Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение кал ция вольфраме н его соединениях

    Реакция определения никеля (И) диметилглиоксимом (ОНг) в щелочной среде в присутствии окислителей получила большое распространение. В результате реакции образуется соединение, растворы которого окрашены в бурый цвет (отношение N1 [)Нг = = 1 3). Максимальное поглощение наблюдается при >, = 470 нм-, значение е= 13 000. В качестве окислителя используют раствор иода. Никель может быть определен указанной реакцией в сталях в присутствии ванадия, молибдена. Вольфрам, хром и титан могут присутствовать до 18%. Мешают медь, кобальт и все элементы, ионы которых дают осадки гидроокисей в щелочной среде. Это первый недостаток метода, второй — малая чувствительность. [c.493]


    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]


    Основу — вольфрам отделяют от микроколичеств натрия сорбцией вольфрама Сефадексом ДЕАЕ [898]. Метод применен для определения натрия в вольфраме и его соединениях. [c.47]

    Тиогликолевая кислота образует с тяжелыми металлами внутрикомплексные окрашенные соединения. В кислой среде золото, серебро и медь дают устойчивые желтые комплексы. В аммиачной или слабокислой среде образуют комплексы молибден (VI), вольфрам (VI), уран (VI), никель (II), кобальт (II), висмут (III), железо (III) и марганец (II). Применяется для фотометрического определения железа (III) как добавка при определении олова (II) с дитиолом, а также для определения молибдена (VI) и рения (VII). [c.208]

    К числу тяжелых металлов относят хром, марганец, железо, кобальт, никель, медь, цинк, галлий, германий, молибден, кадмий, олово, сурьму, теллур, вольфрам, ртуть, таллий, свинец, висмут. Употребляемый иногда термин токсические элементы неудачен, так как любые элементы и их соединения могут стать токсичными для живых организмов при определенной концентрации и условиях окружающей среды. [c.93]

    Быстрый и достаточно точный фотометрический метод определения около 1 % Мо в простых и легированных сталях, содержащих никель, хром,. вольфрам и другие элементы, включает экстракцию роданидных соединений пятивалентного молибдена диэтиловым эфиром [601]. Вольфрам удерживают в растворе добавлением винной или лимонной кислоты. [c.221]

    При определении молибдена в вольфрамовых рудах, ферровольфраме и технической вольфрамовой кислоте полученное окрашенное роданидное соединение экстрагируют бутилацетатом [1546]. Вольфрам удерживают в водной фазе добавлением фторида натрия. Менее пригодна для этой цели винная или лимонная кислота. [c.222]

    Следы мышьяка, цинка, железа, молибдена и других элементов можно определять в вольфраме [590, 591]. При определении 1,4 1,5 и 2,0 мкг Мо в 0,1 г вольфрама было найдено соответственно 1,2 1,5 и 1,7 мкг Мо. Непосредственному определению молибдена мешают образовавшиеся при облучении потоком нейтронов радиоактивные изотопы вольфрама с относительно большим периодом полураспада. Поэтому сначала осаждают вольфрам и молибден а-бензоиноксимом из кислого раствора, затем отделяют молибден от большей части вольфрама экстракцией роданидных соединений пятивалентного молибдена бутилацетатом. Затем осаждают сульфид молибдена после добавления тартрата для удержания вольфрама в растворе. [c.244]

    При определении содержания вольфрама вольфрам (VI) восстанавливают в солянокислом или сернокислом растворах с помощью хлорида олова. Восстановление необходимо проводить после прибавления роданида, в противном случае образующиеся низшие соединения вольфрама могут находиться в коллоидном, менее реакционноспособном состоянии. Оптимальная кислотность для образования комплексного соединения создается 8,5—9,5 М раствором соляной кислоты. Кроме хлорида олова, в качестве восстановителя применяют (III). Оптимальная кислотность при использовании этого восстановителя соз- [c.171]

    Принцип метода. Определение основано на реакции образования соединения молибдена (V) с роданидом аммония в солянокислом растворе. В качестве восстановителя используют тиомочевину в присутствии сульфата меди. Влияние ниобия устраняют введением оксалата аммония. Вольфрам определению не мешает. [c.177]

