Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь структуры белка с ферментативной активностью

    Биологические функции белков тесно связаны с их пространственной структурой. Действительно, ферментативная активность, например, белка лизоцима определяется тем, что внутри него имеется полость, необходимая для захвата субстрата — полисахаридных оболочек бактерий. Если изменить внешние условия, свойственные живым клеткам, а именно повысить температуру или изменить кислотность среды, то белок денатурирует. Денатурация означает сохранение первичной структуры белка, но изменение его пространственного строения, т. е. конформации, и именно благодаря изменению конформации белок утрачивает свои биологические свойства в случае лизоцима форма белковой глобулы станет более беспорядочной и размеры полости не будут соответствовать размеру субстрата. [c.359]


    А. СВЯЗЬ СТРУКТУРЫ БЕЛКА С ФЕРМЕНТАТИВНОЙ АКТИВНОСТЬЮ [c.129]

    Основной причиной инактивации ферментов является изменение третичной структуры белковых молекул. Упаривание ферментных растворов под вакуумом (при t=37° ) способствует сохранению ферментативной активности. Применение при упаривании пеногасителей основано на их способности вытеснять пенообразователь из поверхностного слоя и разрушать тем самым структуру пены. Добавление некоторых солей повышает устойчивость белков при высушивании их растворов, что объясняется, по-видимому, созданием мостичных связей между белковыми молекулами, препятствующих. развертыванию пептидных цепей. [c.159]

    Ферменты образуются внутри клеток, но они могут действовать и вне клетки, причем их можно выделить из клеток без потери активности. Следовательно, ферментативные реакции можно проводить и во внеклеточной среде. Биокатализаторы — высокомолекулярные белки с определенной надмолекулярной структурой, содержащие активный центр, который обычно находится во впадине (рис. 14.2). Во многих случаях активный центр представляет собой сложную органическую молекулу или ион металла (кофактор) и может быть либо связан, либо не связан с белком гомео-полярной связью. Комплекс белка (апофермент а) с кофактором называют голоферментом. [c.300]

    В определенных условиях молекулу рибонуклеазы можно расщепить с помощью фермента субтилизина. При этом разрывается связь между 20-м (аланин) и 21-м (серии) остатками и образуется два пептида — короткий (называемый 5-пептидом), содержащий 20 остатков, и более длинный (называемый 5-белком) из 104 остатков. Поскольку первый остаток цистеина находится в молекуле на 26-м месте, отщепление 5-пептида, состоящего из 20 первых аминокислотных остатков, равнозначно отщеплению хвоста фермента. По отдельности ни хвост , ни 5-белок не проявляют ферментативной активности, но их экви-молярная смесь активна. Очевидно, несмотря на разрыв связи между 20-м и 21-м остатками, благодаря взаимодействию боковых цепей образуется активная третичная структура. Если, так же как это делалось в случае нативного фермента, восстановить, а затем вновь окислить 5-белок, то получающийся продукт ничем не отличается от первоначального 5-белка. После добавления к реконструированному 5-белку 8-пептида активность в большой степени восстанавливается. По-видимому, правильное образование дисульфидных связей происходит и в отсутствие 5-пептида. Однако он все же несет какую-то определенную функцию, так как в его присутствии уменьшается количество осадка, состоящего, как предполагают, из молекул, связанных поперечными связями. Если опыт по восстановлению и последующему окислению производится с раствором, содержащим как 5-пептид, так и 5-белок, процент растворимого активного материала оказывается более высоким. [c.280]


    Взаимодействие воды с белками можно эффективно изучать, используя твердые образцы, так как это позволяет контролировать активность воды. Для многих белков и молекул близкого строения были получены изотермы сорбции воды, что дает возможность определить изменение свободной энергии и энтальпии при различных уровнях гидратации. Измерения теплоемкости, выполненные во всем диапазоне составов системы, позволяют сопоставить результаты исследований, проведенных на частично гидратированных твердых образцах, с одной стороны, и в разбавленном растворе — с другой. Результаты измерений термодинамических свойств позволяют выделить отдельные стадии гидратации и нарисовать общую картину процесса. При построении такой картины использованы результаты других статических измерений, в частности данные ИК-спектроскопии, и результаты кинетических измерений, например данные по спектрам ЭПР и по ферментативной активности. Ферментативная активность проявляется еще до окончания формирования многослойного покрытия, и ее увеличение связано, по-видимому, с конденсацией. Кинетические свойства твердого белка продолжают изменяться выше уровня гидратации (около 0,4 г во-да/г белка), который достаточен для установления уровня термических свойств, характерного для разбавленного раствора. Обсуждена структура твердого белка в зависимости от уровня гидратации. [c.135]

