Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Новые методы синтеза полимеров и полимеры новых структур

    Модификацией имеющихся полимеров можно быстрее и экономичнее получить новые полимерные материалы. В промышленности используют следующие методы модификации 1) изменение химического строения макромолекул полимера (химическая модификация) 2) изменение физической структуры полимера без изменения его молекулярной массы и химического строения (структурная модификация) 3) применение смесей полимера с другими соединениями. Наиболее часто используется химическая модификация, которая осушествляется введением новых функциональных групп в молекулу полимера, введением новых звеньев в макромолекулу (синтез сополимеров) и получением привитых и блочных сополимеров, а также разветвленных и пространственных полимеров. [c.200]


    Вопросам получения и технического применения сополимеров этого типа посвящена обширная литература, так как методы синтеза привитых сополимеров (как и блок-сополимеров) в значительной степени позволили разрешить проблему контролированных полимеризаций для получения высокомолекулярных соединений с заданными свойствами и заданной структуры [72]. Так, например, прививка водорастворимых боковых цепей к макромолекулам маслорастворимых полимеров, или наоборот, позволяет получать новые высокоактивные эмульгаторы и детергенты. Полиамидные волокна значительно повышают свои эластические свойства после прививки к ним боковых полиэтиленовых цепей. Тефлон (политетрафторэтилен), обладающий очень плохой адгезией к различным материалам. [c.638]

    Естественно, что ни один симпозиум не может охватить всех вопросов, являющихся предметом исследований в области химии и физико-химии полимеров. Поэтому вполне целесообразно решение оргкомитета Симпозиума об отборе наиболее интересных докладов из большого числа первоначально поступивших заявок на доклады. В связи с обширными исследованиями, связанными с поисками новых методов синтеза полимеров и методов создания новых полимеров, которые можно эксплуатировать в жестких условиях, основное внимание на Симпозиуме было уделено докладам, посвященным этим вопросам. В русский перевод сборника включены все доклады, сделанные на следующих четырех секциях новые методы синтеза полимеров и полимеры новых структур химические превращения полимеров реакции поликонденсации и полимеризации и термостойкие полимеры. В сборник вошло также несколько статей, прочитанных на секциях Парамагнитные свойства и электронообменные смолы и ИК-спектроскопия . [c.5]

    Тот факт, что поликонденсацией получено огромное число полимеров различных классов, различающихся по структуре и свойствам, несомненно, указывает на широчайшие синтетические возможности этого метода синтеза полимеров. Конечно, в одной монографии из-за ограниченности объема нет возможности остановиться на всем новом, что имеется в области поликонденсации, на всех синтезированных конденсационными реакциями полимерных структурах. Отметим лишь, что они многочисленны и включают в себя не только полимеры с органическими цепями макромолекул, но и элементоорганическими и целиком неорганическими. Так, например, широчайшие возможности поликонденсация открыла для получения координационных полимеров разных типов как с элементоорганическими, так и неорганическими основными цепями макромолекул, синтезируемых на основе органических и неорганических лигандов и разнообразных металлических производных [1-3]. Широко представлены поликонденсационные процессы и в реакциях образования кремнийорганических полимеров [4—7] - полимеров с неорганическими основными цепями молекул, которые подчас включают в свой состав наряду с кремнием и многие другие элементы (алюминий, железо, титан, цинк, никель, кобальт и др.). [c.365]


    В отличие от других методов синтеза высокомолекулярных соединений при образовании полимеров из циклических соединений не изменяется электронная структура химических связей и их общее число в системе. В процессе превращения циклов в линейные полимеры не возникает новых типов химических связей. [c.139]

    Большое значение для развития производства разнообразных высококачественных синтетических каучуков имеет использование новых методов синтеза полимеров. Методы получения блокполимеров и привитых полимеров, а также стереорегулярных полимеров, обладающих строго линейной структурой, находят все большее применение в синтезах каучукоподобных полимеров. [c.732]