    Некоторые редкие элементы с трудом распределяются по группам, установленным старой классификацией качественного анализа. Так, Тредвелл помещает таллий, ванадий, молибден и вольфрам в эту группу. Но против такой классификации имеются возражения. С аналитической точки зрения отмечается например, сходство вольфрамовой кислоты, с одной стороны, с молибденовой кислотой, с другой — с кремневой. Селен и теллур а своих соединениях имеют определенно кислотный характер и их не следовало бы относить к катионам. [c.543]

    Из рассмотренных примеров фотохимического комплексонометрического титрования отдельных катионов и их смесей видно, что фотохимическое титрование можно применять для определения катионов, которые сами не способны восстанавливаться под действием света. Это значит, что можно определять очень многие элементы, как те, которые могут фотохимически восстанавливаться или окисляться (элементы с переменной валентностью), например железо, медь, серебро, уран, молибден, вольфрам, рений, таллий, золото, ртуть, ванадий, хром, мышьяк и другие, так и элементы с постоянной валентностью, способные образовывать комплексные соединения и оказывать при этом ингибирующее или сенсибилизирующее действие на фотохимические реакции. К последней группе принадлежат практически все металлы, образующие двух-, трех- или четырехзарядные катионы. [c.40]

    В настоящее время широкое применение в амперометрическом титровании находят органические вещества. Как известно, органические реагенты вступают в реакции со многими неорганическими соединениями, образуя малорастворимые и комплексные соединения. Значительная часть таких органических реагентов в процессе электролиза при определенных условиях способна восстанавливаться или окисляться на электроде (ртутном или твердом), давая предельный ток, величина которого будет прямо пропорциональна содержанию реагентов в растворе в широком интервале концентраций. В этих случаях можно успешно проводить амперометрическое определение путем прямого титрования по предельному току восстановления (или окисления) органического реагента на электроде. При электрохимическом окислении реагента, как правило, в качестве индикаторного электрода применяют твердые электроды (платина, тантал, вольфрам) при титровании по предельному току восстановления органического реагента чаще всего применяют ртутно-капельный электрод. [c.137]


    Молибден и вольфрам образуют разнообразные комплексные соединения. Этим широко пользуются в аналитической химии для определения как самих металлов, так и элементов, вступающих с ними в комплексные группы. [c.65]

    Выбор метода количественного определения вольфрама зависит от объекта анализа, от ожидаемого содержания вольфрама в нем, от требуемой точности определения и быстроты выполнения анализа и ряда других обстоятельств. Общепринятым методом определения вольфрама в рудах является колориметрический метод, основанный на восстановлении в кислой среде комплексного соединения вольфрама с роданидом щелочного металла. При этом появляется зеленовато-желтая окраска позволяющая определять вольфрам даже при содержании его порядка 0,1 мг ШОз в 100 мл раствора. Определение вольфрама этим методом получило широкое распространение благодаря целому ряду преимуществ его перед другими методами. Колориметрические определения могут проводиться без всякого специального оборудования и поэтому незаменимы при полевых определениях. С другой стороны, использование современных фотоколориметров позволяет в условиях стационарной лаборатории довести колориметрические определения до высокой степени точности. [c.92]

    Определение состава соединений, полученных в присутствии аммиака п щелочи, показывает, что в этих соединениях отношение N1 ОНз = 1 3. Наиболее вероятно, что валентность никеля в этих соединениях равна трем. Более устойчивые комплексные соединения образуются в присутствии щелочи. В качестве окислителя лучше использовать раствор иода. Никель может быть определен указанной реакцией в сталях Б присутствии кобальта, ванадия, молибдена. Вольфрам, хром и титан могут присутствовать до 18%. Мешают медь и все эле-Гидроик-исей при действия [c.158]

    Мешающее влияние алюминия, железа, висмута, титана устраняют повторной экстракцией хлороформ1юго экстракта буферным раствором. Влияние органических соединений устраняют окислением азотной кислотой или сплавлением со щелочью. Мешает определению вольфрам при содержании более 0,5 мг. [c.226]

