Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массоперенос в электрохимических процессах

    Иногда при заданном потенциале на электроде параллельно протекают два электрохимических процесса и требуется определение скорости каждого из них. Если один процесс контролируется диффузией, а другой — какой-либо иной стадией, не связанной с массопереносом, то это можно осуществить при помощи вращающегося дискового электрода. Действительно, суммарный ток в цепи равен [c.172]


    Как и для любого многостадийного процесса, скорость электрохимической реакции лимитируется наиболее медленной из последовательных стадий. Это означает, что закономерности суммарного процесса определяются кинетическими закономерностями лимитирующей стадии. Зная последние, можно, во-первых, на основании экспериментальных данных для суммарного процесса выявить его лимитирующую стадию, а, во-вторых, изменяя условия проведения электрохимической реакции, изменять ее скорость. В дальнейшем мы рассмотрим кинетические закономерности лишь двух основных стадий электрохимического процесса стадии массопереноса и стадии разряда — ионизации, — предполагая, что все остальные стадии протекают практически обратимо. [c.212]

    Если свойства поверхностного слоя не изменяются во времени, то протекающий через электрод ток определяется только скоростью самого электродного процесса и размерами электрода. В этом случае плотность тока является мерой скорости электрохимической реакции. Если скорость наиболее замедленной стадии электрохимической реакции определяется стадией массопереноса, то поляризация называется концентрационной. Поляризация электрода, обусловленная медленной химической реакцией (в результате разряда или ионизации), называется химической поляризацией. Если скорость электролиза лимитируется процессами образования новой фазы, как, например, при катодном выделении металлов, то возникающая поляризация называется фазовой. Зависимость скорости процесса от потенциала поляризации, т. е. /=[(АЕ), графически выражается поляризационной кривой. Она может состоять из нескольких ветвей (рис. 191), причем участки кривой (сс1, е1 и т. п.) отвечают возникновению нового электрохимического процесса. [c.458]

    Кривая такого типа характерна для реакции (1)—(2) илн, точнее, она характеризует общую кинетику этой реакции, поскольку плотность тока пропорциональна скорости, с которой Происходит обмен электронов иа границе фаз металл — рас гвор. Общая скорость процесса определяется скоростями массопереноса и переноса заряда оба эти явления всегда наблюдаются Б электрохимических процессах. [c.34]

    Эта схема показывает, что электрохимический процесс Ох + пе Red включает ряд промежуточных стадий, и все эти стадии в различной степени замедляют (их можно представить схематически в ввде сопротивлений) процесс. Лимитировать общую скорость процесса может в принципе любая стадия. В упрощенной схеме можно рассматривать только две обязательные стадии массоперенос и разряд-ионизацию, т. е. ста- [c.128]


    Электрохимические системы широко применяются в технике. К числу промышленных процессов можно отнести гальваностегию и рафинирование, электрополирование и электрохимическую обработку, а также электрохимическое производство хлора, каустической соды, алюминия и других веществ. Значительный интерес представляет преобразование энергии в-топливных элементах, а также в первичных и вторичных источниках тока. Кроме того, нельзя забывать о проблеме электрохимической коррозии. Электрохимические процессы используются и в некоторых опреснительных системах. Электрохимические методы находят применение в качественном и количественном анализе. Идеальные электрохимические системы представляют интерес для изучения процессов массопереноса и механизмов электродных реакций. Эти системы полезны также при определении основных характеристик переноса веществ. [c.331]

    До изобретения трехэлектродного потенциостата фоновый электролит добавляли также, чтобы увеличить электропроводность раствора и свести к минимуму эффекты от омического падения напряжения. Это обстоятельство теперь в некоторых случаях не является существенным, но устранять миграционный ток все еще нужно, так что присутствие фонового электролита остается составной частью большинства полярографических экспериментов. В любом электролитическом эксперименте, как в полярографии, на рабочем электроде электрохи.мически активное вещество восстанавливается или окисляется, одновременно на электроде сравнения (или вспомогательном) также протекает соответствующая редокс-реакция. Наблюдаемый в итоге ток является результатом того, что ток проводится через раствор благодаря миграции ионов. Катионы движутся по направлению к катоду, а анионы — к аноду и тем обеспечивают протекание тока и если восстанавливающиеся или окисляющиеся частицы также заряжены, то перенос или движение этих ионов происходит не только путем диффузии или конвекции. Иначе говоря, процесс массопереноса электрохимически активных частиц будет дополнен миграцией, причем миграционный ток может быть положительным, равным нулю или отрицательным в зависимости от заряда электрохимически активных частиц. [c.294]