    В недавно опубликованном патенте [69] описан новый метод синтеза смолообразного полимера из галогенида бора или эфира борной кислоты и симметричного реактива Гриньяра, полученного из г-дибромбензола. Предположительно полимеры имеют структуру [c.147]

    Значительным событием в химии полимеров явилось открытие К. Циглером и Дж. Натта в 1955 г. метода синтеза нового типа высокомолекулярных соединений — стереорегулярных полимеров, отличающихся регулярностью структуры и чрезвычайно высокими физико-механическими показателями. Большие успехи достигнуты в последние годы в области синтеза полимеров в твердой фазе, а также создания термостойких полимерных материалов и полимеров с системой сопряженных связей. Использование олигомеров для синтеза полимеров значительно расширило возможности создания новых материалов с хорошими физико-механическими свойствами. Поскольку олигомеры обладают вязкостью, достаточной для формования из них изделий, то становится возможным проводить полимеризацию уже в самих изделиях. Это устраняет большие трудности, котор .1е возникают при формовании изделий из высокоплавких и труднорастворимых полимеров. Серьезные успехи достигнуты также в синтезе элементоорганических и неорганических полимеров. [c.53]

    Одним из новых направлений синтеза полимеров с заданными физическими, механическими или химическими свойствами является метод привитой полимеризации (табл. 6.1 и 6.2). Химическая структура макромолекулы полипропилена позволяет осуществлять прививку мономеров винилового типа как за счет реакций [c.140]

    Эти проблемы можно успешно решить путем поиска методов синтеза новых полимеров с разнообразной структурой молекул, модифицированием известных полимеров, а также легированием полимеров путем небольших добавок веществ, отличных по составу от полимера. [c.19]

    НИР кафедры Синтез полимеров развиваются по теме Разработка научных основ создания новых функциональных полимеров. На кафедре накоплен опыт в разработке полимеров, содержащих в своей структуре химически активные функциональные группы, в исследовании их структуры, морфологии и показана перспективность их применения в ряде приоритетных областей развития науки и техники, таких как мембранная технология, микроэлектроника, биотехнология, экология. Основной целью работ является разработка методов направленного синтеза и модификации полимеров и материалов на их основе с заданной структурой (включая наноструктуру) и морфологией. [c.114]

    Для формирования современных представлений о строении высокомолекулярных соединений и процессов их синтеза большое значение имели также и работы Карозерса [И], установившего влияние строения исходных мономеров на ход процесса синтеза полимеров и образование побочных циклических продуктов, а также работы большого числа исследователей различных стран, разрабатывавших новые методы синтеза и устанавливавших строение и структуру полимеров. [c.7]

    Наряду с химией получения высокомолекулярных соединений, разрабатывающей методы синтеза все новых и более сложных полимерных соединений, существуют и быстро развиваются физика, химия и механика полимеров. Изучаются механизм и скорости образования полимера, структура и свойства этих соединений в твердой фазе, в растворах, расплавах, а также изменение свойств в условиях эксплуатации, разрабатываются пути и методы их переработки в полимерные материалы и изделия из них. [c.5]

    Для химика-органика наибольший интерес в области производства химических волокон представляют разработка новых и усовершенствование существующих методов синтеза волокно-образующих полимеров и полупродуктов для их получения. Химическое модифицирование готовых волокон не привлекает особого внимания, так как волокнообразующие полимеры, как правило, довольно инертны. С другой стороны, биохимия образования природных волокон почти не изучена, тогда как их структура и способы улучшения их свойств путем химического модифицирования являются предметом широкого исследования. Более подробно это различие в подходе к химическим [c.283]


    Сейчас разрабатывается ряд химических методов синтеза новых исходных материалов, которые дадут конечные продукты более совершенной структуры. Эти методы основаны на управлении кинетикой реакции и формировании заданных молекулярных свойств. Например, управляемый гидролиз металлоорганических соединений позволяет получать в высшей степени однородные керамические частицы ( золь-гель технология ). Другой пример металлоорганические полимеры скручивают в нити, после этого все, исключая полимерный [c.131]