    Кирстеном и Регозинским описано устройство для нагревания реакционной смеси в пробирке А со стеклянной пробкой (рис. 6.13). После того как отщепление алкоксильной группы завершено, реакционную пробирку открывают и содержимое переносят в прибор для перегонки. Описаны другие приборы, упрощающие определение алкоксильных групп. Самсел и Мак-Хард предложили прибор для анализа метил- и этилцеллюлозы. Бейли описал прибор для определения алкоксильных групп при исследованиях пульпы и бумаги. Гоффман и Вольфром предложили устройство для определения алкоксильных соединений, [c.127]

    Восстановление соединений молибдена и вольфрама в степени окисления +6 дает соединения с более низкими степенями окисления. В веществах, известных под названием молибденовой или вольфрамовой сини, молибден и вольфрам нельзя считать входящими в состав одного определенного соединения или имеющими определенную степень окисления. В зависимости от выбора исходных соединений (например, М0О3, МоОз-НгО, молибдаты то же самое для вольфрама), используемого восстановителя (например, 2п, ЗпСЬ или РЬ в солянокислом растворе нагревание МоОз-2Н20 в ампуле при 110 °С с порошкообразным молибденом и т. д.) и продолжительности процесса могут быть получены различные соединения, содержащие оксидные или гидроксидные группы (табл. В.37). В аналитической практике при открытии вольфрама в виде вольфрамовой сини име- [c.621]

    Метод определения рения а-фурилдиоксимом отличается большой чувствительностью и избирательностью. Молибден, вольфрам и ванадий, обычно сопутствующие рению в природных соединениях и сплавах, в соответствующих условиях не мешают определению малых количеств рения а-фурилдиоксимом. Соединение рения с а-фурилдиоксимом, полученное в присутствии хлорида олова (И) и ацетона (24— 26 об. %), при кислотности 0,6—1,0 и. НС поглощает при Хтах 530 нм е = 4,3 10". Раствор реагента в ацетоне поглощает в УФ-об-ласти спектра (220—330 пм) и не мешает измерению оптической плотности комплексного соединения рения. [c.196]

    Для определения алюминия в соединениях вольфрама описан фотометрический метод с помощью арсеназо [5031 вольфрам мешает определению алюминия (допустимо присутствие до 40 мкг вольфрама). Вольфрам отделяют предварительно с помощью Р-нафтохино-лина. Избыток последнего, мешающий определению алюминия, отделяют прибавлением щелочи до сильнощелочной реакции. [c.204]

    Родамин С — темные кристаллы с зеленоватым блеском или красновато-фиолетовый порошок. Растворимость в 100 мл воды 0,78 г, этанола 1,47 г, растворим в ацетоне. Нерастворим в бензоле, мало растворим в растворах кислот и щелочей. Этанольные и водные растворы синеватокрасного цвета с сильной красной флюоресценцией, особенно заметной в разбавленных растворах. Слабо растворим в растворах соляной кислоты и гидроксида натрия. Очищают перекристаллизацией из этанола. Применяют для обнаружения и определения сурьмы (П1), (5ЬС1б) , вольфра-матов, цинка, 2п(5СН)4]2- и ионов других элементов, а также в качестве люминесцентного реактива для определения малых количеств таллия (П1), галлия (П1) и др. В солянокислом растворе анионы хлоргаллата образуют с родамином С комплексное соединение, экстрагируемое органическими растворителями и флюоресцирующее оранжево-красным цветом. Наибольшая яркость флюоресценции наблюдается при его извлечении смесью бензола с эфиром в соотношении (8 5) из 6 н. соляной кислоты. Чувствительность реакции 0,01 мкг галлия в 1 мл. [c.194]

