Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Релаксация полимеров магнитная

    В книге помещены статьи крупнейших советских ученых в области физики высокомолекулярных соединений по механической, диэлектрической и магнитной релаксации полимеров и композиций на их основе. Особое внимание уделяется связи прочностных и вязкоупругих свойств полимеров с их химическим составом, а также с молекулярным строением и надмолекулярной структурой. [c.2]

    При температурах значительно выше температуры стеклования или плавления полимеров измерение ширины линии затруднительно, поэтому целесообразно измерять времена ядерной магнитной релаксации Т1 и Т2. Из данных рис. 8.8 следует наличие расхождений с результатами теории (пунктирная кривая), основанной на предположении о виде функции корреляции (8.10). При повышении температуры не обнаруживается тенденции к сближению Т1 и тз, которое, согласно теории, должно наступать сразу после проявления минимума Ть Еще более существенно наличие при высоких температурах двух поперечных времен релаксации и одного продольного. [c.225]


    Чаще всего при исследовании строения, структуры и молекулярного движения полимеров, находящихся в твердо.. агрегатном состоянии, применяются методы ядерного магнитного резонанса двух видов импульсный и щироких линий. С помощью первого метода определяются времена спин-решеточной и спин-спиновой релаксации, а второй позволяет получать значения ширины резонансной линии и ее второго момента. По проявляющимся на температурных зависимостях этих величин аномалиям можно судить об изменении подвижности отдельных атомных групп и более крупных фрагментов полимерных цепей, а следовательно, и об особенностях строения полимеров. [c.231]

    Процесс передачи ядром части энергии своему окружению посредством безызлучательного перехода называется спин-решеточной релаксацией. При действии на полимер внешнего магнитного поля ориентация спинов определяется поляризацией магнитных моментов ядер, тогда как тепловое движение атомов очень слабо влияет на порядок в расположении спинов. Если приложить магнитное поле к полимерной среде, а затем убрать его, то начинается спад магнитной поляризации ядер, обусловленный их тепловым движением. Явление спин-решеточной релаксации представляет собой спонтанный спад магнитной поляризации в отсутствие внешнего поля, обусловленный тепловым движением. Время спин-решеточной релаксации Т1 - это время, в течение которого разность между действительной заселенностью какого-либо уровня и его равновесным значением уменьшается в е раз. Спин-решеточная релаксация наблюдается наиболее отчетливо, когда частота тепловых колебаний сравнима с частотой ЯМР. Если измерения проводят на фиксированной частоте в достаточно широком интервале температур, то оказывается, что время спин-решеточной релаксации проходит через минимум, который для каждого релаксационного процесса в полимере наблюдается при определенной температуре. [c.254]

    При действии внешнего магнитного поля ориентация спинов в среде полимера определяется поляризацией магнитных моментов ядер, тогда как тепловое движение атомов очень слабо влияет на порядок в расположении спинов. Если приложить магнитное поле к полимерной среде, а затем убрать его, то начинается спад магнитной поляризации ядер, обусловленный их тепловым движением. Явление спин-решеточной релаксации и представляет собой спонтанный спад магнитной поляризации в отсутствие внешнего поля, обусловленный тепловым движением. [c.383]


    Приводятся сведения о строении и физических свойствах макромолекул и структуре полимеров, термодинамике последних и их растворов, статистической физике макромолекул и полимерных сеток, релаксационных явлениях (механическая, электрическая и магнитная релаксация). Рассматриваются такие состояния полимера, как высокоэластическое, ориентированное и жидкокристаллическое. Отличительная особенность книги — математическое описание теории процессов и явлений, свойственных полимерным системам. [c.2]

    Для реальных систем именно такая ситуация типична, и сложный релаксационный процесс представляют как суперпозицию независимых идеальных релаксационных процессов со своими временами релаксации, вводя функцию распределения времен релаксации (релаксационный спектр). В третьей части мы рассмотрим различные экспериментальные методы исследования релаксационных свойств полимеров и покажем, что наиболее эффективны методы, основанные на воздействии на полимер периодическими механическими силами и электрическим и магнитным полями с определенной частотой. Пока же остановимся на вопросе об особенностях перестройки структуры в полимерах, определяющих специфику их релаксационных свойств. [c.29]

