Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие излучения высокой энергии с веществом

    Радиолиз существенно отличается от фотолиза. Поглощение излучений, обладающих значительно большей энергией, чем видимые, инфракрасные или ультрафиолетовые лучи, вызывает возбуждение или отрыв электронов от внутренних оболочек атомов. Первичный акт взаимодействия излучений высоких энергий с веществом [c.363]

    Прежде чем перейти к детальному изучению взаимодействия излучения высокой энергии с полимерами, рассмотрим природу и свойства ионизирующих излучений, способы их получения и из.мерения и их взаимодействие с веществом. [c.17]


    При взаимодействии излучений высокой энергии с веществом эффекты в общем крайне малы речь идет об обнаружении явлений, в которых принимают участие либо один, либо несколько [c.47]

    Б. МЕХАНИЗМ ВЗАИМОДЕЙСТВИЯ ИЗЛУЧЕНИЙ ВЫСОКОЙ ЭНЕРГИИ С ВЕЩЕСТВОМ [c.14]

    В этом разделе рассмотрены частицы, которые могут образоваться при взаимодействии излучения высокой энергии с веществом экспериментальные доказательства их появления детально обсуждены в разд. 2.2. [c.82]

    Первичные акты взаимодействия излучения высокой энергии с веществом приводят к образованию положительных ионов и возбужденных молекул  [c.43]

    Излучения высоких энергий обладают сильным химическим действием, однако различие и специфика их действия большею частью обусловлены вторичными процессами, так как первичными являются процессы отделения или возбуждения внутренних электронов. Например, при воздействии на вещество а-частиц последние захватывают электроны, в результате чего образуются электронейтраль-ные атомы гелия и однозарядные ионы. При взаимодействии [c.364]

    Проникая в твердое вещество, излучение в зависимости от величины его энергии может затрагивать только валентные электроны, всю электронную оболочку атомов или же, при достаточно высокой энергии, и атомные ядра. В последнем случае оно производит не только возбуждение электронов, ионизацию, но и смещение атомов данного вещества из их нормальных положений. Зто относится как к электромагнитному излучению (видимому свету, ультрафиолетовым и рентгеновским лучам, 7-излучению), так и к потокам частиц (электронов, ионов, например, протонов или а-частиц и др.). При этом энергия излучения трансформируется частично в тепловую, вибрационную энергию твердого вещества, которая передается соприкасающимся с ним веществам, а частично в электромагнитное излучение сниженной частоты по сравнению с частотой поглощенной лучистой энергии. Местные изменения структуры твердого вещества, возникающие при его взаимодействии с излучением высоких энергий, принято называть радиационными дефектами. Радиационные дефекты, равномерно распределенные по всему сечению луча, проникающего в твердое вещество, создаются фотонами, электронами, а-частицами и т. д. [c.121]

    Поскольку основы взаимодействия между излучениями высокой энергии и веществом были рассмотрены во втором томе данного труда [24], в этой главе особый упор делается на самые последние данные, которые рассматриваются под углом зрения потенциальных возможностей использования радиационной химии в нефтепереработке в будущем. [c.114]


    В диеновых полимерах, содержащих в первоначальном состоянии только транс- или только г ыс-конфигурацию звеньев, можно химическими методами изменить конфигурацию части звеньев цепи, не нарушая при этом скелетных связей. Реакции этого типа могут быть проведены с помощью тиоловых кислот [25], двуокиси серы [26] и излучений высокой энергии при использовании подходящих сенсибилизаторов [27]. Изомеризация должна происходить по тем же механизмам, что и в случае низкомолекулярных олефинов. Такие механизмы включают взаимодействие со свободным радикалом, в результате которого происходит образование промежуточного аддукта с временным превращением двойной связи в простую. При распаде аддукта происходит регенерация двойной связи получится ли при этом та же самая или новая конфигурация звена, зависит от концентрации взаимодействующих веществ и равновесия реакции, определяемого условиями ее проведения. Таким путем можно вызвать далеко идущую изомеризацию цепей при сравнительно небольшой концентрации введенных в систему агентов. [c.101]

    Значительно сложнее процессы взаимодействия электронов высокой энергии с веществом. Наблюдается неупругое рассеяние (ионизация и тормозное рентгеновское излучение) и упругое рассеяние (отклонение [c.275]