    По теории Л. Паулинга и Р. Корея, в глобулярных белках, а-кератине и некоторых полипептидах свертывание происходит по типу а-спирали (рис. 94), где на три витка спирали приходится по И аминокислотных остатков и через каждый третий аминокислотный остаток между пептидными группами образуется водородная связь, параллельная оси спирали. Последовательность аминокислотных остатков различна для каждого белка, что создает на поверхности спирали из боковых цепей аминокислот специфичный рельеф, определяющий структуру центров ферментативной, антигенной, гормональной активности белка. [c.212]

    Наряду с катализом за счет свободной энергии сорбции (см. 1—4 этой главы) ферментативные реакции находят источник ускорения в том, что молекула субстрата подвергается химической атаке не одной каталитической группой (как это происходит в гомогенно-каталитических реакциях второго порядка), а сразу несколькими. Это связано с тем, что третичная структура белка позволяет сосредоточить в активном центре фермента значительное число электрофильных и нуклеофильных групп, таких как имидазольная, карбоксильная, сульфгид-рильная, аммонийная, фенольная и др. (см. гл. I), которые, как известно из гомогенного катализа, представляют собой общекислотные и общеосновные катализаторы. Именно поэтому в промежуточных фермент-субстратных комплексах в принципе возможна атака сорбированной субстратной молекулы по механизмам общего кислотноосновного катализа. [c.61]

    Благодаря новейшим данным о стереохимических изменениях, происходящих при ферментативном катализе и регуляции активности ферментов, мы можем ответить на эти вопросы с достаточной определенностью. В том, что структура белков существенно зависит от слабых связей, действительно есть больщой смысл . Взаимодействие ферментов с субстратами и с модуляторами ферментов в большинстве случаев, если не всегда,, сопровождается изменениями в третичной и четвертичной структуре фермента. С точки зрения стереохимии эти изменения могут быть большими или незначительными для биологической, функции они абсолютно необходимы. Скорость, с которой фермент катализирует определенную химическую реакцию, вероятно, зависит от того, насколько быстро его конформация может подвергнуться обратимому изменению в результате фер-мент-субстратных взаимодействий. Надлежащая реакция фермента на присоединение регулирующего метаболита тоже зависит от способности фермента изменять свою структуру высшего порядка. В одних случаях эти изменения затрагивают третичную конформацию фермента, в других (например, в случае гликогенфосфорилазы) регуляторный эффект связан с изменением четвертичной структуры. [c.215]

    Изменение ферментативной активности белка-фермента (Е) в данном случае связано с изменениями его конформации при взаимодействии с конечным продуктом реакции (L-изолейцином), которые приводят к изменению структуры активного центра фермента. Взаимодействие активного и аллостерического центров носит кооперативный характер. [c.436]

    Можно сформулировать механизм действия ферментов следующим образом. Два субстрата, один из которых содержит связь А—В, а другой связь С—О, присоединяются к каким-то группам на макромолекуле фермента. При этом атомы АВ и СО оказываются в непосредственной близости друг от друга и в нужной пространственной конфигурации. Роль катализатора в том, что он помогает расслабить связи А—В и С—В в обоих субстратах и тем самым способствует образованию новых ковалентных связей А—С и В—В. Для того чтобы осуществилась химическая реакция, однако, все равно требуется тепловая флюктуация. Процесс, описываемый уравнением АВ- СВ АС ВВ, происходит на расстояниях порядка длины химической связи, т. е. порядка немногих ангстрем. Поэтому казалось непонятным, почему ферментами являются белковые макромолекулы сравните.тьно больших размеров (достигающих мнопгх десятков ангстрем). Было высказано предположение, что на поверхности белковой макромолекулы существует локальный центр ферментативной активности, состоящий из небольшого числа групп, расположенных близко друг от друга. Эти группы могут принадлежать звеньям полипептидной цепи, весьма удаленным друг от друга, но сближенным при закручивании цепи во вторичной и третичной структуре. Поэтому ферментативная активность часто столь чувствительна к денатурации белка. Прямьш доказательством теории активного центра явились опыты, в которых макромолекула фермента расщеплялась на осколки, сохранявшие свою каталитическую активность. [c.141]