    Как видно из изложенного, в настоящее время исследователи ведут широкий поиск и накапливают данные о возможности технического использования методов физической модификации полимеров. Основное внимание обращается на придание новых свойств уже синтезированным полимерам, а также па формирование желательных надмолекулярных структур и свойств у полимеров непосредственно в процессе их синтеза [c.247]

    Значительным событием в химии высокополимеров явилось открытие К. Циглером и Дж. Натта в 1955 г. метода синтеза нового типа высокомолекулярных соединений — стереорегулярных полимеров, отличающихся регулярностью структуры и чрезвычайно высокими физико-механическими показателями. Большие успехи достигнуты в последние годы в области синтеза полимеров в твердой фазе, а также создания термостойких полимерных материалов и полимеров [c.57]

    Бурно развиваются новейшие физические и химические методы выделения природных соединений и устанавливается их строение. Ученые подбираются к синтезу тончайших и сложнейших структур белковых тел и носителей наследственности — нуклеиновых кислот. Отталкиваясь от созданного природой, химики сделали то, что ей самой без вмешательства человека оказалось не под силу. Так, начав с получения соединений, подобных натуральному каучуку, пришли к синтетическим полимерам, по своим свойствам намного превосходящим природные соединения. В поисках путей синтеза алкалоида хинина ученые давно решили задачу борьбы с малярией, обнаружив гораздо более эффективные препараты. На границе неорганической и органической химии выросла химия элементорганических соединений. Для фтор- и крем-нийорганических соединений давно нашли широкое промышленное применение, совершив тем самым переворот в отдельных областях технологии. [c.6]

    Сакраментальная фраза о том, что свойства полимеров определяются их строением долго оставалась общим местом, универсально справедливым, но отвлеченным, до тех пор пока не были освоены надежные методы исследования структуры полимеров и разработаны количественные показатели характеристики их свойств. Открытие стереоспецифической полимеризации и синтез полимеров, в которых тонкие особенности микроструктуры цепей действительно решающим образом влияли на физико-химические свойства, вызвали поток разнохарактерных исследований. Общей целью этих работ было установление количественных корреляций между структурой и свойствами новых материалов. Решению этой задачи было посвящено огромное число как выдающихся и интересных, так и довольно тривиальных публикаций. Огромная, если пе доминирующая, часть этих работ касается полиолефинов, ставших предметом качественных, модельных, поисковых, прикладных и строго количественных исследований. Каждая выполненная работа давала свой больший или меньший вклад в решение общей проблемы нз массы фактов, кажущихся иногда разрозненными, постепенно возникала и быстро становилась понятной и уже привычной картина многочисленных, твердо установленных связей мел<ду строением полиолефинов и их свойствами. [c.6]

    Теоретические основы в этой области впервые были дагпл А. М. Бутлеровым, который открыл в 1870 г. явление полимеризации изобутилена. В настоящее время синтезировано несколько тысяч различных каучукообразных веществ и примерно двести из них вырабатываются промышленностью. Широкое и разнообразное применение получили пластмассы. и синтетические волокна. Все же техника и другие области жизни предъявляют к промышленности синтетических материалов все большие запросы. От полимеров требуется совмещение самых разнообразных качеств. Последние обусловливаются не только свойствами соответствующих мономеров, но и методами их переработки. До недавнего времени достаточно полно были разработаны и внедрены в производство два основных способа получения высокомолекулярных соединений полимеризация и поликонденсация. Однако химическая наука О полимерах и химическая технология на этом не остановились. Научная работа по изысканию новых методов синтеза макромолекул полимеров с заранее заданной структурой, обусловливающей определенные свойства, привела к созданию новых способов и новых полимеров. [c.275]

