максимальной энергией. Говорят, что соответствующий этому состоянию комплекс является активированным комплексом. Изменение энергии в ходе реакции может быть представлено диаграммой энергии, как на рис. 5-1. В такой диаграмме по оси ординат можно откладывать различные величины энергии. Поскольку мы рассматриваем реакции в растворах, где разность энергий измеряется при постоянном давлении, разумно использовать энтальпию. Тогда разность молярных энтальпий начального и конечного состояний является энтальпией реакции А//°, а соответствующая разность для начального и переходного состояний — энтальпией активации А//" . (Для обозначения величин, относящихся к активированному комплексу, используют надстрочный индекс в виде двойного крестика.) Абсцисса соответствует координате реакции, представляющей собой глубину протекания реакции. Следует заметить, что имеется несколько проблем, связанных с физическим смыслом таких диаграмм энергий. Проблема возникает из-за смешения микроскопического и макроскопического поведения вещества. Очевидно, координата реакции соответствует пути отдельной молекулы, а не совокупному поведению всех частиц, присутствующих в реакционном сосуде. Если бы все реагирующие частицы одновременно преодолевали энергетический барьер, это было бы несовместимо со вторым законом термодинамики. В то же время [c.140]

    Чтобы установить механизмы, по которым белки усиливают каталитическую активность металлокомплексов, необходимо прежде всего выделить отдельные стадии и промежуточные продукты суммарного ферментативного процесса, а затем сравнить константы скоростей отдельных стадий с константами скоростей аналогичных реакций, протекающих в отсутствие белка. Далее надо выяснить, определяется ли наблюдаемое ускорение той или иной стадии процесса влиянием белка на кинетику или на термодинамику (т. е. на равновесие, в котором участвует только субстрат, только ион металла или некоторое промежуточное соединение). Трудно ожидать, что нам удастся понять, каким образом белок влияет на константы скорости (которые связаны с разностью свободных энергий между основным состоянием с более или менее известной структурой или переходным состоянием, структура которого, как правило, неизвестна), до тех пор, пока не будет изучено влияние белка на константы равновесия (которые связаны с разностью свободных энергий между двумя основными состояниями). [c.135]

    В разработанной Г. Эйрингом и М. Поляни теории переходного состояния принимается, что исходные вещества находятся в равновесии с активированными комплексами, т. е. скорость образования последних намного больше скорости их распада, и что распределение молекул реагирующих веществ по энергиям вследствие столкновений соответствует равновесному распределению Максвелла — Больцмана. Это равновесие рассчитывается при помощи методов статистической термодинамики. Переходное состояние (активированный комплекс) можно рассматривать как обыкновенную молекулу, характеризующуюся определенными термодинамическими свойствами, за исключением того, что, кроме обычных трех степеней свободы поступательного движения центра тя кести, оно имеет четвертую степень свободы внутреннего поступательного движения, связанную с движением вдоль путч (координаты) реакции. [c.439]

    Следующие два примера показывают, что направление альдольной конденсации зависит и от других факторов, в частности от термодинамики переходного состояния. [c.169]

    Термодинамика переходного состояния сольволиэа. Информация о сольволизе карбониевых ионов извлекается из кинетических данных о предельном сольволизе на основании того, что переходное состояние для эндотермического процесса ионизации (2.138) структурно или энергетически напоминает карбониевый ион [403]. [c.437]

    Термодинамика переходного состояния для полимеризации и деполимеризации перфторгептеиа-1 [c.134]

    Есть и другие отличия активированного комплекса от мо лекулы, но не станем задерживаться на этом. Существенно, что к молекулоподобным образованиям на вершине активационного барьера можно применить термодинамику и статистику и, следовательно, формально рассматривать переходное состояние на вершине барьера как метастабильную молекулу (хотя ни в одном из случаев не доказано, что на вершине барьера существует потенциальная ямка, пусть незначительная). [c.171]

    Легкость миграции различных групп при перегруппировках карбениевых ионов зависит от ряда факторов. Одним из основных факторов является необходимая конформация исходного карбокатиона, при которой связь, присоединяющая мигрирующую группу к исходному пункту миграции, должна лежать в той же плоскости, что и вакантная р-орбиталь карбениевого центра. Достижение такой конформации зависит от природы других групп, находящихся у исходного и конечного пункта миграции, которые будут определять также термодинамику перегруппировки и ее скорость за счет напряжения заслонения в переходном состоянии, например типа структуры (25). Кроме того, на перегруппировку влияет также мигрирующая способность, присущая данной группе обычная последовательность легкости миграции Аг > Н > Alk. [c.544]

    В этих рядах наиболее сильные нуклеофилы образуют наименее прочные связи элемент — углерод, что говорит об отсутствии корреляции между кинетикой и термодинамикой в данных процессах. Неоднократно принималось, что в переходном состоянии электронное облако нуклеофила возмущается под действием электрофильного центра субстрата. Поляризуемость такого рода может вполне удовлетворительно объяснять приведенные выше экспериментальные данные, однако при всестороннем анализе необходимо принимать во внимание такие факторы, как перекрывание орбиталей, энергию сольватации и стерические эффекты. Особую важность в определении нуклеофильности анпонов приобретают эффекты сольватации. В гл. 3 уже было показано, как изменение природы растворителя обращает ряд нуклеофнль-ности галогенид-ионов. [c.156]