    Среди методов первой группы более важным является метод вращающегося дискового электрода [149]. Для определения лимитирующей стадии электрохимического процесса без сопряженных химических реакций достаточно установить зависимость плотности тока I от корня квадратного из угловой скорости вращения со. Если / пропорциональна -у/а, то лимитирующей стадией является массоперенос. Независимость г от V показывает, что электрохимический процесс контролируется только скоростью переноса заряда. Метод вращающегося дискового электрода также позволяет определять порядок электрохимической реакции, кинетику переноса заряда, значение коэффициента диффузии и т. д. [c.109]

    Книга посвящена методам математического описания процессов тепло- и массопереноса в условиях больших концентрационных и температурных градиентов, когда наблюдаются отклонения от линейных законов Фурье и Фика. Рассматривается обобщенный интегральный закон массопереноса, пригодный для описания процессов переноса вещества в материалах с памятью . Анализируются математические модели процессов массопереноса, построенные с использованием нелинейных и интегро-дифференциальных уравнений применительно к процессам гетерогенного катализа, сушки, диффузионной обработки пористых тел, адсорбции, а также к мембранным и электрохимическим процессам. Особое внимание уделено процессам тепло- и массопереноса в системах с флуктуациями, в частности в условиях многофазной турбулентности. Приводятся результаты экспериментальных исследований двухфазной турбулентности в псевдоожиженном слое. Даны методы статистического моделирования и статической макрокинетики. [c.4]

    Массоперенос в электрохимических процессах [c.129]

    При исследовании многих электрохимических процессов, в частности работы электрохимических источников тока, важное значение имеет анализ процессов массопереноса в пористых электродах. В пористом электроде происходит сложное взаимодействие электрического и концентрационного полей, причем массоперенос сопровождается электрохимическими реакциями. [c.129]

    Если свойства поверхностного слоя не изменяются во времени, то протекающий через электрод ток определяется только скоростью самого электродного процесса и размерами электрода. В этом случае плотность тока является мерой скорости электрохимической реакции. Если скорость наиболее замедленной стадии электрохимической реакции определяется стадией массопереноса, то поляризация называется концентрационной. Поляризация электрода, обусловленная медленной химической реакцией (в результате разряда или ионизации), называется химической поляризацией. Если скорость электролиза лимитируется процессами образования новой фазы, как, например, при катодном выделении металлов, то возникающая поляризация называется фазовой. Зависимость скорости процесса от потенциала поляризации, т. е. / = (А ), графически выражается поляризационной кривой. Она может состоять из нескольких ветвей (рис. 191), причем участки кривой (сс1, е и т. п.) отвечают возникновению нового электрохимического процесса. Участок кривой Ьс соответствует предельной (максимальной) скорости электрохимического процесса. Повышение скорости процесса (увеличение плотности тока, ветвь аЬ) приводит к возрастанию потенциала, при котором возможен новый электрохимический процесс (ветвь сё). Плотность тока, при которой начинается быст- [c.458]


    В первом разделе книги излагаются методы изучения и современные представления о строении границ раздела металлических или полупроводниковых электродов с ионными системами (растворами, расплавами), а также границы раствор — воздух. Значительное внимание уделено термодинамике поверхностных явлений на электродах, адсорбирующих водород и кислород, и современной теории адсорбции органических соединений на электродах. Во втором разделе подробно анализируются закономерности стадии подвода реагирующих частиц к поверхности электрода, методы изучения этой стадии и приводятся примеры использования явлений массопереноса при конструировании хемотронных устройств и новых источников тока. Третий раздел посвящен изложению закономерностей стадии переноса заряженных частиц через границу электрод — раствор и физических основ элементарного акта электрохимических реакций. При этом рассматриваются такие важные в теоретическом отношении вопросы, как роль работы выхода электрона и энергии сольватации ионов в электродной кинетике. Теории двойного слоя, массопереноса и элементарного акта, по образному выражению А. Н. Фрумкина, — те три кита , на которых базируется мощное и стройное здание кинетики электродных процессов. [c.3]