    Открытие жив ш,их полимеров дало толчок развитию синтетических методов полимерной химии. Благодаря отсутствию реакции обрыва цепи появился ряд новых методов органического синтеза, что позволило создать полимерные образцы, имеющие почти пуассоновское молекулярновесовое распределение (т. е. фактически монодисперсные) и представляющие определенную ценность. Этот метод дает возможность получать необычные, уникальные блок-сополимеры, звездооб-раз ые и гребнеподобные полимеры и т. д. Он позволяет также вводить различные функциональные группы с одного или обоих концов полимерной цепи как в гомополимерах, так и в блок-сополимерах. Особенно важно то, что использование живущих полимеров открывает громадные возможности контроля структуры полимера и позволяет синтезировать сложные макромолекулы в строгом соответствии с научными или технологическими требованиями. Принципы, управляю-и ,ие поведением живущих полимеров, были сформулированы авторо.м в ряде работ [11 и суммированы в обзорной статье 121. Применение этих принципов к практическим проблемам оказалось успешным, и в настоящее время имеется ряд достижений в этой области. [c.36]

    И полиизопреновые каучуки, близкие по свойствам и структуре к природным каучукам, всегда привлекали внимание исследователей В результате синтеза полиизопреновых каучуков на осио ве изопрена в лабораторных условиях получались полимеры уступающие по свойствам природным типам каучуков. Однако в результате работ, проведенных А. А. Коротковым с сотрудника ми, был разработан рациональный метод синтеза /с-полиизопре нового каучука, близкого по своим свойствам к природному каучуку [23а]. Изопрен до недавнего времени являлся труднодоступным техническим продуктом. Для получения его было предложено много методов, из которых наиболее старым способом является деполимеризация дипентена из скипидара (изопреновая лампа Гарриеса) с модификацией И. И. Остромысленского  [c.269]

    До разработки методов синтеза высокомолекулярных полимеров, описанных в гл. VII, использование природных веществ в качестве пластических масс было почти все] Да сопряжено с некоторым разрушением первоначально молекулярной структуры, подобно тому, как это имеет место, например, при растворении целлюлозы или при вальцевании каучука, и сопровождалось, только в ограниченных пределах, образованием онечного продукта новой структуры (например, при вулканизаци каучука или при высыхании масел). С тех пор как были разработаны удовлетворительные методы полимеризации, промышленность пластических масс непрерывно развивалась, и в настоящее время имеется возможность производить материалы, обладающие почти любыми требуемыми физическими свойствами и высокой химической стойкостью. Наибольшее значение в развитии промышленности пластмасс имели си тетические смолы. [c.466]

    ПОЛИКАРБОРАНЫ (карборансодержащие полимеры), содержат в макромолекуле карборановые группы (см. карбораны). Наиб, полно исследованы П. с о-, м- и я-карбора-новыми-(12) группами. Эти группы активно взаимод. с Ог воздуха при 300 °С и выше с образовгшием трехмерных неорг. структур, в основном со связями В—В и В—С, обладающих высокой термостойкостью. Практич. интерес представляют карборансодержащие феноло-формальд. и эпоксидные смолы, а также др. реакционноспособные олигомеры. Продукты их отверждения и послед, термообработки сочетают орг. и неорг. сетки и характеризуются высокими термо- и теплостойкостью, большим коксовым остатком (90—95% пря 1000 °С). Получ. обычными методами синтеза полимеров. Примен. основа термостойких клеев связующие композиц. материалов, в т. ч. углеграфитовых. [c.461]

    Проанализированы известные способы получения фуллеренсодержащих полимеров и обсуждены новые данные по синтезу полимеров регулируемой архитектуры. Показана эффективность использования методов контролируемой анионной полимеризации для получения полимеров сложного строения с заданными характеристиками отдельных полимерных цепей и, в частности, для синтеза звездообразных гомо- и гибридных полимеров с фуллереновым ядром. Продемонстрирована высокая информативность комплексного подхода к исследованию структуры сложных фуллеренсодержащих полимеров, сочетающего различные физико-химические методы (гидродинамика, метод селективной окислительной деструкции фуллерено-вых ядер, хроматография). Обсуждены основные результаты исследований звездообразных фуллеренсодержащих полимеров в растворах методами гидродинамики, светорассеяния, нейтронного рассеяния и фотолюминесценции. [c.194]

