Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеиновые кислоты, их компоненты и производные

    Мономерными звеньями ДНК и РНК являются остатки нуклеотидов. Нуклеотиды — это фосфорные эфиры нуклеозидов, которые, в свою очередь, построены из остатка углевода — пентозы и гетероциклического основания. В РНК углеводные остатки представлены D-рибозой, в ДНК — 2-1)-дезоксирибозой. Связь между углеводным остатком и гетероциклическим основанием в нуклеозиде осуществляется через атом азота в основании, т. е. с помощью К-гликозидной связи. Таким образом, нуклеозидные остатки в ДНК и РНК относятся к классу N-гликозидов. Как уже отмечалось во Введении, в качестве гетероциклических оснований ДНК содержат два пурина аденин и гуанин — и два пиримидина тимин и цитозин. В РНК вместо тимина содержится урацил. Кроме того, ДНК и РНК обычно содержат так называемые минорные нуклеотидные остатки — производные обычных нуклеотидов по основаниям или углеводному остатку, доля которых в зависимости от вида нуклеиновой кислоты колеблется от десятых процента до десятков процентов. Строение, химическая номенклатура и принятые сейчас сокращенные обозначения нуклеотидов и их компонентов показаны на рис. 2. [c.11]


    Пиримидиновые нуклеиновые основания. Производные пиримидина — урацил, ТИМИН и цитозин — называемые нуклеиновыми основаниями, являются компонентами нуклеиновых кислот. Эти производные существуют в лактимной и лактамной таутомерных формах, причем в равновесии преобладают лактамные формы. [c.378]

    Несмотря на применение защищенных производных нуклеотидов и нуклеозидов, некоторые побочные реакции (например, образование пирофосфатов при синтезе исходя из моноэфиров фосфорной кислоты) все же имеют место вследствие этого требуется тщательная хроматографическая очистка продуктов реакции. Одним из приемов, позволяющих существенно упростить очистку продуктов реакции, является фиксация одного из компонентов реакционной смеси на полимерном носителе Такой полимер может быть легко отделен от других компонентов реакционной смеси. Продукт реакции, фиксированный на полимере, можно подвергать дальнейшим превращениям, что значительно упрощает многостадийные синтезы. Наконец, после выполнения всех стадий продукт может быть отщеплен от полимера и выделен в чистом состоянии. Такой подход к синтезу олигонуклеотидов привлекает сейчас большое внимание . Неспецифичность химических методов создания межнуклеотидной связи, являющаяся недостатком химического подхода к синтезу олигонуклеотидов (получение защищенных производных нуклеозидов и нуклеотидов требует многостадийных синтезов), в данном случае дает ряд преимуществ, поскольку в синтез олигонуклеотидов могут быть введены самые разнообразные производные нуклеозидов, в том числе и синтетические аналоги компонентов нуклеиновых кислот. Это открывает широкие возможности исследования связи структуры и функции природных полинуклеотидов. [c.86]

    Большинство природных соединений, содержащих полностью ненасыщенное фурановое кольцо, носят терпеноидный характер. В качестве примера можно привести дизамещенный фуран 35, входящий в состав розового масла. Фураны, встречающиеся в природе в восстановленном или иным образом модифицированном виде, включают в себя углеводы, такие, как рибоза и дезоксирибо-за - компоненты нуклеиновых кислот, и некоторые типы ненасыщенных у -лактонов (обзор см. [37, 38]), например, аскорбиновая кислота (витамин С) (36). Некоторые производные фурана используются в качестве химиотерапевтических средств. Семикарбазон [c.246]