    В книге рассмотрены свойства и методы изучения заряженных межфазных границ. Излагаются закономерности электрохимической кинетики, связанные с подводом реагирующего вещества к поверхности электрода. Показана роль явлений массопереноса при конструировании хемотронных приборов и новых источников тока. Обсуждены закономерности перехода заряженных частиц через границу электрод/раствор. Излагаются физические основы современной квантовомеханической теории элементарного акта электрохимической реакции, особенности химических стадий в электродном процессе, механизм электрокристаллизации, многостадийные и параллельные процессы, роль явлений пассивности и адсорбции органических веществ в электрохимической кинетике, [c.2]

    В отличие от обычной гомогенной химической реакции, протекающей во всех точках объема раствора, где есть реагирующие вещества, электрохимическая реакция идет на границе раздела между электродом и раствором, т. е. является реакцией гетерогенной. Отсюда следует, что любой электродный процесс всегда имеет ряд последовательных стадий сначала реагирующее вещество должно подойти к электроду, затем должна произойти собственно электрохимическая стадия, связанная с переносом электронов или ионов через границу раздела фаз (стадия разряда — ионизации), и, наконец, образовавшиеся продукты реакции должны отойти от поверхности электрода, чтобы освободить место для новых порций реагирующего вещества. Первая и третья стадии имеют одинаковые закономерности и называются стадиями массопереноса. Стадии массопереноса и разряда—ионизации присутствуют во всех без исключения электродных процессах. Помимо этих стадий при протекании электродных реакций встречаются также и другие. Так, часто электродные процессы осложняются химическими реакциями в объеме раствора или на поверхности электрода, в которых может участвовать исходное вещество или продукт электрохимической реакции  [c.170]

    Перенос реагирующих веществ в условиях электрохимической реакции может осуществляться по трем механизмам. Основным механизмом является молекулярная диффузия, т. е. перемещение частиц вещества под действием градиента концентрации. При прохождении через границу электрод — раствор электрического тока концентрация реагирующих веществ у поверхности падает и одновременно растет концентрация продуктов реакции. Возникают градиенты концентрации, которые приводят к диффузии разряжающегося вещества из объема раствора к электроду, а продуктов реакции — от поверхности электрода в объем раствора или в объем металлической фазы (например, при образовании амальгамы в ходе разряда ионов Т1+ на ртутном электроде). Поскольку концентрационные изменения вблизи поверхности электрода всегда сопутствуют протеканию электрохимической реакции, то молекулярная диффузия наблюдается во всех без исключения электродных процессах, тогда как другие механизмы массопереноса могут накладываться на процесс диффузии или же отсутствовать вовсе. Поэтому раздел электрохимической кинетики, в котором рассматриваются закономерности стадии массопереноса, называют диффузионной кинетикой. [c.172]

    Стадия массопереноса присуща любым гетерогенным процессам. В то же время стадия перехода заряженных частиц (электронов или ионов) через границу электрод — раствор (стадия разряда — ионизации) является специфически электрохимической стадией. В настоящее время доказано, что стадия разряда — ионизации любого электродного процесса протекает с конечной скоростью. Теория, описывающая кинетические закономерности переноса заряженных частиц через границу раздела фаз, называется теорией замедленного разряда. [c.184]

    Любая электрохимическая реакция представляет собой сложный многостадийный процесс. В самом деле, реагирующее вещество из объема раствора должно вначале подойти к поверхности электрода (стадия массопереноса)f затем войти в двойной электрический слой (стадия адсорбции), а после непосредственно электрохимической стадии переноса заряда через границу электрод/раствор (стадия разряда— ионизации) продукты реакции должны десорбироваться с поверхности электрода и уйти в объем раствора (стадии десорбции и массопереноса). Во многих случаях электрохимическую реакцию сопровождают стадии химического превращения реагирующих веществ и (или) продуктов реакции, которые могут протекать как в объеме раствора вблизи электрода (гомогенные химические стадии), так и на поверхности электрода в адсорбционном слое (гетерогенные химические стадии). Кроме того, если в электрохимической реакции участвуют твердые или газообразные вещества, то процесс осложняется стадиями образования или разрушения новой фазы (например, процессы электроосаждения и электрорастворения металлов, электролиз воды и др.). [c.212]