    Следовательно, практически любое изменение свойств нежелательно, независимо от того, вызвано ли оно радиолизом (разложение и превращение вещества при взаимодействии с излучениями высокой энергии) или другой причиной. [c.51]

    Значительно сложнее процессы взаимодействия электронов высокой энергии с веществом. Эти процессы можно разделить на два типа [4] 1) неупругое рассеяние (ионизация и тормозное рентгеновское излучение) и 2) упругое рассеяние (отклонение частицы полями электронов атома и ядра без потери энергии). [c.13]

    До недавнего времени информация о взаимодействии излучения с веществом в конденсированной фазе ограничивалась по существу данными, полученными в опытах по ослаблению излучения слоями вещества и при исследовании треков в фотоэмульсиях. Лишь в самое последнее время начал применяться новый метод исследования, основанный на использовании так называемых пузырьковых камер, который может иметь большое будущее и дать более углубленные сведения о взаимодействии излучения с жидкостями. Если судить по данным, полученным благодаря применению этого нового метода к настоящему времени, то можно считать, что по крайней мере основные явления, происходящие при взаимодействии частиц высокой энергии с жидкостями, имеют тот же характер, что и в случае газов. На рис. 4. 1 показаны треки протонов, мезонов и электронов в жидком пропане, полученные с помощью пузырьковой камеры. Вид треков едва ли отличается от того, что наблюдается в камере Вильсона, хотя [c.196]

    Выше было показано, что все виды излучений высокой энергии взаимодействуют с веществом посредством образования заряженных частиц (электронов или тяжелых заряженных частиц), обладающих высокой энергией. Эти частицы действуют по существу одинаково, вызывая ионизацию и возбуждение атомов и молекул вокруг треков. Однако экспериментально установлено, что различные типы излучений часто вызывают разные конечные эффекты. Так, у учи, например, вызывают окисление ионов закиси железа в разбавленном водном растворе со скоростью 15,5 иона на 100 эв поглощенной раствором энергии. В то же время а-частицы полония на такое же количество поглощенной энергии дают только одну треть указанного числа ионов окиси железа. Причина этого несовпадения — различие в линейной плотности первичных актов вдоль треков ионизирующих частиц для этих двух видов излучения. В том случае, когда акты ионизации и возбуждения молекул совершаются близко друг за другом (а-частицы)-, образующиеся при этом реакционноспособные промежуточные продукты находятся достаточно близко, чтобы вступить между собой в химическое взаимодействие. Если же ионизации и возбуждения происходят в точках, разделенных между собой значительными расстояниями (у-лучи), взаимодействие образующихся при этом промежуточных продуктов становится менее вероятным и они с большей эффективностью реагируют с веществом, находящимся в облучаемой среде. Можно таким образом рассматривать два крайних механизма поведения ионизирующих излучений один из них характерен для идеальных а-частиц, другой — для идеальных у-лучей. Все наблюдаемые в действительности химические эффекты, обусловленные действием реально существующих видов излучений, по своему механизму занимают некоторые промежуточные положения. [c.22]

    Разложение высокомолекулярных соединений под действием УФ-света и излучений высокой энергии, к которым относят как частицы, движущиеся с большими скоростями В -частицы, нейтроны), так и электромагнитные излучения (рентгеновские и у-лучи), связано с явлением электронного возбуждения и с образованием свободных радикалов, инициирующих цепные реакции. Процессы фотохимического и радиационного распада различаются распределением поглощаемой энергии. Фотоны видимой и ультрафиолетовой частей спектра имеют энергию примерно такого же порядка, как и химические связи они поглощаются в поверхностных слоях вещества, вследствие чего фотохимические реакции являются негомогенными каждый квант участвует только в одном первичном акте взаимодействия с определенными атомами или связями макромолекул. Радиационные излучения обладают высокой проникающей способностью, и поэтому радиационно-химические реакции в облучаемой среде протекают достаточно равномерно по всему объему вещества. В отличие от квантов УФ- и видимого света для проникающих излучений характерно множественное взаимодействие каждого кванта с различными атомами или связями макромолекул, и селективность взаимодействия имеет здесь меньшее значение .  [c.307]