    От обычных белков, состоящих исключительно из протеиногенных аминокислот, следует отличать сложные белки, называемые также конъюгированными белками или протеидами. Это вещества, содержащие помимо белковой части небелковый органический или неорганический компонент, необходимый для функционирования, могущий быть связанным с полипептидной цепью ковалентно, гетерополярно или координационно и вместе с аминокислотами присутствующий в гидролизате. Важнейшие представители сложных белков гликопроТеины (простетическая группа — нейтральные сахара (галактоза, манноза, фукоза), аминосахара (N-aцeтилглюкoзa-мин, N-aцeтилгaлaктoэaмин) или кислые производные моносахаридов (уро-новые или сиаловые кислоты)), липопротеины, содержащие триглицериды, фосфолипиды и холестерин, металлопротеины с ионом металла, связанным ионной или координационной связью, фосфопротеины, связанные эфирной связью через остаток серина или треонина с фосфорной кислотой, нуклеопротеины, ассоциирующиеся с нуклеиновыми кислотами в рибосомах или вирусах, а также хромопротеины, содержащие в качестве просте-тической группы окрашенный компонент. Обзор структур важнейших белков см. в разд. 3.8. [c.345]


    Нуклеиновые кислоты составляют существенную небелковую часть сложного класса органических веществ, получивших название нуклеопротеинов (см. главу 2) последние являются основой наследственного аппарата клетки хромосом. Белковые компоненты нуклеопротеинов подвергаются многообразным превращениям, аналогичным метаболизму белков и продуктов их распада—аминокислот, подробно рассмотренному в главе 12. О нуклеиновых кислотах, их структуре и функциях в живых организмах в последнее время накоплен огромный фактический материал, подробно рассмотренный в ряде специальных руководств и монографий. Помимо уникальной роли нуклеиновых кислот в хранении и реализации наследственной информации, промежуточные продукты их обмена, в частности MOHO-, ди- и трифосфатнуклеозиды, выполняют важные регуляторные функции, контролируя биоэнергетику клетки и скорость метаболических процессов. В то же время нуклеиновые кислоты не являются незаменимыми пищевыми факторами и не играют существенной роли в качестве энергетического материала. Далее детально рассматриваются (помимо краткого изложения вопросов переваривания) проблемы метаболизма нуклеиновых кислот и их производных, в частности пути биосинтеза и распада пуриновых и пиримидиновых нуклеотидов, современные представления о биогенезе ДНК и РНК и их роли в синтезе белка. [c.469]

    Значительный интерес представляют компоненты нуклеиновых кислот — кислородные производные пиримидина урацил, тимин, цитозин. Общий метод синтеза этих производных сводится к конденсации мочевины и ее аналогов (тиомочевины) с ацетоуксусным, малоновым, циануксусным эфирами и подобными им соединениями. Например, урацил образуется конденсацией формилуксусной кислоты, получающейся из яблочной кислоты в процессе реакции, и мочевины  [c.602]

    Различные углеводы присутствуют в заметных количествах и в организмах высших животных. Глюкоза является одним из компонентов крови. Фрагменты углеводов содержатся в нуклеиновых кислотах, которые контролируют хранение и передачу генетической информации в процессах синтеза белков. К производным углеводов относится аденозинтрифосфат, который ответствен за хранение и транспорт энергии в биологических системах. [c.473]

    Нуклеиновые кислоты отличаются от других биополимеров относительно малым разнообразием мономерных единиц, входящих в их состав. Принято разделять мономерные единицы нуклеиновых кислот на основные компоненты и редкие (минорные) компоненты. Под основными компонентами нуклеиновых кислот понимают мономерные единицы, имеющие универсальное распространение и входящие в состав полимеров в значительных количествах (не менее 5%). Содержание редких компонентов заметно меньше (как правило, не более 2%) они встречаются далеко не во всех нуклеиновых кислотах. Обычно редкие компоненты можно рассматривать как производные основных компонентов, образующиеся из них при довольно простых химических реакциях (таких, как алкилирование, гидрирование и т. д.). [c.49]

    Наиболее существенно на спектрах поглощения компонентов нуклеиновых кислот сказывается нарушение ароматичности гетероциклического основания, наблюдаемое, например, при насыщении двойной связи С-5—С-6 в пиримидиновых производных [c.619]