    В ОДНИХ работах, в которых использовалась формула (1.26), авторы подставляли в формулу измеряемую плотность тока, совершая при этом грубую ошибку. В самом деле, в любой электрохимической реакции имеют место стадии массопереноса и разряда — ионизации. Если электродный процесс идет при потенциале значительно отрицательнее равновесного, то измеряемую плот- [c.37]

    Первым и наиболее важным из них является молекулярнаядиффузия. При равновесном потенциале электрода концентрация растворенных веществ во всех точках раствора за пределами двойного электрического слоя одинакова. При пропускании тока вблизи электрода это условие нарушается, так как одни вещества вступают в электродную реакцию, другие образуются в результате реакции. Возникает разница в концентрациях (или точнее в активностях) растворенных веществ вблизи электрода и в объеме раствора, что приводит к диффузии разряжающегося вещества из объема раствора к электроду, а продуктов реакции — от электрода в объем раствора. Так как концентрационные изменения всегда сопутствуют электрохимическому процессу, то молекулярная диффузия происходит во всех электродных реакциях, тогда как другие способы массопереноса могут накладываться на процесс молекулярной диффузии или отсутствовать вовсе. Именно поэтому рассматриваемый раздел называют диффузионной кинетикой. [c.157]

    Уравнение (4.6) получается из сочетания закона Фарадея с первым законом диффузии Фика оно означает, что скорость электрохимической реакции определяется скоростью диффузионных потоков реагирующего вещества к электроду и продукта реакции от электрода. Уравнение (4.7) представляет собой приближенную форму уравнения Нернста (2.47). Оно означает, что равновесие стадии разряда—ионизации в условиях замедленной стадии массопереноса не нарушается, а изменение потенциала электрода Е по сравнению с его равновесным значением Е обусловлено отличием концентраций qx ( 1 = 0) и (х = 0) от их объемных значений с х и Поэтому говорят, что поляризация электрода в условиях лимитирующей стадии массопереноса имеет концентрационный характер. Наконец, система уравнений (4.8) отражает второй закон диффузии Фика и позволяет найти функции Сох О и 6-Rg,j (л , t), если заданы одно начальное и два граничных условия для каждого из вещзств. Знание этих функций дает возможность рассчитать Сох (х = 0), R d х = 0), (d oJdx)x a> (d Rei dx)x o и после их подстановки а уравнения (4.6) и (4.7) получить зависимость ф от В, т. е. поляризационную кривую электрохимического процесса. [c.213]

    Следует отметить, что изучение этих явлений значительно упрощается, если массспсрснсс ие осуществляется одновременно несколькими способами. Обычно, по крайней мере в лабора тории, наиболее просто предотвратить миграцию. Для этого в раствор вводят хорошо диссоциирующуто в данной среде соль, создавая ее высокую концентрацию (например, 10- моль/л) Коицеитрация вещества, электрохимическое поведение которого изучают, гораздо меньше (например, 10 моль/л) в этих условиях массоперенос происходит только путем диффузии н конвекции Хорошо диссоциированный электролит, присутствующий в сравнительно высокой концентрации, называют посторонним, фоновым ШЕИ индифферентным электролитом-, последний термин указывает, что он ие участвует в электрохимическом процессе .  [c.29]

    Когда иа поаерхиости электрода протекает электрохимический процесс, возникает градиент концентрации, и дополнительным видом массопереноса становится диффузионный перенос. Слой жидкости, в котором скорость диффузионного транспорта сопоставима со скоростью конвективного транспорта, называют диффузионным пограничным слоем, его толщина составляет о г толщины гидродинамического пограничного слоя (см. табл. 3.6). В пределах справедливости приближения Нернста (рнс. 3 22), в котором предполагается тииейное изменение градиента коицеитрацин, толщина б определяется уравнением (3.61). [c.126]

    А. П. Артемьянов (Институт химии ДВО АН СССР, Владивосток). Ранее была показана принципиальная возможность управления адсорбционно-десорбционными процессами посредством электрохимической поляризации углеродных электродов. В качестве адсорбентов использовались непористый графит и стеклоуглерод. С практической точки зрения углеродный адсорбент для электросорбции должен обладать большим диапазоном электрохимической поляризации и достаточно развитой удельной поверхностью. Увеличение удельной поверхности углеродных адсорбентов сопровождается уменьшением радиуса пор. Однако уменьшение радиуса пор неизбежно приводит к росту омического и диффузионного сопротивлений массопереноса при поляризации и, как следствие, к использованию в электросорбции не всей внутренней поверхности. Поэтому для оптимального применения пористых углеродных адсорбентов необходимо знать, насколько полно участвует их внутренняя поверхность в электросорбции. Для образцов разной пористой структуры методом потенциодинамических импульсов мы оценивали долю внутренней поверхности, участвующей в электрохимическом процессе. [c.98]