    МАГНИТНАЯ РЕЛАКСАЦИЯ В ПОЛИМЕРАХ [c.249]

    XI. 1.13. Магнитная релаксация в растворах полимеров [c.272]

    Акцент сделан на рассмотрение магнитных релаксационных явлений и специфики их проявления в твердых полимерах, их расплавах и растворах в связи с особенностями структуры полимерных систем и динамики цепных молекул, в частности, с пространственным характером движений. Так, спектральные и временные параметры поперечной магнитной релаксации весьма чувствительны к степени локального равновесия в полимерных системах, достигаемого за время наблюдения. Остаточные ядерные диполь-дипольные магнитные взаимодействия, определяющие величину указанных параметров, являются мерой анизотропии мелкомасштабных движений макромолекул, которая может быть связана с наличием топологических ограничений или химических сшивок. [c.296]

    Сведения об изменении молекулярной подвижности в граничных слоях полимеров могут быть получены также с применением метода ядерного магнитного резонанса. Имеются многочисленные данные [230], показывающие, что исследования релаксационных процессов в полимерах, проведенные методами диэлектрической релаксации или ЯМР, дают в общем аналогичные результаты. В ряде наших работ на объектах, уже рассмотренных выше, была исследована спин-решеточная релаксация протонов в полимерах и олигомерах, находящихся на поверхностях частиц наполнителей [215—218]. Для примера рассмотрим данные о температурной зависимости времени спин-решеточной релаксации Г] для полистирола и образцов, содержащих аэросил и фторопласт-4 (рис. III.27). Наблюдаются две области релаксации — высокотемпературная и низкотемпературная. Для высокотемпературной области минимум Ti смещается в сторону высоких температур по мере уменьшения толщины поверхностного слоя, и сдвиг достигает 20 °С. В то же время низкотемпературный процесс смещается в сторону низких температур. Для ряда исследованных систем были установлены [c.129]

    В исследованиях полимеров методом ядерного магнитного резонанса, можно выделить два основных направления 1) измерение ядерной (обычно протонной) релаксации с помощью импульсных методов или путем прямого наблюдения спектров широких линий и 2) исследование спектров высокого разрешения. В первом случае обычно имеют дело с полимерами в твердом состоянии и преследуют цель получить информацию о морфологии и молекулярном движении. Исследования второго направления, составляющие предмет данной книги, выполняются (за редкими исключениями) на полимерах в растворе. Они предназначены для выяснения структуры и стереохимии полимерных цепей и начали развиваться значительно позже. Первая работа по твердым полимерам появилась всего через год после того, как впервые наблюдали ЯМР в конденсированном веществе (1946 г.) к 1958 г. имелось уже достаточно данных для большого обзора. В 1957 г. был опубликован первый протонный спектр высокого разрешения природного полимера (лизоцима), а в следующем году было напечатано первое сообщение о спектре высокого разрешения синтетического полимера (полистирола). С тех пор эта область быстро развивалась, отчасти в результате сделанного в 1960 г. наблюдения, показавшего огромные возможности метода ЯМР в исследовании стереохимии винильных полимеров. [c.11]

    Исследования с помощью ЯМР были посвящены трем основным аспектам структуры белков в растворах 1) прямое изучение структуры самой молекулы белка при этом, в частности, особое внимание уделялось эффектам, вызванным взаимодействиями цепей в нативном ИЛИ свернутом состоянии, и процессами развертывания или денатурация 2) связывание с белками малых молекул, включая субстраты, ингибиторы, кофакторы и сами растворители 3) исследование активных парамагнитных субъединиц ферментов и белков-переносчиков электронов путем изучения их влияния на химические сдвиги соседних протонов и на релаксацию магнитных ядер растворителя или других ассоциированных с белком молекул. Последнее направление было одним из самых ранних аспектов применения ЯМР в биологии, но мы остановимся на нем очень кратко, поскольку наши главные интересы состоят в определении структуры самого полимера как такового. [c.347]