    Для успешного выделения ферментов из клеточного содержимого необходимо очень тонкое измельчение исходного материала, вплоть до разрушения субклеточных структур лизосом, митохондрий, ядер и др., которые несут в своем составе многие индивидуальные ферменты. Особое внимание при вьщелении ферментов уделяют проведению всех операций в условиях, ис-ключаюхцих денатурацию белка, так как она всегда связана с потерей ферментативной активности. Этому способствует проведение операций в присутствии защитных добавок, в частности HS-содержащих соединений (цистеина, глутатиона, меркаптоэтанола, цистеамина, днтиотреитола и др.)  [c.97]

    Нековапентные семисинтезы основаны на том факте, что различные белки после расщепления на фрагменты и их разделения прн рекомбинации образуют биологически активные нековалентные комплексы. Классический пример — рибонуклеаза А из поджелудочной железы быка (рис. 3-24), которая расщепляется бактериальной протеазой субтилизином на так называемые 5-пептид (1—20) и 5-белок (21—124), а после рекомбинации разделенных продуктов расщепления показывает полную ферментативную активность. Для рекомбинации с нативным 5-белком использовались аналоги 5-пептида, синтезированные химически, при этом были получены ценные данные по связи между структурой и функцией. [c.218]

    Денатурация белка в классическом смысле определялась как любая непротеолитическая модификация уникальной структуры нативного белка, приводящая к определенным изменениям химических, физических и биологических свойств [388]. Из этого определения исключаются изменения состояния ионизации, если только они не сопровождаются конформационными переходами. Денатурация может происходить в результате нагревания, изменения pH и добавления неполярных растворителей или некоторых специфических денатурирующих реагентов, например мочевины или солей гуанидина. Она также может быть вызвана восстановительным или окислительным разрывом дисульфидных связей, которые стабилизуют нативные конформации некоторых белков. Денатурация, как правило, сопровождается уменьшением растворимости белка. Это можно легко понять, так как гидрофобное взаимодействие, стабилизующее нативную конформацию, приводит к межмолекулярной агрегации, если полипептидные цепи принимают вытянутые конформации. Другим характерным последствием денатурации является раскрытие реакционноспособных групп, которые расположены внутри третичной структуры и становятся доступны воздействию реагентов при разрушении этой структуры. К числу наиболее пригодных методов наблюдения за процессами денатурации принадлежат спектроскопические измерения, измерения оптической активности и определение каталитической активности ферментов или биологической активности гормонов. Конформационные переходы при денатурации включают ряд процессов, которые в различной степени могут сказываться на каждом из наблюдаемых изменений, и поэтому понятие степени денатурации бессмысленно, если не будет установлен критерий, с помощью которого денатурация измеряется. Эта точка зрения иллюстрируется рис. 44, на котором изображено изменение оптической активности, поглощения света и ферментативной активности рибонуклеазы [389]. [c.136]

    В случае лизоцима первые две нативные дисульфидные связи образуются на порядок быстрее, чем две гюследующие, что указывает на наличие предпочтительного пути свертывания [460]. ОднакО этот путь не обязательно единственный, что и было показано другими исследованиями лизоцима [162]. В этих экспериментах удалось, ренатурировать восемь возможных изомеров (восстановленного лизоцима), содержащих по одному постоянно блокированному остатку ys на молекулу белка. Все изомеры представляли собой ферментативно активные структуры. Этот факт исключает уникальную роль в процессе свертывания какой-либо из возможных дисульфидных связей. Следует особенно подчеркнуть, что ни одна из четырех нативных дисульфидных связей не обязательна для образования трех других правильных связей S—S. [c.188]