    Таким образом, принципиальных ограничений для применения правила линейной зависимости свободных энергий при исследовании свойств производных оснований нуклеиновых кислот не существует. Использование подобных закономерностей может дать много ценной информации о свойствах компонентов нуклеиновых кислот. [c.207]

    По своему химическому поведению аминогруппа в компонентах нуклеиновых кислот наиболее близка, по-видимому, к аминогруппе ароматических аминов, содержащих сильные электроноакцепторные заместители, например к аминогруппе п-нитроанилина. Дополнительное осложнение состоит здесь, однако, в том, что даже простейшие производные данного ряда (нуклеозиды) содержат также и другие функциональные группы, способные вступать в реакцию с электрофильными реагентами. Это атомы азота пиридинового типа в гетероциклическом ядре, гидроксильные группы остатка моносахарида. При переходе от нуклеозида к нуклеотиду проведение реакции осложняется еще больше за счет появления в молекуле функциональной группы с сильными нуклеофильными свойствами — остатка фосфорной кислоты — создается возможность новых побочных реакций. При реакциях с олиго- и полинуклеотидами вследствие таких побочных реакций могут возникать три-замещенные производные фосфорной кислоты, в которых крайне облегчена атака нуклеофильных агентов на атом фосфора, что может приводить к расщеплению полимерной цепи. Поэтому подбор оптимальных условий проведения реакции по экзоциклическим заместителям ядер на полинуклеотиде является обычно достаточно трудной задачей. [c.402]


    Анализ продуктов периодатного окисления широко используется для установления строения олиго- и полисахаридов, а также различных производных моносахаридов. Этот подход был использован, в частности, и при выяснении строения мономерных компонентов нуклеиновых кислот. Таким путем была получена информация о размерах окисного цикла углеводного остатка в нуклеозидах месте связи этого остатка и пуринового основания в нуклеозидах конфигурации у гликозидного центра рибозы и о положении фосфатной группы в нуклеотидах, образующихся при расщеплении РНК . [c.532]

    Углеводы входят в состав клеток и тканей всех растительных Г животных организмов и по массе составляют основную часть ганического вещества на Земле. В живой природе они имеют 1Ьшое значение как источники энергии в метаболических цессах (в растениях — крахмал, в животных организмах — жоген) структурные компоненты клеточных стенок растений илюлоза), бактерий (мурамин), грибов (хитин) составные ементы жизненно важных веществ (нуклеиновые кислоты, )ерменты, витамины). Некоторые углеводы и их производные пользуются как лекарственные средства. [c.377]

    Пиримидиновые основания являются составной частью нуклеиновых кислот, входящих в состав белков животных и растительных клеток. Пиримидиновое ядро — один из компонентов сложных молекул витаминов Вь Вг, Ве, производных барбитуровой кислоты и пуриновых алкалоидов — кофеина, теобромина, теофиллина. [c.308]

    Что касается самого процесса ТСХ, то здесь можно усмотреть далеко идущую аналогию с жидкостной хроматографией на колонках. Неподвижную фазу образует н идкость, связанная со слоем фиксированного на подложке гранулированного сорбента, свойства и характеристики которого близки, а иногда даже идентичны таковым для материалов, используемых в качестве носителей неподвижной фазы в колоночной хроматографии. Здесь используются те же производные целлюлозы или силикагеля, к которым надо добавить только полоски ацетилцеллюлозы. Подвижную фазу образует жидкий элюент с аналогичными, рассмотренным ранее свойствами. Неизменной остается и сущность хроматографического процесса, базирующегося на равновесном распределении вещества между неподвижной и подвижной фазами. Как и в любом хроматографическом процессе (гель-фильтрация в тонком слое была рассмотрена в гл. 4), для целей хроматографического фракционирования это распределение должно быть сильно сдвинуто в пользу неподвижной фазы. Из всех вариантов хроматографпп для разделения компонентов белков и нуклеиновых кислот методом ТСХ (сами биополимеры очень редко выступают здесь в качестве объектов) практически пспользуют только два нормальнофазовую распределительную и ионообменную. [c.458]