    ИК-спектроскопии установлено, что при магнитной обработке раствора мономера время спин-спиновой релаксации протонов полимера в геле изменяется на 15—20%, а также уменьшается интенсивность поглош,ения в обла- [c.65]

    Реологические и вязкоупругие свойства полимеров и их концентрированных растворов связаны с образованием в них сеток и систем с временными поперечными связями, переплетениями или зацеплениями. Подобно температуре стеклования характеристическая длина участка цепи между зацеплениями является одной из общих характеристик аморфных п лимерных систем. Параметры зацеплений и длины участков цепей между зацеплениями определяются на основании реологических и вязкоупругих свойств, времени релаксации, найденного методом ядерного магнитного резонанса (ЯМР). [c.205]

    Основные научные исследования относятся к химической физике Изучает ядерный магнитный двой ной резонанс на ядрах, образую щих скелет органических соедине ний, ядерную релаксацию в жидко стях и ядерный магнитный резо нано высокого разрещения в твер дых телах (органических соедине ниях и комплексах, полимерах, си [c.303]

    Ряд авторов публикует работы по изучению физических, химических и механических свойств полиэтилена, определению кристалличности полиэтилена и температур плавления [208—211 ], кинетике кристаллизации [212], фракционированию и определению молекулярных весов [213, 214], статистической механике разбавленных растворов [215], плотности растворов полиэтилена [216],ориентации в полиэтилене [217—219] и влиянию ориентации на сорбционную способность полимеров [220] и на теплопроводность [221], ядерной магнитной релаксации в полиэтилене [222], зависимости сжимаемости от температуры при больших давлениях [223], влиянию на аутогезию молекулярного веса, формы молекулы и наличия полярных групп [224], фрикционных свойств полиэтилена [225], скорости ультразвуковых волн в полиэтилене [226], реологического поведения полиэтилена при непрерывном сдвиге [227], инфракрасного дихроизма полиэтилена [228], плотности упаковки высокополимерных соединений [229], кристалличности и механического затухания полиэтилена [230], межкристаллической ассоциации в полиэтилене [231], принципа конгруэнтности Бренстеда и набухания поли- [c.188]

    Изучена ядерная магнитная релаксация в расплавах и растворах полимеров методом спинового эхо. Показано, что в растворах полимеров в апротонных растворителях ядерная магнит- [c.273]

    Ядерный магнитный резонанс, диэлектрическая релаксация и динамические механические свойства полимеров связаны с молекулярным движением. Ранние несистематические исследования [46, 47] изменений [c.272]

    Релаксационные процессы, определяемые подвижностью различных элементов структуры полимеров и характеризуемые временами релаксации в широком диапазоне от с до 10 ° с, наблюдаются методами релаксационной спектрометрии. Эти методы могут быть основаны на изучении поведения полимеров под действием статических или динамических механических нагрузок, при воздействии электрических и магнитных полей, а также в процессах стеклования, течения, диффузии и т, д. [c.76]

    В настоящей главе рассматриваются -спектральные методы исследования полиолефинов инфракрасная спектроскопия, метод ядерного магнитного резонанса, измерение механических и диэлектрических потерь. Все эти методы позволяют исследовать такие процессы в полимере, как колебания атомов и их групп и конфор-мационные превращения макромолекул. Поэтому везде, где это возможно, мы будем стараться объяснять экспериментальные факты особенностями молекулярного строения исследуемого полимера. Различные спектральные методы позволяют по-разному подойти к выяснению особенностей данного полимера и имеют, в сущности, очень мало общего. В соответствии с классической теорией методы инфракрасной спектроскопии и ядерного магнитного резонанса относятся к так называемым резонансным методам, а измерения механических и диэлектрических потерь связаны с явлениями релаксации или запаздывания. Общим между различными методами является то, что воздействие на исследуемый материал фактора X приводит к возникновению реакции этого материала, выражаемой фактором X. Если X изменяется по гармоническому закону, то и л изменяется по такому же закону, но в общем случае с отставанием по отношению к изменению X. Это положение может быть записано следующим образом  [c.279]