    Шестивлентный вольфрам не дает с 8-оксихинолин-5-суль-фокислотой каких-либо окрашенных соединений и при условиях Определения молибдена не восстанавливается, а поэтому не влияет на результаты определения молибдена. Однако в присутствии больших количеств вольфрама (больше 10 мг) нужно увеличить количество добавляемого реагента. Определению молибдена мешают ванадий, двухвалентное железо, кобальт, цинк, большие количества меди, комплексон III и винная кислота. Кальций, магний, барий, никель, кадмий, двухвалентный марганец, трехвалентный хром, алюминий, торий, небольшие количества висмута и урана, цианид, щавелевая кислота не мешают определению молибдена. [c.228]

    Гравиметрические методы определения. Красный осадок соединения кобальта (III) с 1-нитрозо-2-нафтолом примерного состава Со(СюНб02 )з-пН20 образуется в слабокислых (pH 3.8—4,0), нейтральных и аммиачных растворах. Образовавшееся соединение при подкислении не разрушается. Мешают осаждению кобальта серебро, висмут и олово. Железо и вольфрам можно маскировать фторид-ионом. Не мешают осаждению кобальта равные по содержанию количества никеля, алюминия, кадмия, кальция, магния, бериллия, хрома, свинца, марганца, цпнка, сурьмы, мышьяка, ртути. В присутствии больших количеств никеля проводят переосаждение кобальта. После высушивания при 115°С состав соединения становится постоянным (п = 2), и оно применимо для гравиметрического определения содержания кобальта. В некоторых случаях отделение Со от сопутствующих элементов проводят осаждением в виде кобальтинитрита (гексанитрокобальтата III) каль я  [c.71]

    Определение содержания молибдена и вольфрама дитиоловым методом. Молибден (VI) и вольфрам (V) образуют в сильнокислой среде 4—12 М НС или 6—14 н. H2SO4, окрашенные в сине-зеленый цвет комплексные соединения с дитиолом (3,4-метил-1, 2-димеркаптобензолом) [c.172]

    Присутствие хлоридов, сульфатов, фосфатов в титруемом растворе исключается, так как эти ионы также образуют малорастворимые осадки с закисной ртутью. Равным образом исключается применение органических кислот — винной, щавелевой или лимонной, которые иногда применяются для связывания вольфрама (VI) в комплексное соединение с тем, чтобы в его.присутствии определять молибден (например, при колориметрических определениях) с этими кислотами ртуть также образует осадки. Что касается катионов, то их влияние на определение молибдена и вольфрама обусловлено растворимостью соответствующих вольфраматов и мо-либдатов в данной среде. Так, например, в присутствии бария определение вольфрама делается практически невозможным, так как вольфрамат бария отличается весьма малой растворимостью в разбавленных кислотах и, следовательно, увлечет вольфрам в осадок до титрования, а более сильное подкисление приведет, как уже упоминалось, к растворению вольфрамата ртути. [c.193]

    Молибден экстрагируют хлороформом в виде его соединения с 5-фенилпиразолин-1-дитиокарбаминатом. Экстракт фотометрируют. Вольфрам определению молибдена ие мешает. Метод применен для определения молибдена в шеелитовом концентрате и молибденовой руде [301]. [c.249]

    Определение никеля фотоколориметрическим методом. Метод основан на реакции образования растворимого окрашенного в красный цвет комплексного соединения никеля с диметилглиоксимом в щелочной среде в присутствии окислителя. Состав образуемого комплекса пока полностью не установлен. Определению мешает большой избыток окислителя, так как он может вызвать обесцвечивание раствора. Определению мешают также железо, хром и марганец, поэтому при определении их связывают в растворимые бесцветные комплексные соединения сегнетовой солью (виннокислый калий-натрий). В этих условиях определению не мешают кобальт до 1,5%, молибден до 3%, хром до 18%, вольфрам до 18 %, медь до 2%, ванадий до 1 %. Измерение интенсивности окраски можно проводить визуальным методом, методом шкалы эталонных растворов, на фотоколориметре и спектрофотометре. [c.308]