    МуклсиноЕые кислоты (полинуклеотиды) — полимеры, построенные из нуклеотидов. В состав нуклеотидов входят азотистые основания (производные пурина или пиримидина), углеводный компонент- пептоза рибоза или дезоксирибоза) и остатки фосфорной кислоты. В зависимости от пентозы, входящей л их состал, нуклеиновые кислоты делят на две большие группы рибонуклеиновые (РНК) и дезоксирибонуклеиновые кислоты (ДИК). Молекулы РИК содержат рибозу, в состав молекул ДИК входит дезоксирибоза. [c.51]

    Необходимая для синтеза ароматического компонента рибофлавина (3,4-диметилфенил-Ь-рибитиламина и его производных) D-рибоза может быть получена нз продуктов гидролиза дрожжевых нуклеиновых кислот, таких, как гуанозин ( XVI) и аденозин ( XVII) [259, 2601. [c.539]

    Наиболее важные встречающиеся в природе производные диазинов — это пири-мидоны (урацил, тимин и цитозин), которые в виде нуклеозидов — уридин, тимидин и цитидин — служат компонентами нуклеиновых кислот. Вследствие этого офомное количество синтетических исследований было направлено на поиски антивирусных и противоопухолевых препаратов среди представителей этого класса органических соединений [82]. Среди других известных соединений пиримидонового рада — производные барбитуровой кислоты, обладающие седативными свойствами [83]. [c.272]

    Минорные основания в нуклеиновых кислотах. Наряду с основными (главными) компонентами нуклеиновых кислот, включенными в этот раздел, найдены в небольших количествах многие другие пуриновые и пиримидиновые производные исчерпывающий обзор этих соединений см. [PNARMB 12, 49 (1972)]. [c.71]

    Для понимания вопросов реакционной способности и химической модификации нуклеиновых кислот важное значение имеют реакции, в которых участвуют экзоциклические заместители пуриновых и пиримидиновых оснований, т. е. аминогруппы цитозина, аденина или гуанина, карбонильные группы урацила, гуанина, ксантина и их производных, а также реакции атома серы тиопро-изводных (редких компонентов РНК). Как уже отмечалось выше (см. гл. 3), п-электроны атомов азота аминогрупп и кислорода карбонильных групп оснований нуклеиновых кислот (и их производных) в значительной степени взаимодействуют с л-электронной системой гетероциклического кольца, вследствие чего свойства соответствующих компонентов нуклеиновых кислот сильно отличаются от свойств простых аминов, амидов или тио-амидов. [c.401]

    Неспецифические органические вещества, главным источником которых служат растительные и животные остатки, включают такие соединения, как лигнин, флавоноцды и дубильные вещества, пигменты, липиды, углеводы и азотсодержапще соединения белки, полипептиды, аминокислоты, аминосахара, нуклеиновые кислоты и их производные, хлорофилл, амины и др. К неспецифическим веществам относятся только те компоненты, которые присутствуют в почве в свободном виде или в составе сложных веществ растительного или животного происхождения, но не входят в состав гумусовых кислот. [c.472]

    Одним из важнейших компонентов нуклеиновых кислот являются гетероциклические основания. Все они представ.1яют собой производные пиримидина или пурина. [c.298]

    Идентификация углеводных компонентов также проводится после кислотного гидролиза нуклеиновых кислот. При этом из пуриновых или предварительно гидрированных по 5, 6-двойной связи пиримидиновых рибонуклеотидов образуется О-рибоза. Основания дезоксирибонуклеотидов отщепляются в значительно более мягких условиях, чем рибонуклеотиды, но вследствие нестабильности образующаяся дезоксирибоза превращается в левулиновую кислоту. При чрезвычайно мягкой обработке кислотой пуриновых или восстановленных пиримидиновых дезоксирибонуклеотидов удается выделить дезоксирнбозу или ее легко идентифицируемые производные [c.306]