    Продукты взаимодействия излучения большой энергии с данным веществом мало зависят от вида или энергии излучения. Все виды излучений высокой энергии дают качественно одинаковые химические эффекты. Однако излучения разных типов и энергий с разной скоростью теряют свою энергию в веществе, поэтому плотность первичных активных продуктов в треках зависит от вида излучения. Эта зависимость особенно явная в случае ионизации жидкостей, вследствие затруднительности диффузии активных первичных продуктов из трека. В газах активные продукты относительно легко покидают треки, и поэтому разные типы излучений обычно не влияют на выход радиационнохимических реакций. [c.317]

    Поэтому при поглощении молекулой ультрафиолетового излучения высокой энергии наблюдаемый спектр поглощения состоит из широких полос, являющихся результатом наложения большого числа узких полос, соответствующих различным переходам между близко расположенными подуровнями. Сложная природа электронных спек-ров многоатомных молекул делает очень трудным их полный анализ даже при использовании приборов высокого разрешения, т. е. высоко монохроматичных потоков излучений. Отсутствие вращательной и вращательно-колебательной структур можно наблюдать в спектрах жидких веществ и растворов, что связано с взаимодействием между соседними молекулами растворенного вещества и влиянием сольватации (большинство химических исследований относится именно к этим условиям). Полярные растворители обусловливают обычно значительно большие изменения в полосах поглощения, чем неполярные. Это объясняется тем, что оптические спектры возникают в результату поглощения или излучения света внешними электронами, наименее прочно связанными с ядром, которые требуют для возбуждения меньше энергии, чем внутренние электроны. [c.8]

    Радиационно-химические процессы происходят при действии ионизирующих излучений высокой энергии — электромагнитных излучений (рентгеновское излучение, у-излучение) и заряженных частиц высокой энергии (ускоренные электроны, Р-и а-частицы, нейтроны). При облучении реагирующих веществ сначала происходит столкновение заряженных частиц с молекулами веществ с образованием нестабильных активированных молекул последние распадаются на атомы или взаимодействуют с невозбужденными молекулами, образуя ионы и свободные радикалы, которые, взаимодействуя друг с другом или с непревращенными молекулами, образуют конечные продукты. Радиационно-химические процессы протекают с высокой скоростью, так как энергия активации резко снижается по сравнению с реакциями неактивированных молекул энергетический барьер радиационно-химических реакций невелик (порядка 20—40 кДж/моль), поэтому радиационно-химические про- [c.150]

    Заряженная частица, движущаяся через вещество, взаимодействует с внутримолекулярными электронами. В зависимости от энергии взаимодействия происходит возбуждение, ионизация или множественная ионизация молекул. Таким образом, в системе, на которую действует излучение высокой энергии, можно обнаружить молекулы с одним или более электронами, находящимися в возбужденном состоянии, ионы, возбужденные ионы и свободные радикалы. [c.131]

    Электроны отличаются от других частиц меньшей массой и, следовательно, более высокой скоростью при заданной энергии. Некоторые типы излучения возникают при радиоактивном распаде, а также как вторичная эмиссия при взаимодействии излучения с веществом. Следовательно, находящиеся в эксплуатации технические материалы обычно подвергаются действию смешанного излучения. Тем не менее результат облучения можно объяснить преобладающим влиянием одного какого-либо вида излучения. [c.156]

    При любом взаимодействии излучения с веществом поглощение энергии происходит только в том случае, если число уровней К- с более низким энергетическим состоянием (незаселенных) оказывается меньше, чем число уровней с более высоким энергетическим состоянием (заселенных). [c.71]

    Реакции, при протекании которых возникают промежуточные вещества с высокой энергией (радикалы), часто имеют механизм цепных реакций. Обычно в момент элементарного акта взаимодействия между активными молекулами появляются реакционноспособные промежуточные вещества — активные центры,—которые в свою очередь реагируют с компонентами реакционной системы, воспроизводят подобные себе частицы, в результате чего происходит циклическое повторение стадий реакции, Таким образом, возникает цепь реакций, так как после первичного акта цепной реакции появляется активная частица с высокой энергией (например, при воздействии излучения), которая продолжает последовательность стадий реакции. Такого рода процессы характерны прежде всего для реакций в газовой фазе (взрыв гремучего газа, реакция водорода с хлором), а также для некоторых реакций в растворах (фотохимические реакции, реакции полимеризации и т. д.). Возникновение реакционноспособной частицы часто называют реакцией зарождения цепи, например реакция (За) при образовании НВг (гл. 7). Под развитием цепи понимают последовательное продолжение элементарных стадий с постоянным образованием активных центров, продолжающих цепь радикалов. К реакциям обрыва цепи относится рекомбинация, т. е. реакция, обратная (За). Еще раз обратимся к уже описанному выше процессу образования бромоводорода (гл. 7). Для него найдена следую- [c.180]