    Объемному определению каждого из элементов после восстановления в редукторе, само собой разумеется, мешают все прочие восстанавливающиеся наряду с ним элементы, а именно железо, титан, европий, хром, молибден, ванадий, уран, ниобий, вольфрам и рений. Помимо того, следует упомянуть азотную кислоту, органические вещества, олово, мышьяк, сурьму и политионаты. Наиболее часто приходится сталкиваться с азотной кислотой, которая восстанавливается до гидроксил-амина и других соединений, на которые при титровании расходуется окислитель. Например, при определении железа в белой глине можно получить неверные результаты вследствие содержания нитрата аммония в осадке от аммиака, даже тщательно промытом. Для полного удаления азотной кислоты обычно требуется двукратное, даже лучше трехкратное, выпаривание раствора с серной кислотой до появления ее паров, причем стенки сосуда необходимо каждый аз тщательно обмывать. Иногда, как, например, в присутствии урана или при разрушении фильтровальной бумаги обработкой азотной и серной кислотами, азотная кислота удерживается настолько прочно, что для ее удаления двукратного выпаривания с серной кислотой недрстаточно. При разрушении фильтровальной бумаги можно избежать введения азотной кислоты, для чего к раствору, выпаренному в закрытом стакане до появления паров серной кислоты, прибавляют осторожно по каплям насыщенный раствор перманганата калия до появления неисчезающей розовой окраски, а затем продолжают нагревание в течение нескольких минут. [c.138]

    Комнлексообразующее действие комплексона III успешно используется в аналитической практике для устранения-влияния посторонних элементов. Так, нанример, способность двух- и трехвалентных металлов образовывать прочные комплексные соединения с комплексоном III дает возможность осаждать уран и титан а также и бериллий (который в отличие от большинства двухвалентных металлов не образует комплексных соединений с комплексоном III) аммиаком в присутствии многих элементов, в том числе алюминия и железа, что имеет весьма важное практическое значение. Описано также применение комплексона III при определении вольфрама и молибдена осаждением оксихинолином в ацетатной среде. Установлено, что в этих условиях осаждаются только молибден, вольфрам, уран и ванадий (V) [c.158]

    При использовании свинца в качестве восстановителя определению олова межают азотная кислота, вольфрам, молибден, хром и ванадий. Азотная кислота реагирует с иодистоводородной кислотой, выделяя иод, отчего получаются для олова понижённые результаты. Вольфрам восстанавливается с образованием соединения, окрашенного в синий цвет, и присутствие большого его количества маскирует конечную точку титрования (окрашивание крахмала иодом). Если же вольфрама мало и синяя окраска получаемых после его восстановления продуктов слаба и не мешает обнаружить конечную точку титрованиях крахмалом, то результаты получаются точные, так как соединения восстановленного вольфрама не титруются иодом. [c.339]

    Из табл. 3 видно, что чувствительность метода определения железа роданидами повышается, если реакцию проводить в присутствии ацетона чувствительность метода еще больше повышается, если определение железа проводить смесью трибутиламмоаия и амилового спирта. Проведению реакции мешает ряд веществ. Прежде всего должны отсутствовать анионы ряда кислот, которые дают более прочные комплексные соединения, чем роданид железа фосфаты, ацетаты, арсенаты, фториды, бораты, а также хлориды и сульфаты, присутствующие в значительных количествах. Также должны отсутствовать элементы, ионы которых дают комплексные соединения с роданидом кобальт, хром, висмут, медь, молибден, вольфрам, титан в 3- и 4-,валентном состоянии, ниобий, палладий, кадмий, цинк, ртуть. [c.136]

    Определению молибдена в виде роданида не. мешают алюминий, кобальт, уран, тантал. Мешающее влияние вольфрама можно устранить, связывая вольфрам в виннокислый комплекс, который пренякствует реакции вольфрама с роданидами. Основны-ми мешающими элементами являются хром и ванадий, хотя эти помехи мало сказываются, если применяется метод экстрагирования соединения роданида молибдена. [c.179]