    Недавно было установлено, что РНК может функционировать в качестве катализатора, подобно ферменту. Оказалось, что ферменты рибонуклеазы Р содержат 80 /о РНК, которая и выполняет основную функцию. В других случаях была обнаружена ферментативная активность РНК и в отсутствие белка. Не подлежит сомнению, что это связано со значительной коиформаци-ониой гибкостью и со сложной третичной структурой РНК. Надо думать, что эти, еще далеко недостаточно изученные, явления существенны для регуляции генов. Вполне возможно, что в клетках функционируют и другйе, еще не выявленные виды РНК. [c.231]

    Компенсационный эффект свойствен ферментативным процессам. Так, при гидролитическом расщеплении эт-илового эфира Ы-ацетил-Е-триптофана химотрипсином АР очень мало, а ДЯ и Д5 велики. В сущности, почти все данные, пр 1веденные в последних трех столбцах табл. 6.2, свидетельствуют о компенсации. Связывание ряда ингибиторов ацетилхолинэстеразой также сопровождается компенсацией — ДЯ варьирует в этих процессах от —7 до +2 ккал/моль, а Д5 от —10 до - -20 кал/моль-град [26. Если здесь справедливо предположение об определяющей роли воды, то нужно установить, как влияет на поведение белковых молекул окружающая водная структура. Ламри и Ражендер считают, что связь белка с водой проявляется в изменении объема белковой молекулы в ходе реакции. Как будет показано в 6.5 и 6.7, ферментативная активность зависит от конформационных превращений белка и, тем самым, глобулы могут изменять свой объем. Изменение энергии водно-белковой системы можно представить в виде [c.372]

    Интенсивное изучение биологических катализаторов дало возможность составить целостное представление об этих, по сути, наиболее важньгх структурах живой материй. В частности, было установлено, что все ферменты являются макромолекулами белковой природы. (Каталитическая активность специфичных полинуклеотидов, принимающих участие в сплайсинге РНК, является исключением, подтверждающим общее правило.) Первостепенное значение для функций ферментов имеет первичная структура, определяющая тип катализируемых реакций. Гидролиз пептидных связей трипсином или пепсином необратимо инактивирует ферменты. Для проявления каталитического действия большое значение имеет также нативность высших белковых структур (гл. 3). Обратимая денатурация является фактором подавления или восстановления ферментативной активности. Физико-химические свойства ферментов соответствуют таковым для белков, причем заряд играет существенное значение для каталитического акта. Молекулярные массы ферментов лежат в пределах от 10 до 1000 kDa и более, т. е. в большинстве случаев фермент по размерам гораздо больше, чем субстрат. [c.61]

    Существование зависимости между линейной структурой гена и белка было обнаружено в опытах Яновского [109—111, 123], показавшего, как можно проследить связь между последовательностью аминокислот в белке и последовательностью оснований в ДНК. Он использовал фермент триптофансинтетазу из Е. oli, чтобы сравнить пункт за пунктом генетическую карту с последовательностью аминокислот на соответствующем участке ферментного белка. В частности, он изучил два мутанта, утративших свою ферментативную активность, но способных вернуться к нормальному функционированию в результате следующей мутации. Например, у дикого штамма Е. oli в одном месте поли- [c.315]

    Наиболее убедительным доказательством того, что первичная структура определяет вторичную и третичную, могут, по-видимому, служить опыты по восстановлению нативной структуры белка после денатурации ренатура-ция белка). Если, например, полностью развернуть молекулу рибонуклеазы путем восстановления четырех ее дисульфидных мостиков меркаптоэта-нолом в 8 Af мочевине, а затем вызвать реокисление таких развернутых молекул в контролируемых условиях, то молекулы (от 95 до 100%) вновь приобретают нативную конформацию, что подтверждается восстановлением не только физических свойств, но и ферментативной активности. Этот опыт схематически представлен на фиг. 42. Статистические расчеты показывают, что если бы реконструкция дисульфидных мостиков происходила совершенно произвольно, то нативную конформацию приобретало бы лишь небольшое число молекул —около 1%. В табл. 20 приведены данные по рена-турации некоторых белков. Во всех случаях, за исключением инсулина, степень восстановления нативных структур значительно превышает величину, которой следует ожидать, исходя из статистических соображений. Эти данные вовсе не означают, однако, что процесс образования дисульфидных связей в белках может протекать in vivo без направленного катализа. Реконструкция нативных белковых структур после восстановительного разрыва дисульфидных мостиков представляет собой слишком медленный процесс, не соответствующий скорости синтеза биологически активных белков [c.113]