    Особенности строения макромолекул и многообразие форм молекулярной подвижности в полимерах приводит к набору релаксационных процессов, каждый из которых связан с тепловым движением кинетических единиц определенного вида и может быть описан спектром времен релаксации. Времена релаксации, связанные с подвижностью крупных отрезков макромолекулы, например сегментов, а тем более с подвижностью элементов надмолекулярной структуры, могут быть довольно большими. Соответствующие им релаксационные процессы протекают медленно. Мелкомасштабные движения макромолекул обеспечивают более быстрые релаксационные процессы. В связи с широкой шкалой времен релаксации большая часть физических свойств полимеров имеет релаксационную природу. Так, релаксационный характер носят все механические свойства, а также электрические (диэлектрическая проницаемость, электропроводность), магнитные (магнитная восприимчивость и проницаемость). [c.4]

    Оценить количество связанного растворителя, т. е. растворителя, сольвати-рующего полимер, можно с помощью ряда методов, которые дают информацию либо о прочности связи, либо о подвижности молекул. Это — методы термохимии (измерение теплот растворения и теплоемкости), изучение сжимаемости и диэлектрической релаксации, ядерный магнитный резонанс и т. д. [c.430]

    Подвижность различных элементов структуры полимеров характеризуется временами релаксации в широком диапазоне от 10" ° с до 10 с, а соответствующие им релаксационные процессы наблюдаются методами релаксационной спектрометрии, например, при деформации полимеров под действием статических или переменных механических нагрузок или при воздействии электрических и магнитных (гл. VII, VIII) полей, а также в процессах стеклования (гл. II), течения (гл. V), диффузии и т. д. [c.58]

    При температурах значительно выше температуры стеклования или плавления полимеров измерение ширины линии затруднительно, поэтому целесообразно измерять времена ядерной магнитной релаксации ti и та. Данные рис. VIII. 6 свидетельствуют о наличии расхождений с результатами теории, основанной на предположении об экспоненциальном виде функции корреляции. При повышении температуры не обнаруживается тенденция к сближе  [c.274]

    При наложении переменного поля Я], для которого характерна частота v, возникает некоторая намагниченность, перпендикулярная постоянному полю Яо. Скорость установления этой намагниченности характеризуется поперечным временем релаксации хг, которое по порядку величины равно (уАЯ1/2) или (уАЯ ) . Следовательно, Хг (называемое также спин-спиновым временем релаксации), как и ширина линии, определяется магнитным дипольным взаимодействием ядерных спинов. При сильном сужении линии ЯМР полимеров (при высоких температурах) Тг стремится к Ть [c.216]

    Это обусловливает необходимость создания и внедрения методов контроля качества сырья, материалов и готовых изделий, что является важным условием развития производства полимеров. Качество полимерного материала характеризуется совокупностью его свойств, определяющих пригодно материала для использованм в тех или иных целях. Современный уровень экспериментальной техники позволяет описать свойства материгша на всех у ювнях атомномолекулярном (фотоэлектронная, рентгеновская, электронная и колебательная спектроскопия, ядерный магнитный резонанс, рассеяние нейтронов, эмиссионный анализ и т.д.) надмолекулярном (диэлектрическая и механическая релаксация, рентгенография, электронография, анш гиляция позитронов, рассеяние синхротронного излучения и т.д.) макроскопическом (вязкость, прочность, удлинение при разрыве, сопротивление изгибу, электрическому пробою и т.д.). [c.22]