    Изучение волокон сыграло важную роль в развитии химии высокомолекулярных соединений (гл. 8). Пионерские работы Штаудингера по выяснению структуры целлюлозы и натурального каучука (1920 г.) привели к представлению о том, что эти вещества состоят из длинноценочечных молекул высокого молекулярного веса (т. 4, стр. 83), а не из коллоидальных ассоциа-тов небольших молекул. Исследование Штаудингера, выводы которого были позднее подтверждены данными по рентгеноструктурному изучению целлюлозы (Мейер и Марк, 1927 г.), положило начало пониманию макромолекулярной природы полимеров. Вскоре после этого Карозерс с сотрудниками разработали рациональные методы синтеза волокнообразующих полимеров. Приблизительно в конце прошлого века были получены гидратцеллюлозные волокна — вискозное и медноаммиачное (т. 4, стр. 93), а в 1913 г. появилось сообщение о возможности получения волокна из синтетического полимера (поливинилхлорида). Однако это изобретение не было реализовано в промышленности. Первым промышленным чисто синтетическим волокном был, по-видимому, найлон-6,6 (т. 1, стр. 172), производство которого началось в 1938 г. Вслед за ним очень быстро были выпущены найлон-6, волокно ПЦ (из хлорированного поливинилхлорида), виньон (из сополимера винилхлорида с ви-нилацетатом, 1939 г.), саран (из сополимера винилхлорида с винилиденхлоридом, 1940 г.), полиакрилонитрильные волокна (1945 г.) и, наконец, терилен (из полиэтилентерефталата, 1949 г.) (т. 1, стр. 170). В последующие годы не было выпущено ни одного нового многотоннажного волокна происходило лишь расширение производства и улучшение свойств уже существующих волокон. Вместе с тем разработаны и продолжают разрабатываться многочисленные волокна специального назначения, что свидетельствует о большом размахе исследований в этой области. [c.282]

    В последние годы внимание химиков все больше привлекают методы синтеза полимеров стереорегулярной структуры. Эти полимеры значительно превосходят по своим физическим свойствам аналогичные аморфные продукты нерегулярной структуры. Проявляемый к этим методам интерес связан с тем, что, кроме новых приемов получения до сих пор неизвестных кристаллических полимеров, которые все больше получают широкое промышленное применение, в этих реакциях впервые осуществляется регулирование реакции полимеризации на стадии роста цепей. Метод синтеза полимеров этого типа был назван стереоспецифи-ческой полимеризацией, а сами полимеры—стереорегулярными (изотактическими). В этом процессе мономерные звенья соединяются по типу голова—хвост , причем не образуются разветвления в результате реакций передачи цепи. Кроме того, мономерные звенья в цепи занимают строго определенное пространственное положение, обусловливая наиболее энергетически выгодное состояние полимерной молекулы. [c.14]

    Во второй часта кратко рассмотрены новые технологаи ситеза органических продуктов (изопреноидной структуры) - для производства витаминов и душистых веществ. Представлены принципиальные схемы синтеза этих веществ, включающие реакцию этинилирования, реакцию непредельных кетонов с ацстоуксусным эфиром (реакции Кэррола), реакцию селективного гидрирования тройной связи ацетиленовых спиртов, а также реакции випилирования ацетиленом различных соединений с получением мономеров, пригодных для производства полимеров с ценными свойствами, рассмо1рены технологические методы выделения и очистки указанных соединений, [c.7]

    Осознание того, что разнозвенность полимеров — явление общее и повсеместно распространенное, заставляет пас искать пути управления процессом формирования структур цепи. Овладение такими методами позволит программированно вводить нужные структуры в цепь не только путем сополимеризации или замещения в цепях, но и в процессе синтеза. Это должно в огромной степени расширить синтетические возможности полимерной химии и обогатить пауку большим количеством новых структур, недоступных иными методами. [c.6]