    В настоящее время для изучения промежуточных частиц при> меняют разнообразные электрохимические методы, относящиеся к группе непрямых по классификации Геришера. Среди них вольт> амперометрия и ее современные модификации занимают ведущее место. В ряде обзоров (например, [22]) и монографий [17, 23) подробно описаны приемы и способы полярографического исследования, а также возможности полярографии при изучении механизма электрохимических процессов в различных условиях, в том числе и в неводных средах. Анализ кривых ток—потенциал позволяет оценить константы скорости переноса заряда при условии, что массоперенос играет назначительную роль или его можно учесть. Благодаря очень хорошей воспроизводимостд полярографических данных, полученных с ртутным капающим электродом (р.к.э.), полярография весьма чувствительна к изме нению механизмов процессов. Хуже обстоит дело с твердыми электродами в вольтамперометрии, особенно когда продукты реакции склонны адсорбироваться на их поверхности (из-за раз -нообразия их взаимодействия с поверхностью электрода и нево спроизводимости результатов измерений.) [c.11]

    Теория и технология анодно-механической обработки металлов включают следующие вопросы электрохимические процессы при анодной обработке металлов гидродинамику процесса массоперенос теплотехнические процессы изменение формы анода автоматическое регулирование процессов ЭХО технологию электрохимикомеханической обработки металлов. [c.83]

    При снижении концентрации реагирующего вещества, понижении температуры среды скорость процесса определяется массопереносом вещества в объеме ДИ. Тогда для заряда или разряда ДИ при /з или /p= oпst зависимость напряжения от времени имеет форму кривой 1 на рис. 1.9, в известной мере аналогичной ы(/)—кривой разряда ДИ. Эта кривая, однако, подчиняется не соотношению (1.2) или (1,4) для зарядно-разрядного цикла ДИ, а уравнениям Караогланова (В.31) и (В.32) для электрохимического процесса, лимитированного диффузией. Полагая, что потенциал одного из электродов ДИ (электрода-склада) остается постоянным, можно представить напряжение на ДИ в следующем виде  [c.41]

    Наложение разности потенциалов между электродом сравнения и индикаторным электродом приводит к росту тока, который в свою очередь зависит от концентрации анализируемых электроактивных частиц в растворе. Измеряемый ток может быть непосредственно связан со скоростью электрохимической реакции, протекающей на индикаторном электроде. Важно, однако, найти и научиться контролировать условия, от которых зависит, какая стадия лимитирует скорость всего электрохимического процесса. Скорость гетерогенного переноса электрона (i ), протекающего непосредственно на электроде, можно контролировать, изменяя приложенный потенциал в соответствии с уравнением Бутлера -Фольмера [10]. Таким образом, во многих системах можно выбрать такое значение потенциала, чтобы ток не лимитировался гетерогенным переносом электрона, даже если этот процесс необратим. При вынолне-нии этого условия скоростьопределяющей стадией может быть диффузия (массоперенос), адсорбция или химические реакции. Суммарный ток сенсора описывается следующим выражением  [c.138]

    Электродные процессы электрохимической коррозии металлов обязательно включают в себя, как всякий гетерогенный процесс, помимо электрохимической реакции, стадии массопереноса, осуществляемые диффузией или конвекцией отвод продукта анодного процесса (ионов металла) от места реакции — поверхности металла, перенос частиц деполяризатора катодного процесса к поверхности металла и отвод продуктов катодной деполяризацион-ной реакции от места реакции — поверхности металла в глубь раствора и т. п. Суммарная скорость гетерогенного процесса определяется торможениями его отдельных стадий. Если, однако, торможение одной из последовательных его стадий значительно больше других, то сумм.арная скорость процесса определяется в основном скоростью этой наиболее заторможенной стадии. В коррозионных процессах довольно часты случаи диффузионного или диффузионно-кинетического контроля, т. е. значительной заторможенности стадий массопереноса. В связи с этим диффузионная кинетика представляет теоретический и практический интерес. [c.204]