    Колоночная хроматография весьма тщательно разработана и позволяет добиться прекрасного разделения однако низкомолекулярные осколки нуклеиновых кислот можно столь же успепшо разделить и методом ХТС на ионообменниках при меньшей затрате труда и времени. Хотя до настоящего времени метод ХТС применяли только для разделения пуриновых и пиримидиновых оснований, нуклеозидов и мононуклеотидов, можно полагать, что на слоях эктеола и ДЭАЭ можно разделить также олигонуклеотиды, анури-новые кислоты и высокомолекулярные рибо- и дезоксирибонуклеиновые кислоты. Этот метод может оказаться пригодным также для анализа углеводных компонентов нуклеиновых кислот (841 (см. стр. 456) — в виде их обратных комплексов (см, [211),—- а также о-фосфорной кислоты и полифос-форных кислот [77] (см. стр. 473). В связи с этим следует отметить анализ методом ХТС птеридинов [63], фармацевтически важных пуриновых и пиримидиновых производных (см. стр. 310) и водорастворимых витаминов (см.стр. 236). Особенно важной является работа Нюрнберга по анализу методом ХТС витаминов группы Ве и амида никотиновой кислоты [64]. [c.451]

    Кроме четырех обычных оснований в ДНК (главным образом в ДНК бактериофагов) найдено шесть так называемых минорных оснований. Еще больше — до 35 минорных оснований (табл. 37.3)—встречается в РНК, главным образом в тРНК. Минорные компоненты можно получить лишь расщеплением природных полимеров, так как они образуются в результате ферментативной модификации уже готовых полинуклеотидов, т. е. в результате модификации на макромолекулярном уровне. Кроме того, в работах по изучению структуры и функций нуклеиновых кислот имеют дело с производными компонентов нуклеиновых кислот, т. е. с нуклеозидами, несущими защитные группы, или с аналогами оснований и нуклеозидов, например с азапиримидинами [14]. Разделение таких соединений также было предметом исследования в работе [15]. [c.37]

    В- -)-Рибоза (см. стерическую конфигурацию на стр. 239) имеет огромное биологическое значение, так как наряду с дезокси-В-рибозой опа является основным компонентом нуклеиновых кислот, вследствие чего она содержится в любой живой клетке. В нуклеиновых кислотах D-рибоза содержится в виде фуранозы, глюкозидно связанной с некоторыми производными пиримидина и пурина и с фосфорной кислотой. Она получается гидролизом нуклеиновых кислот разбавленными кислотами. [c.241]

    Однако значение углеводов далеко не исчерпывается их ролью как главных веществ при создании органических соединений в процессе фотосинтеза, как важных пищевых веществ и сырья для многих видов промышленности. Как было показано в последние годы, передача наследственных признаков, а также биосинтез белка — химической основы г изни — происходят при участии так называемых нуклеиновых кислот (см. том II). Структурными компонентами последних являются мононуклеотиды — производные углеводов. Лабильность углеводных компонентов как раз и создает большие трудности при выделении и синтезе нуклеотидов. [c.622]

    Ингибирование сукцинатдегидрогеназы малонатом и торможение роста бактерий производными сульфаниловой кислоты-примеры антагонистических отношений между нормальными клеточными метаболитами и их структурными аналогами. Антагонизм между метаболитами и антиметаболитами (структурными аналогами) может проявляться на разных уровнях. Структурные аналоги могут препятствовать включению нормальных метаболитов и тем самым синтезу отдельных клеточных компонентов. Они могут также включаться в полимеры, а это может приводить к снижению активности и даже к полной инактивации какого-либо фермента или нарушать функцию нуклеиновой кислоты. [c.206]