    Поскольку градиент магнитного поля создается обычно вдоль одной оси ЛСК (в нашем случае это ось г), то В = Az 2t , где — среднеквадратичное смещение центра масс молекулы вдоль оси г, а td — время диффузии. В эксперименте с постоянным градиентом время диффузии — величина переменная и равна 2т. Максимальное время диффузии зависит от скорости затухания поперечной намагниченности из-за спин-спиновой релаксации. Поскольку в растворах и расплавах полимеров коэффициенты самодиффузии составляют 10 "—10 м /с, а 2 10 —10 с, то для обнаружения диффузионного затухания необходимы значительные градиенты магнитного поля. Создание сильных постоянных градиентов магнитного поля сопряжено с преодолением ряда серьезных экспериментальных трудностей и, кроме того, ведет к значительному сокращению длительности спинового эха (из-за сильного расфазирующего действия неоднородного поля), что предъявляет высокие требования к приемной и регистрирующей аппаратуре, сильно за-268 [c.268]

    Наиболее корректным методом оценки совместимости пластификаторов с полимером является термодинамический метод. Совместимость пластификаторов с полимером можно оценивать также методом ядерно-магнитного резонанса по изменению спин-спиновой релаксации нефелометрически, измеряя мутность пленок плас 5 иката по скорости прохождения звука по изменению вязкости раствора полимера в пластификаторе по эффекту контракции по зависимости температуры стеклования от концентрации пластификатора. Данные о совместимости некоторых пластификаторов с поливинилхлоридом приведены в таблице на стр. 340. [c.339]

    Для определения воды в полиамидах и эпоксидных смолах в пределах от 0,09 до 8% Голинг [65] использовал метод ЯМР широких линий напряженность магнитного поля составляла 3,750 кГс, а рабочая частота 16 МГц, образцы имели форму стержня диаметром 1 см и длиной 5 см. Типичная форма протонного сигнала показана на рис. 8-15. Расстояние между максимумами пиков Av5 не совпадает со значением полуширины полосы поглощения оно равно расстоянию между точками перегиба на кривой поглощения. Величина является максимальной амплитудой сигнала. При исследовании рассматриваемых синтетических смол вклад в суммарный сигнал от протонов воды можно легко отличить от сигнала протонов полимера. Оказалось, что сигнал, пропорциональный по величине содержанию воды, не зависит от химической природы полимера. Была изучена зависимость времен спин-решеточной и спин-спиновой релаксации от содержания воды. С ростом содержания воды ширина сигнала уменьшается, а время поперечной релаксации увеличивается. Свойства адсорбированных молекул воды являются, очевидно, промежуточными между свойствами молекул в жидкой воде и во льду. [c.491]

    Таким образом, полимер можно рассматривать как некоторое сочетание двух систем решетки и системы спинов. Эти системы слабо взаимодействуют между собой, так как магнитные диполи ( магнитные моменты ядер) обычно значительно сильнее взаимодействуют с внешним магнитным полем, созданным магнитом при проведении эксперимента по ЯМР, чем между собой (Яо>Ялок). Поляризация магнитных моментов ядер при приложенном внешнем магнитном поле оказывает решающее воздействие на ориентацию спинов в полимерной среде, и тепловое движение атомов лишь слабо влияет на порядок в расположении спинов. Если приложить магнитное ноле к полимерной среде, обладающей ядерными магнитными моментами, а затем убрать его, то начнется спад магнитной поляризации ядер, обусловленный их тепловым движением. Явление спин-решеточ-ной релаксации и иредставляет собой спонтанный спад магнитной поляризации в отсутствие внешнего поля, обусловленный тепловым движением атомов. [c.212]