    Выше мы предполагали, что при протекании электрохимической реакции лимитирующей является либо стадия массопереноса, либо стадия разряда—ионизации. В реальных условиях кинетика электродных процессов всегда в той или иной степени зависит от скорости обеих этих стадий. В связи с этим рассмотрим протекание электрохимической реакции (А) в условиях смешанной кинетики, когда ф определяется одновременно и скоростью массопереноса веществ Ох и Red, и скоростью перехода электронов через границу электрод/растВор. Отличие см от i и I M от i связано только с тем, что в условиях смешанной кинетики (токи i и i<. ) концентрации веществ Ох и Red на обращенной к раствору границе ионного двойного слоя и не равны сЬж. и fted- Если толщина двойного электрического слоя значительно меньше толщины диффузионного слоя, то в стационарных условиях можно использовать следующие приближенные формулы  [c.220]

    Пособие, написанное учениками основоположника современной пюретическон электрохимии академика А, Н, Фрумкина, посвящено наложению теоретических основ электродных процессов в растворах органических веществ. Актуальность рассматриваемых проблем С1 язана с широким применением органических соединений в прикладной электрохимии для регулирования свойств электролитических покрытий и ингибирования коррозии, в органическом электросинтезе, в топливных элементах и химических источниках тока, В книге изложены методы изучения адсорбции органических соедпненггй и закономерности обратимой и необратимой адсорбции на электродах, влияние обратимой адсорбции на две стадии электродного процесса — массопереноса и разряда — ионизации, закономерности электрохимических реакций с участием органических соединений. [c.2]

    В книге отдельно рассмотрены закономерности обратимой и необратимой адсорбции органических соединений на электродах и влияние обратимой адсорбции на две основные стадии электрохимической реакции — массопереноса и разряда-ионизации. Изложены закономерности электродных процессов, в которых органические вещества превращаются в новые соединения. Такие процессы, как правило, состоят из неско.льких электрохимических и химических стадий. Поэтому в одной из глав рассматриваются методы изучения многостадийных электродных процессов. Выяснение механизма многостадийных процессов требует использования как электрохимических, так и современных физических (ЭПР, ЯМР и др.) методов, которые позволяют регистрировать и исследовать нестабильные промежуточные частицы. [c.5]

    Влияние адсорбированных на границе электрод/раствор поверхностно-активных органических веществ (ПАОВ) на электрохимическую кинетику может быть весьма сложным и затрагивать различные стадии электродного процесса как собственно элементарный акт, так и стадию массопереноса. Чаще всего в литературе рассматривается влияние адсорбции ПАОВ на стадию переноса электрона. Гораздо меньше изучен и обсужден вопрос о действии ПАОВ на шроцессы массопереноса при протекании электродных реакций. Более того, нередко утверждается, что не существует связи между адсорбционными процессами и процессами подвода реагентов к поверхности электрода или отвода от нее продуктов реакции. В общем виде это неправильно, во многих случаях установлено существование такой взаимосвязи, причем действие ПАОВ на стадии массопереноса зависит от степени заполнения им поверхности электрода и структуры адсорбционного слоя. [c.124]

    В работах М. Деламара и сотр. были изучены электрохимические неактивные пленки, имеющие структуру полифениленоксида. Эти пленки наносились на электрод методом электроинициированной полимеризации, толщина их колебалась от соответствующей одному монослою до нескольких десятков нанометров. В присутствии таких химически и электрохимически неактивных, проницаемых и изолирующих пленок изучались процессы стационарного массопереноса на вращающемся дисковом электроде. Если не рассматривать пленки как полупроницаемые мембраны, а полагать, что они модифицируют лншь диффузионный процесс, то соответствующие уравнения имеют формальное сходство с обычными соотношениями для массопереноса на вращающийся диск, в которых, однако, значение толщины диффузионного слоя заменяется суммой  [c.141]


Смотреть страницы где упоминается термин Массоперенос в электрохимических процессах: [c.146]    [c.148]    [c.155]    [c.146]    [c.148]    [c.146]    [c.148]    [c.221]    [c.202]   
Смотреть главы в:

Моделирование процессов массо- и энергопереноса -> Массоперенос в электрохимических процессах




ПОИСК





Смотрите так же термины и статьи:

Массоперенос

Процесс электрохимический



© 2024 chem21.info Реклама на сайте