    Очень важный и принципиальный вопрос химии белка заключается в том, определяется ли вторичная и третичная структура белка однозначно его первичной структурой, т. е. порядком чередования аминокислот в полинентидной цепи. Ответ на этот вопрос дается опытами Анфинсена, выполненными с рибопуклеа-зой. В белке 8—8-мостики постепенно разрывались путем восстановления меркаптоэтанолом в растворе 8М мочевины. По мере разрушения дисульфидных связок происходит инактивация фермента рибонуклеазы, вплоть до полного исчезновения каталитических свойств. После окисления сульфгидрильных групп воздухом наблюдается полный возврат к исходному белку как в отношении числа мостиков, так и ферментативной активности. В этом случае сшивка 8—8-связей осуществляется обязательно в том же порядке, как в активном белке. Однако известны и противоположные примеры, особенно если белок состоит из нескольких цепей, соединенных дисульфидными сшивками. Так, например, восста- [c.85]

    Ясно, что в этом явлении участвуют раз.личные типы молекулярных си.я, суш,ественные для образования вторичной и третичной структуры белка. Так, например, если разорвать водородные связи в полипептидной цепи с помощью 8М мочевины и в этих условиях вести окисление 8Н-групн, то образование 8—8-мостиков происходит хаотически и первоначальная структура макромолекулы восстанавливается только в 1% случаев, как об этом можно судить по восстановлению ферментативной активности. Такая же цифра ожидается, исходя из теоретико-вероятностных соображений, если сшивание 8Н-групн происходит совершенно случайно. Другой тип сил, участвующих в этой реакции, — водородные связи ОН-грунп тирозинов и СОО -групп дикарбоновых кислот. [c.147]

    В последнее время проблема установления первичной структуры ферментов и других белков развивается весьма успешно. Доступность данных о первичной структуре белков послужила стимулом для попыток синтеза фрагментов некоторых ферментов. В частности, особое внимание исследователей было обращено в связи с этим на рибонуклеазу поджелудочной железы быка (рис. 73а). Так, Ричардс и Витаятиль [1811] установили, что при действии на рибонуклеазу бактериальной протеазы суб-тилизина происходит разрыв пептидной связи лишь между остатками Ala и Ser при этом отщепившийся N-концевой эйкозапептид (S-пептид) остается связанным с основной частью фермента (S-белком) при помощи нековалентных связей. После разделения S-пептида и S-белка каждый из них оказался биологически неактивным однако при смешивании S-пептида и S-белка в молярном соотношении 1 1 ферментативная активность полностью восстанавливается (рибонуклеаза S ). [c.353]

    В части IV рассмотрены структуры металлоферментов и механизмы, посредством которых ионы металлов принимают участие в ферментативной активности, в частности, в разрыве связей. В гл. 13 обсуждаются способы, которыми ионы металлов вызывают химические изменения в лигандах без помощи белков. В гл. 14 дан обзор металлоферментов, не рассматривающихся отдельно в последующих главах. В гл. 15 и 16 некоторые металлоферменты рассмотрены более подробно, частично из-за более обширной информации об этих металлоферментах, доступной в настоящее время другие ферменты рассмотрены отдельно в гл. 17 и 18 вследствие относительной легкости классификации этих групп ферментов. Те ферменты, которые принимают участие главным образом в реакциях окисдения — восстановления, а также ферменты, содержа- [c.9]