    Несмотря на то, что характерные времена теплового движения в полимерах достаточно малы и не превышают 10 —10 ° с, время спин-решеточной релаксации Т обычно велико и составляет несколько секунд или минут. Причиной этого является слабое взаимодействие между системой спинов и решеткой. Казалось бы, что тепловое движение атомов должно достаточно быстро изменить взаимодействие между магнитными моментами ядер, однако в силу того, что энергия такого взаимодействия значительно меньше общей энергии магнитных диполей, которые были поляризованы внешним магнитным полем, то элементы полимерных цепей должны подвергнуться многократным переориентациям, прежде чем заметно уменьшится общее магнитное взаимодействие. Спад вектора намагниченности (которая была обусловлена ориентацией ядерных магнитных моментов) представляет собой процесс перехода к равновесию между системой спинов и решеткой. Спип-решеточная релаксация, связанная с молекулярным движением, наблюдается наиболее отчетливо, когда частота тепловых колебаний сравнима с частотой [c.212]

    При промежуточных температурах или частотах, обычно называемых интервалом стеклования, полимер не является ни стеклообразным, ни каучукоподобпым. Он обнаруживает промежуточные значения модулей, является вязкоупругим телом и может рассеивать значительные количества энергии нри растяжении. Стеклование проявляется многими путями, например, в изменении объемного коэффициента термического расширения, который может применяться для определения температуры стеклования Т . Явление стеклования в значительной мере является центральным при рассмотрении механического поведения полимеров по двум причинам. Во-первых, существует концепция, связывающая принцип температурно-временной эквивалентности вязкоупругого поведения с температурой стеклования Т . Во-вторых, стеклование может быть изучено на молекулярном уровне такими методами как ядерный магнитный резонанс и диэлектрическая релаксация. Таким путем можно получить представление о молекулярной природе вязкоупругости. [c.24]

    Релаксационные явления в значительной степени определяют протекание физических и химических процессов в полимерах [7.1—7.9]. Полимеры — сложные многоуровневые системы, состоящие из структурных элементов (кинетических единиц) различной природы (атомов, боковых и концевых групп, звеньев макромолекул, свободных и связанных сегментов,- элементов надсегментальной и надмолекулярной структуры, физических и химических узлов сетки, частиц наполнителя и т. д.). Это приводит к большому разнообразию форм молекулярной подвижности и соответствующих им релаксационных процессов, которые наблюдаются при действии на полимер механических, электрических или магнитных полей. При этом наиболее универсальным воздействием, позволяющим получить полную информацию о молекулярной подвижности и процессах релаксации в полимерах, является механическое воздействие. Электрические и магнитные поля могут вызвать не все релаксационные переходы, так как электрическое поле действует только на элементы, обладающие дннольным моментом, а магнитное поле — на элементы, обладающие магнитным моментом. [c.195]

    Так называемое дипольное уширение линий ЯМР, как правило, значительно превышает уширение за счет спин-решеточной релаксации. Для понимания этого явления рассмотрим сначала протонсодержащие твердые вещества, например, твердые полимеры, а затем вернемся к жидким образцам, которые обычно и исследует химик методами ЯМР-спектроскопии. Если протоны в веществе удалены друг от друга настолько, что их магнитные поля практически не влияют друг на друга, то резонансное магнитное поле для всех ядер образца в принципе будет равно Но. (В действительности оно будет несколько меньше вследствие экранирующего эффекта локальных электронов см. разд. 1.8.) Если магнит позволяет получить высокооднородное поле в объеме образца, то шири- [c.25]

    Качественно жидкокристаллические растворы палочкообразных ароматических полиамидов могут быть визуально обнаружены по помутнению в неподвижном состоянии и по опалесценции под действием слабого сдвига, например при перемешивании раствора стеклянной палочкой. Жидкокристаллические растворы деполяризуют плоскополяризованный свет, причем в поляризационном микроскопе обнаруживают двоякопреломляющие домены. Как было показано в работе Панара и Бесте [32], в толстых образцах чистого нематического раствора ППБА низкого молекулярного веса происходит релаксация к прозрачному состоянию, в котором имеются неупорядоченные нематические (нитевидные) линии, проходящие через образец. Когда такой образец помещается в магнитное поле в несколько тысяч гаусс, линии вытягиваются в направлении поля и медленно исчезают. Таким образом, первоначальный деполяризующий раствор начинает обнаруживать свойства одноосного двоякопреломляющего кристалла. Панар и Бесте [32] провели очень интересное наблюдение за тем, как анизотропный раствор низкомолекулярного ППБА (20% полимера в ДМАА с добавкой Li l) может быть переведен в холестерическую фазу путем добавления в раствор оптически активного вещества, например (-Ь) 1-метилциклогексанона, которое присоединяется к группам основной цепи в достаточной степени, придавая преимущественную хиральность всей молекуле. При этом образуются параллельные линии, типичные для растворов поли-у-бензилглута-мата. [c.167]