    Осн. работы посвящены изучению кинетики и механизма хим. р-ций. Исследовал цепные р-ции окисл. углеводородов. Изучает (с 1958) р-ции образования и превращения полимеров. Открыл (1962) новый элементарный акт полимеризации — передачу цепи с разрывом. На основе этого эффекта разработал новые способы синтеза полимеров и технологию получения важных конструкционных термопластов. Кинетические, термодинамические и структурные исследования обратимой гетерогенной полимеризации привели его к созданию (1970) метода регулирования молекулярных и надмолекулярных структур полимеров непосредственно в ходе их синтеза. Показал (1968) возможность полимеризации при высоких давлениях в сочетании с деформациями сдвига. На основе изучения кинетики образования трехмерных структур и строгого выбора условий отверждения разрабатывает (с 1972) пути создания высокопрочных композиционных мат-лов. Обнаружил (1981) явление стимулированной давлением инжекции электронов из токопроводящих частиц в полимерные диэлектрики, что позволило предложить новый подход к созданию электропроводящих полимерных мат-лов. Развил теорию, позволяющую оптимизировать процесс получения крупнога- [c.162]

    Полимеризация замещенных циклодиенов (с раскрытием циклов) позволяет получать полимеры принципиально новой структуры, которые нельзя получить обычными методами полимеризации [8]. Например, из 1-метилциклооктадиена-1,5 возможен синтез чередующегося сополимера бутадиена-1,3 с изопреном  [c.185]

    Изменение свойств полимера путем увеличения размеров макромолекул и изменения их структуры, например, в результате превращения линейного полимера в полимер сетчатой структуры. Этот метод назван методом костикообразования, или сшивания линейных полимеров. Ко второму направлению может быть отнесен также синтез новых полимеров путем блоксопо-лимеризации и привитой сополимеризации. [c.170]

    Для развития работ по исследованию физико-мехавтческих свойств и структуры высокомолекулярных соединений в 1959 г. В. А. Каргин (был приглашен в Институт нефтехимического синтеза АН СССР (ИНХС). Б лаборатории полимеризации олефинов он возглавил группу по изуче- ншо свойств и структуры полимеров, в которой успешно проводились исследования процессов структурообразования в изотактическом поли-лропилене, структурно-химических превращений полиакрилонитрила при его карбонизации и изучение структурной модификации расплавов полимеров введением малых добавок низкомолекулярных веществ. В 1962 г. В этом же институте была организована группа по новым методам полимеризации, одним из основных направлений которой было исследование процессов матричной полимеризации на синтетических макромолекулах, моделирующих некоторые аспекты биологического синтеза полимеров в клетках живых организмов. Эти работы, впервые поставленные в ИНХС, получили широкий отклик и дальнейшее развитие как в СССР, так и за рубежом в 1964 г. в ИНХС В. А. Каргиным была организована еще одна группа, в которой развитие получили работы в области химической модификации полиолефинов и некоторых других полимеров [c.10]

    Обсуждаются важнейшие результаты исследований полимерных систем, проведенных различными методами ЯМР в период после XVII конференции по высокомолекулярным соединениям. Рассматривается структура и конформация макромолекул в растворе и молекулярная релаксация в изолированных макромолекулах, х арактер молекулярных движений в растворах, пластифицированных и блочных полимерах, упаковка макромолекул в блочном состоянии. Приводятся данные по изучению процессов синтеза полимеров, растяжения, кристаллизации и т. п. Новые тенденции использования ЯМР (особенно многоим-цульсных методик) для полимерных систем. [c.231]


Смотреть страницы где упоминается термин Новые методы синтеза полимеров и полимеры новых структур: [c.12]    [c.184]    [c.183]    [c.15]    [c.155]    [c.150]    [c.104]    [c.4]    [c.154]    [c.5]   
Смотреть главы в:

Материалы международного симпозиума по полимерам 1967 г -> Новые методы синтеза полимеров и полимеры новых структур




ПОИСК





Смотрите так же термины и статьи:

Метод структур

Методы синтеза полимеров

О новых полимерах

Полимеры методом ГПХ



© 2025 chem21.info Реклама на сайте