    В молекулах белков (альбумины,, глобулины, ферменты и др.) и полипептидов цепи построены из большого количества разнообразных остатков -аминокислот. Помимо последовательно соединяющих их плоскорасположенных пептидных связей —СО—N11 —, аминокислотные остатки связаны большим количеством водородных связей с удаленными остатками. Условия максимального насыщения внутримолекулярных водородных связей и максимальной плотности упаковки аминокислотных остатков в цени нри соблюдении обычных валентных углов и расстояний приводят к характерному свертыванию цепи в спирали. По теории Паулинга и Корея, в глобулярных белках, а-кератине и некоторых полипептидах свертывание происходит по типу а-спирали (рис. 120), где на 3 витка спирали приходится по 11 остатков и через каждый третий аминокислотный остаток между] пептидными группами образуется водородная связь (отмечена пунктиром), параллельная оси спирали. Последовательность аминокислотных остатков различна для каждого белка, что создает на поверхности спирали из боковых цепей аминокислот специфичный рельеф, определяющий структуру центров ферментативной, антигенной,, гормональной и других активностей белка. Взаимодействие боковых цепей вызывает также специфические для каждого белка отклонения основного хода спирали. В фибриллярных белках (фиброин шелка, В-кератин, миозин и др.) спирали вытянуты и водородные связи соединяют соседние цепи по перпендикулярным к их осям направлениям. [c.274]

    Изучение химических реакций белков проливает свет на их структуру. Способность почти всех аминокислотных остатков в белке принимать участие в химических реакциях, аналогичных реакциям аминокислот, подтверждает общепринятую в настоящее время концепцию о том, что основной ковалентной связью в белках является пептидная связь. Однако наличие экранированных групп, обнаруживаемое нрй помстщг денатурации и химических реакций, заставляет предполагать, что некоторые фенольные, сульфгидрильные и др. группы либо образуют лабильные связи, которые могут разрываться при денатурации, либо остаются стерически недоступными для химических реагентов до тех пор, пока структура белка не будет изменена. Последнее объяснение окажется, пожалуй, более приемлемым, если в дальнейших исследованиях будет вскрыта зависимость реакционной способности групп от размера молекул реагента. Тот факт, что для проявления биологической активности существенно важное значение имеет лишь часть функциональных групп определенного вида, подчеркивает сложность топографии белков. Различие в скорости реакций амино- и фенольных групп в ряде белков указывает на индивидуальные особенности структуры белка. В настоящее время не может быть сделан обобщающий вывод о важности тех или иных функциональных групп белка для обеспечения биологической активности. Поэтому для того, чтобы иметь возможность сделать подробные заключения о природе ферментативной активности или вирусного действия, следует еще очень многое изучить. Например в таблице, составленной Олькоттом и Френкель-Конратом (см. последующие тома настоящего сборника), указывается, что фенольные [c.354]

    Однако на примере ряда ферментов, и рибонуклеазы в частности, было показано, что не бся молекула, а лишь некоторая ее часть (активный участок) ответственна за каталитическую активность. Так, Ричардс, используя фермент субтилнэи /, расщепил молекулу рибонуклеазы по связи между звеньями 20 и 21 (пептидная связь Ala — Ser), и при этом вторичная и третичная структуры удержали молекулу как целое. Сохранились и ферментативные свойства. Но при хроматографии на кислом ионообменнике короткий пептид из 20 аминокислотных остатков отделился от остальной части. Обе части молекулы были лишены ферментативной активности, однако прн сменгении их активность вновь возникала. У отделенной больпк й части белковой молекулы еще сохранилась способность связывать обычный для рибонуклеазы субстрат ферментативной реакции, но не расщеплять его. П])и гидролизе рибонуклеазы карбоксипептидазой и отщеплении с С-коица трех аминокислот — валина, серина и аланина активность рибонуклеазы не страдает. При гидролизе пепсином разрывается четвертая связь с С-конца и отщепляется кроме валина, серина и аланина еще н аспарагиновая кислота. Тогда остаток рибонуклеазы полностью теряет активность. Подобным же образом устанавливается существенность двух остатков His в положениях 12 и 119. Сказанное имеет целью дать понятие об исследовании структуры белка как фермента. [c.703]

    Большинство вирусов растений и РНК-содержащих фагов состоит, как известно, только из нуклеиновой кислоты и белка, причем и нуклеиновая кислота и белок бывают у этих вирусов представлены преимущественно каким-то одним типом. Однако наряду с этими вирусами существует и много вирусов с более сложной организацией. Как уже указывалось, для многих мелких РНК-содержащих вирусов животных, мелких ДНК-содержащих фагов типа фХ174, аденовирусов и реовирусов характерно наличие в кансиде нескольких различных белков. Структура других вирусов еще сложнее их капсид покрыт оболочкой. Оболочка эта построена главным образом из белков, связанных с липидами и углеводами с оболочкой связана и ферментативная активность вирусов. [c.132]