    Полимер может существовать как в аморфном, так и в кри еталлическом состояниях [1259], в зависимости от условий обработки. Вильсон и Пейк [1260], изучая ядерный магнитный резонанс, показали, что при —180° молекулярное движение у тефлона практически отсутствует, и резонансная линия ядерного поглощения имеет вид, характерный для кристаллической ре-петки при температуре +2° степень кристалличности оценивается в 72 5%. Уэйр [1261] при изучении зависимости деформации от давления установил, что политетрафторэтилен имеет три полиморфные кристаллические модификации. Тройная точка перехода лежит при — 70 и давлении 5000 атм. В связи с этим в политетрафторэтилене наблюдается несколько точек перехода, что было подтверждено термическим анализом [1262], измерением удельной теплоемкости при разных температурах [1263] и методом ядерной магнитной релаксации [1264]. [c.310]

    Можно полагать, что возможности спектроскопии ЯМР широких линий в отношении оценки молекулярных движений в полимерах резко возрастут при распространении недавно разработанных усо-"вершенствований, например предложенных МакКоллом [13] (ядер-ная магнитная релаксация во вращающемся поле). Применение спек> троскопии ЯМР широких линий для исследования полимеров рассмотрены в обзоре Шлихтёра [16] — одного из пионеров этой области исследований.  [c.230]

    Теория времен релаксации для жидкофазных полимеров развита в работах Одадзима и Хазановича Одадзима вычислял времена релаксации в растворах полимеров на основании модели сегментного движения, которая не учитывает связь сегментов. В теории Хазановича использована модель Каргина — Слонимского В этой модели цепь разбита на сегменты, соединяющие бусинки , к которым только и приложены силы трения, причем предполагается, что для длин сегментов справедливо гауссово распределение. Кроме того, допускается собственное вращение отдельных групп. Учитывается лишь магнитное диполь-динольное взаимодействие внутри групп, в которых расстояния между магнитными ядрами одинаковы и постоянны (нанример, в СН2- или СНз-группах). Для этой модели спектр частот корреляции приближенно онисьт-вается функцией [c.240]

    Известно, что в больншнстве полимеров ядерпая магнитная релаксация (и, следовательно, форма линии поглощения ЯМР) обус [овлена модуляцией ядерных магнитных диноль-динольных взаимодействий вследствие участия молекул в тепловом движении. [c.192]

    Пусть состояние и структура полимера определяются рядом термодинамических параметров р, V, а, г, Т и др., причем эти параметры могут быть структурными типа объема системы У), механическими (е, а), электрическими и магнитными. Каждому значению параметров р, а, Т соответствует равновесное состояние системы и равновесная структура, которые достигаются системой с течением времени в процессе релаксации из неравновесного состояния к равновесному. Скорость релаксации является важнейшей характеристикой релаксируюш,ей системы. Структурная релаксация наблюдается обычно в отсутствие силовых полей (в недеформированном состоянии) по изменению объема образца в процессе релаксации (при рТ onst). Механическая релаксация наблюдается по релаксации напряжения o[t) при заданной деформации е== onst и т. д. [c.200]


Смотреть страницы где упоминается термин Релаксация полимеров магнитная: [c.259]    [c.250]    [c.277]    [c.277]    [c.244]   
Физика полимеров (1990) -- [ c.249 , c.297 ]




ПОИСК







© 2025 chem21.info Реклама на сайте