    Регистрация и спектрометрия заряженных частиц, у-квантов и рентгеновского излучения возможны вследствие того, что при взаимодействии с веществом заряженных частиц и квантов высокой энергии возникают быстрые электроны, которые генерируют большое число пар неравновесных носителей. [c.519]

    Явления, обнаруживаемые при бомбардировке вещества гамма-лучами, связаны либо с эффектом Комптона, либо с фотоэлектрическим эффектом. Поступающая энергия гамма-лучей выявляется в этих двух эффектах. Поскольку бомбардировка каждого элемента представляет собой особый случай, то для того чтобы дать полное описание явления, пришлось бы рассмотреть огромное число примеров. В тех случаях, когда подтверждается правильность некоторых очень важных допущений, можно определить порядок величины для распределения энергии при непосредственном взаимодействии гамма-лучей с веществом. Последующее поглощение вторичных излучений, а также образование ионов и возбужденных состояний будут рассмотрены ниже. Изменения соответствующего поперечного сечения для эффекта Комптона (ос) и фотоэлектрического эффекта (ор) как функции энергии поступающего гамма-излучения известны для большого числа элементов [47, 49, 50]. На рис. 7 приведены эти изменения для воздуха, алюминия, меди и свинца. В случае гамма-лучей с высокой энергией имеет место только эффект Комптона, тогда как причиной рассеяния энергии мягкого гамма-излучения является один лишь фотоэлектрический эффект. Кривые, которые показывают изменения поперечного сечения для обоих указанных эффектов, пересекаются при энергии Ег, характерной для данного элемента мишени. Изменения значений Ег, нанесенных на график, в зависимости от атомного номера Z, как видно из рис. 8, дают правильную кривую. [c.191]

    В этом разделе речь пойдет о поглощении электромагнитного излучения, которое наблюдается при прохождении излучения с определенной длиной волны через раствор или кристалл вещества. Согласно классической теории электромагнетизма, поглощение электромагнитного излучения может происходить лишь в том случае, когда молекула представляет собой электрический диполь, взаимодействующий с электрической компонентой пропускаемого излучения. Однако это условие не ограничивается случаем постоянного диполя диполь может быть индуцирован в молекуле, например, в самом акте взаимодействия с излучением или при искажении симметрии молекулы вследствие колебательных движений атомных ядер. В результате поглощения излучения энергия молекулы возрастает — молекула из состояния с меньшей энергией (например, 1) возбуждается в состояние с более высокой энергией (например, Е2). Планк показал, что энергия электромагнитного излучения связана с его частотой V или его длиной волны X соотношением [c.64]

    Радиационно-химические процессы происходят при действии ионизирующих излучений высокой энергии возбудителями могут служить электромагнитные излучения (рентгеновское и у-излучение) и заряженные частицы высокой энергии (ускоренные электроны, а- и р-частицы, протоны и др.). Механизм воздействия ионизирующих излучений на реагирующую систему состоит в передаче энергии реагирующим веществам сперва происходит столкновение заряженных частиц с молекулами реагентов с образованием нестабильных активированных молекул, которые распадаются на атомы или взаимодействуют с невозбужденными молекулами, образуя ионы и свободные радикалы. При взаимодействии ионов и свободных радикалов друг с другом или с непревра-щенными молекулами возникают конечные продукты реакции. [c.254]