    Хроматографически изучены нурин, пиримидин п азотсодержащие компоненты нуклеиновых кислот. Можно илп изолировать нуклеиновые кислоты или расщеплять их. Изучено расщепление мононуклеотидов, нуклеозидов. Проведены исследования нуклеиновых кислот — рибонуклеиновых, дезоксирибонуклеиновых, нуклеотидов, мочевой кислоты и ее производных, производных барбитуровой кислоты. Проведено хроматографическое исследование аденозинполифосфорных кислот, серусодержащих производных пурина и пиримидина, дериватов ксантина и др. [c.203]

    Мономерные компоненты нуклеиновых кислот. Выще уже рассматривалась (см. стр. 349) реакция гидразина в нейтральных или слабокислых водных растворах с цитозином и его производными, приводящая к замещению экзоциклической аминогруппы. При проведении реакции в щелочной среде -88 иди с безводным гидразином 3° взаимодействие с компонентами нуклеиновых кислот сопровождается расщеплением пиримидинового цикла. Гуани-иовое ядро под действием гидразина не разрушается Данные относительно ядра аденина противоречивы. По одним из них оно не разрушается даже в таких жестких условиях, как действие безводного гидразина при 60 °С в течение 20 486,89,90,94 (днК фага ФХ174) согласно другим — гидразин разрушает адениновое ядро, хотя и в меньшей степени, чем пиримидиновое s. Так, при обработке безводным гидразином дезоксиаденозин-5 -фосфата при 60 °С в течение 20 ч наблюдается разрушение нуклеотида на 50% S3. Более детально взаимодействие гидразина с ядром аденина пока не исследовано. [c.459]

    В производных нуклеиновых кислот наиболее исследованы реакции первой группы — ацилирование и алкилирование по гидроксильной группе остатка сахара, а также реакции присоединеншг к олефинам с поляризованной двойной связью, например, к виниловым эфирам. Эти реакции применяются для определения концевых групп в олигодезоксирибонуклеотидах (см. гл. 1), а также для изучения вторичной структуры и функциональных исследований в ряду полирибонуклеотидов, особенно тРНК. Очень важное значение имеют реакции такого типа для мономерных компонентов нуклеиновых кислот нуклеозидов и нуклеотидов, где они [c.511]

    Наиболее распространена в настоящее время классификация, предложенная в начале века и разделяющая белковые вещества на три основные группы простые, сложные и производные белков. К простым белкам, иначе называемым протеинами, относят те, которые при полном гидролизе образуют только аминокислоты, т. е. не содержат небелковых составных частей. В состав их входят следующие группы альбумины, глобулины, проламины, протамины, гистоны, склеропротеины, глютелины. К сложным белкам (протеидам) относят различные типы комплексов простых белков с небелковыми компонентами, такими как углеводы, нуклбиновыб кислоты, липиды, гетероциклические соединения, фосфорная кислота и др. В зависимости от природы небелковой части протеиды подразделяют на нуклеопротеиды, включающие нуклеиновые кислоты хромопротеиды, в состав которых входят различные окрашенные вещества гликопротеиды, содержащие углеводы липопротеиды, содержащие липиды металлопротеиды, включающие металлы фосфопротеиды, содержащие фосфорную кислоту. Это разделение на группы далеко не точно, так как, например, в составе характерных простых белков часто содержится некоторое количество небелковых компонентов (в альбуминах — углеводы) и т. д. Производные белки представляют собой группу, которая охарактеризована в наименьшей степени. Чаще всего здесь раньше имели в виду продукты, получающиеся в результате тех или иных изменений белков, например их энзиматического гидролиза. В последние годы из названий веществ этой группы наиболее применяются (сохранились) два — про-теозы и пептоны. И те, и другие являются продуктами неполного [c.36]