    При действии восстановителей на растворы молибденовых соединений образуются так называемые синие окислы , или молибденовая синь , представляющие собой соединения, содержащие шести- и пятивалентный молибден. Обычно образуются рентгеноаморфные продукты, однако Глемзер получил и кристаллические осадки гидратированных окислов, которым он приписывает формулы М08015(0Н) 16, Мо40п(0Н)2 и М0204(0Н)2. Эти соединения, в противоположность аморфным, устойчивы в щелочах и в растворах аммиака [38]. Реакция образования молибденовой сини — весьма чувствительная реакция на молибден (значительно более чувствительная, чем аналогичная реакция на вольфрам), широко используется в различных вариантах как для определения самого молибдена, так и элементов, связанных с ним в комплексные соединения (например, фосфора в комплексной фосфорномолибденовой кислоте, германия в германомолибденовой кислоте и т. д.). Окислительно-восстановительный потенциал системы Мо /Мо равен +0,5 в, поэтому для восстановления можно применять растворы двухвалентного олова или трехвалентного титана ( о систем 8п +/3п2+ и Т1 +/Т1 + менее положительны) или различные менее электроположительные металлы — олово, висмут, свинец, кадмий, цинк и др., а также некоторые органические соединения, например глюкозу. [c.54]

    Для определения вольфрама в очень богатых рудах и концентратах применяется обычно весовой метод. Весовой метод основан на выделении вольфрама в осадок в виде вольфрамовой кислоты или другого малорастворимого соединения, чаше всего— вольфрамата ртути Hg2W04. Последний метод применялся раньше довольно часто и рекомендуется некоторыми авторами и в настоящее время [227, 228]. Однако соли одновалентной ртути осаждают не только вольфрам, но и молибден, ванадий, фосфор кроме того, отрицательной стороной метода является необходимость прокаливания осадка для получения весовой формы постоянного состава (трехокиси вольфрама), а прокаливание ртутных солей сопряжено с опасностью для здоровья работающих. Поэтому практически этот метод в наших лабораториях при серийной работе не применяется. [c.93]

    Продуктом передела вольфрамовых концентратов является, как указано выше, вольфрамовый ангидрид. Для определения чистоты вольфрамового ангидрида применяют один из старейших методов анализа соединений вольфрама, основанный на летучести его хлоридов, так называемый метод гидрохлорирования навеску вольфрамового ангидрида помещают во взвешенную фарфоровую лодочку и нагревают в трубчатой печи при 700—800 С при пропускании тока сухого хлористого водорода. Вольфрам, легко соединяясь с хлором, возгоняется, а в лодочке остаются не хлорирующиеся в данных условиях примеси — крем-некислота, железо и др., количество которых, согласно стандарту на вольфрамовый ангидрид, не должно превышать 0,15% от веса взятой навески. [c.94]

    Неионогенные моющие вещества осаждаются из раствора в виде комплексного соединения бария, вольфрамофосфата и моющего вещества. После отделения жидкости центрифугированием определяют колориметрически вольфрам в осадке добавлением гидрохинона в среде серной кислоты. Вариант Л применяется для определения в присутствии малых количеств белков, а вариант Б — в присутствии больших количеств. [c.323]

    Мешают определению кобальт, медь,висмут, молибден, олово, вольфрам, кадмий, трехвалентное железо. Все эти элементы дают с реагентом трудпорастворимые соединения. [c.55]


Смотреть страницы где упоминается термин Определение кал ция вольфраме н его соединениях: [c.16]    [c.116]    [c.124]    [c.690]    [c.669]    [c.681]    [c.764]    [c.333]    [c.22]   
Аналитическая химия кальция (1974) -- [ c.202 ]




ПОИСК





Смотрите так же термины и статьи:

Определение алюминия химическими соединениях вольфрама

Определение вольфрама в виде соединений, пригодных в качестве весовой формы

Определение вольфрама химических соединениях

Определение магния вольфраме и его соединениях

Определение малых количеств вольфрама в молибдене и его соединениях

Определение никеля молибдене, вольфраме и их соединениях

Определение примесей в вольфраме и его соединениях

Определение соединении вольфрама в рудах и продуктах их обогащения

Соединение определение

Спектральное определение вольфраме и его соединения



© 2024 chem21.info Реклама на сайте