    Химические превращения, протекающие в полимерах при действии на них лучистой энергии, уже давно интересовали человека. До последнего времени из различных видов излучений внимание исследователей привлекал главным образом свет. Та роль, которую играет свет в биохимических превращениях полимеров, а также в процессах их деструкции или старения, определяет необходимость того, что в будущем, как это было и в прошлом, большое число исследований в области полимерной химии будет по-прежнему посвящено исследованию фотохимических проблем. Преобладающее значение при этом приобретают работы по использованию световых воздействий в определенных контролируемых условиях для модификации свойств полимеров. Однако в последнее десятилетие еще более интенсивно, чем фотохимические превращения полимеров, исследовались вопросы взаимодействия полимерных веществ с ионизирующими излучениями (излучениями высокой энергии). Развитие исследований в этой области в большой степени связано с созданием промышленной ядерной технологии и новых более совершенных электронных и ионных ускорителей. Но оно было вызвано также и тем ожидаемым многообразием химических реакций, протекание которых должно стать возможным под действием излучений высокой энергии. Одновременное присутствие электронов, ионов, свободных радикалов и молекул в возбужденных и термолизованных состояниях явилось причиной появления многочисленных гипотез, имеющих целью объяснение наблюдаемых радиационно-химических превращений. Все более сложные экспериментальные исследования обеспечили получение данных, которые позволяли проверять и изменять эти гипотезы. Как будет видно из дальнейшего рассмотрения, ни один из предложенных механизмов нельзя считать однозначно доказанным. [c.95]

    В монографии дан обзор современного состояния новой области науки о воздействии излучений высокой энергии (-[-лучей, быстрых электронов, нейтронов и др.) на полимерные вещества. Наряду с подробным изложением данных об изменении структуры и свойств основных типов и конкретных представителей полимерных материалов (полиэтилена, каучуков, полимеров винилового ряда, силиконов, целлюлозы и др.) в книге рассматриваются физические и химические процессы, имеющие место при взаимодействии различных видов излучения с веществом. В связи с тем, что метод облучения приобретает в настоящее время важное практическое значение как способ получения полимерных материалов и их модификации, в книге уделено значительное внимание теории и приложениям радиационной полимеризации, графт- и блок-сополимеризации, радиационной вулканизации каучуков и полиэфиров и др. Специальные главы посвяигены вопросам теории радиационно-химических процессов. Список литературы включает работы, опубликованные до 1959 г. [c.268]

    В предисловии было сказано, что излучение высокой энергии возникает при распаде ядер атомов или получается с помощью уско-, рителей заряженных частиц. Его энергия на много порядков выше энергии химических связей. Взаимодействие такого излучения с веществом подчиняется закону Эйнштейна об эквивалентности массы и энергии. [c.9]

    В этом случае можно пользоваться законами геометрической оптики. Длины волн излучения, удовлетворяюшие условию (2.1), соответствуют жесткому 7-излучению, /3-излучению высоких энергий. Однако применение жесткого 7-излучения весьма затруднительно вследствие слабого взаимодействия с веществом. /3-излуче-ние (электроны), напротив, обладает недостаточной проникаюшей способностью для анализа строения трехмерного кристалла. Тем не менее, существует электронная микроскопия высокого разрешения, которая позволяет получить микроскопическое изображение плоских атомных сеток на поверхности некоторых кристаллов с известной структурой. [c.40]

    Поглощение квантов электромагнитного излучения высокой энергии приводит к возникновению в веществе небольшого числа атомов, утративших электроны. Эта первичная ионизация — следствие фото- и комптоновского эффектов. Высвободившиеся электроны обладают огромным запасом кинетической энергии (к ним перенесена большая часть энергии падающего ванта) и могут многократно взаимодействовать с атомами и молекулами, отдавая энергию на их ионизацию и возбуждение. Так продолжается до тех пор, noiKa энергия свободного электрона не снизится до того минимального уровня, при котором электрон уже сможет поглотиться нейтральным атомом с образованием отрицательного иона. Каждый первичный электрон от момента своего рождения до зах(вата нейтральным атомом или молекулой многократно взаимодействует с атомами, расположенными вдоль направления его движения, генерируя большое число вторичных электронов. Распределение энергии вторичных электронов точно может быть рассчитано лишь для атома водорода. Для более сложных молекул возможны лишь качественные рассуждения (подробнее см. главу П1). В среднем о коло 70% энергии первичных электронов переносится к вторичным электронам, обладающим энергией, достаточной для того, чтобы индуцировать дальнейшую ионизацию. Остальные 30% энергии первичного электрона расходуются на возбуждение молекул и высвобождение электронов с нулевой кинетической энергией. Незначительная доля энергии затрачивается на тормозное излучение. Следовательно, перенос веществу энергии квантов излучения осуществляют главным образом высокоэнергетические вторичные электроны. [c.24]