    В непрерывной полипептидной цепи рибонуклеазы попарно связаны дисульфидными мостами остатки цистеина, обозначенные одинаковыми номерами. Очевидно, что сама по себе последовательность аминокислот в молекуле рибонуклеазы еще совершенно ничего не говорит о ее каталитическом действии на связь фосфорной кислоты с рибозой в РНК. В высшей степени интересны исследования рибонуклеазы, выполненные Анфинсеном. Если подействовать р-оксиэтилмеркаптаном на раствор рибонуклеазы в водном 50%-ном растворе мочевины (где а-спираль нарушена полностью) и таким образом разорвать все S-S-мосты, то каталитические свойства ферментов полностью исчезают. Однако если полученный белок, содержащий 8Н-группы на месте S—S-мостов и освобожденный от мочевины, окислить воздухом, то все SH-группы попарно окисляются в S—S-мосты, структура рибонуклеазы воссоздается, и вновь приобретается активность. Следовательно, S-S-мосты в данном белке (и это типично) возникают на прежних местах и, несомненно, одновременно воссоздается не только вторичная, но и третичная структура, свойственная рибонуклеазе. Если же окисление производить в растворе мочевины, где обычные водородные связи вторичной структуры нарушены, то сшивание происходит в беспорядке или в ином порядке и активного фермента не получается. Таким образом, как оказалось в этом случае, пе дисульфидные мосты, а водородные связи вторичной структуры предопределяют третичную структуру, сближающую определенные цистеиновые SH-группы и создающие возможность окисления их в цистиновые мосты S—S. Вместе с тем ясно, что за ферментативную активность ответственна совокупность первичной, вторичной и третичной структур. [c.743]

    Значение сил, которые стабилизуют третичную структуру рибонуклеазы, иллюстрируется также экспериментами несколько иного рода. Возможен избирательный разрыв пептидной связи, соединяющей аланиль-ный остаток в положении 20 с серильным остатком, находящимся в положении 21. При этом молекула фермента расщепляется па короткую пептидную цепь ( 8-пептид ) и остаточную структуру, содержащую все дисульфидные поперечные связи ( 8-белок ). Обнаружено, что каждый в отдельности компонент является нативным, однако ферментативная активность почти полностью восстанавливается, если смешиваются стехиометрические количества двух компонентов, даже при очень сильном разбавлении [401]. Эти данные согласуются с константой ассоциации 8-пептида с 8-белком, составляющей по меньшей мере 2-10 л1молъ. Эти результаты показывают, что преимущества, свойственные специфическому складыванию нативного фермента, настолько сильно зависят от взаимодействия боковых цепей, соединенных с полипептидным скелетом, что пространственное расположение может быть сохранено после разрыва цепи. Было даже обнаружено, что ферментативная активность в основном сохраняется, если в 8-пептиде изъять семь аминокислотных остатков (с 14 по 20). Отсутствие этого довольно длинного отрезка основной цепи, по-видимому, не вызывает изменений основных особенностей третичной структуры, характерной для нативного белка [402, 403]. [c.139]

    В связи с этим представляет интерес сообщение Кесслер и др. 13791 относительно изменений в структуре белков и ферментативной активности под действием низких концентраций сахарозы или Na l. Авторы усматривают в этом объяснение того действия, которое вызывают иногда изоосмотические субстраты разного состава [261]. Однако любое такое действие должно быть, по-видимому, оносредо- вано на молекулярном уровне через межмолекулярные связи, а -это значит, что, например, ионы К" , не способные нарушать льдоподобную структуру гидратационной воды, и ионы Na+, которые, вероятно, эту структуру нарушают, будут вызывать разный эффект [370]. [c.324]