    В первом разделе Теоретические основы изложены представления о структуре и типах химической связи в органических, металлоорганических и комплексных соединениях, о молекулярных орбиталях и взаимном влиянии атомов в этих молекулах. На уровне механизмов и типов переходных состояний обсуждается реакционная способность органических соединений. Рассмотрены особенности кинетики и термодинамики органических реакций, типы элёктро- и фотохимических реакций с участием органических молекул. Изложены современные методы исследования структуры органических соединений. [c.3]

    В переходных состояниях, как и в сольволизе галогеналкилов, возникает частичный электронный заряд к из-за электрострикции обычно отрицательно. Следовательно, заряд в переходном состоянии можно исследовать кинетическими методами вплоть до высоких давлений. Подобным же образом могут быть изучены корреляции с мтро-пией активации д 5°= [352]. При уменьшении Д5° величина обычно становится более отрицательной, что повторяет соотношение между парциальным моляльным объемом и энтропией в равновесной термодинамике ионных растворов и в тepмoдинa iикe ионизации кислот и оснований. [c.523]

    Основные научные работы посвящены химической кинетнке и изучению кристаллической структуры. Еще в 1914 заинтересовался вопросами применения законов термодинамики к биологическ( м системам. После 1918 занялся интерпретацией рентгенограмм, которые получались при облучении целлюлозных волокон, и установил, что пятна на рентгенограммах возникают от кристаллов, ориентированных вдоль осп волокна. С помощью рентгеновского анализа установил (1921) размеры элементарной ячейки целлюлозы. Один из создателей (1935, вместе с Г. Эйрингом и анг ишским физикохимиком М. Г. Эвансом) теории абсолютных скоростей реакций, включающей метод переходного состояния. Начиная с 1950-х практически оставил научную деятельность в области химии и занялся философией и теологией. [349] [c.401]

    Книга Гайнца Беккера Введение в электронную теорию органических реакций представляет собой четкое и ясное изложение электронных представлений о механизмах наиболее распространенных и важных реакций органических веществ, без изложения которых не обходится ни один курс органической химии, ни практика исследователя. В отличие от других книг теоретического направления, обычно ограничивающихся при изложении механизма реакций лишь графикой электронных смещений, книга Беккера, помимо очень удачной графики этого рода, вскрывает физико-химические, термодинамические и электронно-структурные факторы движущих сил реакций. Она вооружает читателя глубокими знаниями и возможностью предвидения. Первые три главы излагают общие теоретические основы проблемы химической связи, распределения электронной плотности в органических молекулах и основные положения кинетики и термодинамики органических реакций с освещением теории переходного состояния и элементарного акта реакции. Первая из этих глав, посвященная квантовомеханическим основам теории химической связи, написана в форме, доступной для химиков-органиков, обычно плохо владеющих высшей математикой. В этой главе некоторым сокращениям подверглось изложение представлений о модели атома Бора, имеющих лишь исторический интерес. В этой же главе излагаются основы квантовой механики, где Беккер подходит к уравнению Шредингера, используя аналогию с волновым уравнением. Эта аналогия имела определенное эвристическое значение при создании волновой механики. Однако она, естественно, не отражает важнейших особенностей уравнения Шредингера и вряд ли облегчает его -восприятие. Поэтому взамен этой аналогии мы изложили основы квантовой мех-лники в доступной форме, аналогично тому, как это Сделается в основных современных курсах квантовой химии. / [c.5]

    В водном этаноле величина -ДС проходит через максимум в области состава (Хн = 0,73) наибольшего структурирования воды (разд. 2.Г). Это согласуется с максимальной потерей гидрофобной гидратации. Термодинамика активации во многих смесях, обогащенных органическим растворителем, отличается в нескольких отношениях от рассмотренной выше термодинамики в водных растворах Д5 становится отрицательной, а ДС /Д5 становится постоянной. Это может быть результатом устранения эффектов гидрофобной сольватации, поскольку модель сферы в непрерывном диэлектрике (разд. 7.А) предсказывает отрицательную Д5 , сопровождающую предпочтительную диэлектрическую сольватацию более полярного переходного состояния. Однако детальные предсказания уравнений, родственных уравнению (2.70), объясняют только часть наблюдаемых Д5 и ДС [505], которая определяет специфическую сольватацию основного и/или переходного состояний. Констам [505, 506] разработал ряд уравнений исключительно для оценки взаимодействия воды с переходным состоянием. Уравнения (2.139) и (2.140) дают изменения энтропии и теплоемкости, являющиеся следствием сольватации переходного состояния молекулами воды, количество которых на и больше, чем при сольватации переходного состояния. [c.439]

    Различие заключается в характере связеобразования. При реакции с 8в переходное состояние напоминает ионную пару [7], термодинамика которой определяет ход реакции, т. е. ионная пара с анионом, соответствующим более сильной кислоте, термодинамически более устойчива. Слабое электронное отталкивание приводит к сильному взаимодействию мягких кислоты и основания в результате возникает прочная связь между фосфором и серой, что приводит к сильному расшатыванию связи в переходном состоянии. [c.206]


Смотреть страницы где упоминается термин Термодинамика переходного состояния: [c.337]    [c.4]    [c.4]    [c.29]    [c.21]    [c.451]    [c.11]    [c.6]    [c.78]   
Смотреть главы в:

Основы химической кинетики в гетерогенном катализе  -> Термодинамика переходного состояния




ПОИСК





Смотрите так же термины и статьи:

Некоторые основные принципы термодинамики и теории переходного состояния

Переходное термодинамика

Состояние переходное

Термодинамика процесса активации. Связь теории переходного состояния с другими теориями



© 2025 chem21.info Реклама на сайте