    Волны заряженных частиц, более тяжелых, чем электроны, а именно ионов высоких энергий — протонов, дейтронов, а-частиц, мезоБОв и др., по мере их проникновения в глубь вещества и торможения в нем производят различное де11 твие. В начале своего пути они, главным образом, ионизируют вещество, затем, потеряв часть своей энергии, вступают во взаимодействие с атомными остовами и смещают их, пока энергия частиц не снижается ниже уровня определяемого выражением (1Х.2), и они не заканчивают свой путь, произведя смещение атомов в некотором объеме вещества радиусом 10 см. Такое действие излучения представляет собой локальное, т. е. местное расплавление твердого вещества. Нейтроны, не взаимодействующие с электронами, почти всю свою энергию растрачивают на смещение атомов, которые на своем пути, в свою очередь, производят ионизацию. Осколки ядер при их делении внутри твердого вещества производят в нем смещение десятков тысяч атомов и тем самым местную ионизацию. [c.142]

    Источниками рентгеновского излучения служат рентгеновские трубки, представляющие собой двухэлектродные электровакуумные приборы. Для возбуждения в них рентгеновского излучения создается поток свободных электронов высокой кинетической энергии, который направляется на металлическую мищень, где происходит взаимодействие быстрых электронов с веществом и возникает рентгеновское излучение. Рентгеновская трубка имеет вид баллона, выполненного или целиком из стекла, или из стекла и металла (рис. 5.5). В баллоне расположены катод и анод. Катодом служит V-образная или спиральная нить из вольфрама, нагреваемая до [c.116]

    При взаимодействии радиоактивного излучения с веществом происходят процессы ионизации и возбуждения атомов и молекул. Фотоны и частицы с достаточно высокой энергией могут вызвать ядерные реакции. Однако преобладающий процесс — взаимодействие излучения с электронами атомных оболочек и электрическим полем атомного ядра. При подобном взаимодействии частицы или фотоны теряют энергию или часть ее. Некоторые столкновения приводят к изменению направления движения частицы. Это значит, что радиоактивное излучение абсорбируется и рассеивается веществом. Указанные процессы взаимодействия положены в основу методов обнаружения а-, Р- и у-излучения. На этом же принципе основаны методы радиометрического анализа веществ без их разру шения [1,2, 6]. [c.304]

    Поглощение у-излучения (с энергией 0,5—3 МэВ) веществом, содержащим элементы с небольшим или средним порядковым номером, определяется в основном комптоновским эффектом. Фотоэффект проявляется только для фотонов с небольшой энергией, и он сильнее для абсорбентов, содержащих элементы с высоким порядковым номером. В ослаблении у-излучения процесс образования пар также играет второстепенную роль. При взаимодействии у-излучения с веществом образуются быстрые вторичные электроны и позитроны. Вторичные частицы вызывают ионизацию вещества, что отчасти используют для обнаружения у-излучения. Аналогично ослабленик> [c.306]

    ЯМР-спектры чаще всего снимаются на ядрах н (метод называется протонным магнитным резонансом, ПМР), С, и Р. Однако в настоящее время ЯМР-метод разйит для всех элементов периодической системы, которые в составе природных изотопов имеют ядра с ненулевым спиной. Ядра атомов, имеющие спин — очень слабый ядерный магнитик, в постоянном магнитном поле с высокой напряженностью поля Но, взаимодействуют с ним и ориентируются в направлении магнитных силовых линий (рис. 4.10). Переориентащы ядерного спина против магнитных силовых линий требует затраты энергии. Эту энергию ядро может получить при поглощении кванта электромагнитного излучения с низкой энергией, отвечающей радиочастотному излучению. Если образец вещества, спектр ЯМР которого нужно [c.118]


Смотреть страницы где упоминается термин Взаимодействие излучения высокой энергии с веществом: [c.124]    [c.124]    [c.5]    [c.301]    [c.568]    [c.246]    [c.27]   
Смотреть главы в:

Возбужденные частицы в химической кинетике -> Взаимодействие излучения высокой энергии с веществом




ПОИСК





Смотрите так же термины и статьи:

Вещества энергия

Излучение вещества

Энергия взаимодействия

Энергия излучения



© 2025 chem21.info Реклама на сайте