    Как И В случае пиримидинов, в таких соединениях, как транспортные РНК, обнаружены различные метилированные и другие производные пурина. Кроме того, пуриновые основания играют важную роль в обмене веществ, а многие пурины растительного происхождения — кофеин, теобромин — применяются в фармакологии. Субструктурными единицами нуклеиновых кислот являются нуклеозиды. Они состоят из азотистых оснований, связанных р-гли-козидной связью с пентозой. В зависимости от природы пентозного компонента нуклеиновые кислоты делятся на рибонуклеиновые (РНК) и дезоксирибонуклеиновую кислоту (ДНК). В РНК (внизу, слева) роль сахара выполняет рибоза, а в ДНК (внизу, справа) — дезоксирибоза  [c.300]

    Для разделения компонентов нуклеиновых кислот, как и для анализа ряда других групп соединений, БХ прихменяется все реже и реже. Ее вытесняют колоночная хроматография на различных производных целлюлозы и декстрана и в еще большей степени тех. Соответственно уменьшилось и число обычно применяемых систем растворителей. Эти системы перечислены в табл. 3.17. [c.127]

    Хотя рибонуклеиновые кислоты, несомненно, состоят главным образом из нуклеотидов — производных аденина, гуанина, цитозина и урацила, полная расшифровка состава таких полимеров сопряжена с рядом трудностей. Возможное присутствие очень малых количеств ненуклеотидных компонентов до недавнего времени игнорировалось в значительной степени из-за удобства применения количественных расчетов по поглощению в ультрафиолетовой области. Кроме того, выбор между артефактом и подлинным компонентом не всегда легко сделать устойчивость или неустойчивость комбинации не является критерием ковалентного или нековалентного характера связывания с такими высокомолекулярными полиэлектролитами, как нуклеиновые кислоты. Теперь известно, что в некоторых рибонуклеиновых кислотах концевой аденозиновый остаток этерифицирован по 2 - или З -гидроксильной группе одной молекулой аминокислоты. (Аналогия с ацетильными производными аденозина позволяет предположить, что такие аминокислотные производные являются исключительно З -эфирами). Неоднократно отмечалось существование пептидных производных нуклеиновых кислот, и нельзя полностью пренебрегать возможностью присутствия в рибонуклеопротеидах некоторых относительно нестойких ковалентных связей между белком и нуклеиновой кислотой. Проблема минорных ненуклеотидных компонентов рибонуклеиновых кислот до некоторой степени дискуссионна и может быть разрешена соответствующим точным анализом нуклеиновой кислоты. [c.408]

    Характерная особенность производных аденина — их способность влиять на рост растений. Значение аденина обусловлено тем, что он является одним из компонентов нуклеиновых кислот и многих коферментов. Аденнн обладает более выраженными свойствами основания, чем пиримидин, но в то же время адениновое основание слабее имидазола. Поскольку и кислотный характер у аденина выражен сильнее, чем у имидазола, в химических реакциях он может участвовать и как основание, и как кислота. Его биологическая активность возрастает, если к аминогруппе в положении 6 присоединяется слабая кислота. Наиболее известное производное аденина этой группы — кинетин (6-фурфуриламинопурин). По физиологической активности кинетин относится к соединениям, регулирующим рост и развитие растений. Он стимулирует синтез белков, нуклеиновых кислот и соответственно процесс клеточного деления, кроме того, замедляет старение растений. В основе механизма биологической активности кинетина лежит способность усиливать синтез т ранспортной РНК- [c.72]


Смотреть страницы где упоминается термин Нуклеиновые кислоты, их компоненты и производные: [c.225]    [c.309]    [c.309]    [c.12]    [c.194]    [c.59]    [c.686]    [c.38]    [c.218]    [c.522]    [c.221]    [c.9]    [c.442]   
Смотреть главы в:

Химические реактивы и высокочистые химические вещества Каталог Издание 2 -> Нуклеиновые кислоты, их компоненты и производные

Химические реактивы и высокочистые химические вещества Издание 2 -> Нуклеиновые кислоты, их компоненты и производные




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты



© 2024 chem21.info Реклама на сайте