    Динамические свойства внутриклеточной воды в значительной степени отражают состояние клеточных структур. Существует также ряд данных, указывающих на непосредственное участие небольших количеств воды в изменении конформации глобулярных белков. В следующей главе будут описаны подробно характеристики и модели динамической подвижности биомакромолекул. Сейчас лишь необходимо отметить, что функционирование белков тесно связано не только с характером их конформации, но, главное, с их конформационной подвижностью, зависящей от присутствия воды. Так, при низкой степени гидратации препаратов а-химотрипсина возникающие дополнительные контакты между поверхностными дегидратированными полярными группами приводят к увеличению жесткости глобулы а-химотрипсина и потере им ферментативной активности в диметилсульфоксиде. В сильно высушенных препаратах, вплоть до некоторого критического значения гидратации, вообще не наблюдается никакой активности. Восстановление последней при увеличении степени гидратации образца происходит резко в узком диапазоне увеличения числа молекул Н2О от 170 до 180 на одну молекулу белка. Очевидно, в этой области происходит растормаживание определенных степеней свободы, функционально важных для ферментативного акта. Существенно, что необходимое для этого процесса количество воды намного меньше, чем было бы нужно для завершения образования гидратной оболочки (Ю. И. Хургин). [c.237]

    Сопрягающий фактор АТФазы (фактор Fi для митохондрий или Fi для хлоропластов) представляет собой полифункциональный белок, имеющий сложную четвертичную структуру. Он построен из трех типов крупных субъединиц (а, Р, у с молекулярной массой 30000-60000) и двух типов минорных субъединиц 8, s с молекулярной массой 11000-20000). Стехиометрия комплекса (азРзу8е- Разложение его на отдельные субъединицы ведет к потере ферментативной активности. Шляпка высотой 80 А и шириной 100 А (Walker J., 1994) грибовидного выроста Н+-АТФазы соответствует фактору F, частично погруженному в мембрану, а основание — гидрофобным белкам комплекса Fq, который включает три типа полипептидов (а, Ь, с) с молекулярными массами от 6500 до 30 ООО и обеспечивает связывание фактора Fi с мембраной и перенос протонов при работе фермента. На каждую пару а-р-субъединиц приходится по одному полипептиду а, по два белка и по 9-12 копий с-белка водорастворимого комплекса. Субъединицы а и р гомологичны, они уложены в белковые глобулы, которые образуют единый ансамбль, в котором а- и р-субъединицы расположены поочередно вокруг у-субъединицы, имеющей вид слегка изогнутого стержня длиной 90 А. Существуют кинетические и структурные доказательства наличия 3-х взаимодействующих гидролитических мест, по одному на каждой р-субъединице, отделенных друг от друга на 120 градусов, у-субъединица как бы выступает из глобулы Fi, играя роль связующего звена между мембранами Fi и водорастворимыми Fg фрагментами АТФазы. [c.222]

    С. Шаффер [87], исследуя процесс ренатурации рибонуклеазы с помощью 8-8-глутатиона, обнаружил, что образование моно- и ди-8-З продуктов практически не сказывается на кривых кругового дихроизма, при последующем появлении и накоплении продуктов с большим числом дисульфидных связей они приближаются к спектру нативного белка. В связи с тем, что в данном случае изменения в спектрах кругового дихроизма, как и в случае изменений поглощения и флуоресценции, отмеченных Р. Хантгеном и соавт. [81], происходили раньше восстановления ферментативной активности рибонуклеазы, то, как полагает Крейтон, они связаны главным образом с формированием у три- и тетра-8-8-производных вторичных структур и гидрофобного окружения у ароматических остатков, а не с завершением образования нативной конформации. С. Шаффер и соавт. [88] исследовали влияние среды на скорость свертывания белковой цепи рибонуклеазы с использованием окисленного и восстановленного глутатиона. Обнаружено, что действие нейтральных солей на скорость ренатурации [c.377]


Смотреть страницы где упоминается термин Связь структуры белка с ферментативной активностью: [c.101]    [c.238]    [c.238]    [c.147]    [c.420]    [c.102]    [c.72]    [c.16]    [c.702]    [c.2]    [c.26]    [c.303]    [c.200]    [c.136]   
Смотреть главы в:

Механизмы катализа нуклеофильных реакций производных карбоновых кислот -> Связь структуры белка с ферментативной активностью




ПОИСК





Смотрите так же термины и статьи:

Белки ферментативная активность

Белки ферментативный

Белок белки структура

Структура белка

Ферментативная активность



© 2024 chem21.info Реклама на сайте