Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Резины и ориентация

    Процесс переработки полимерного материала всегда сопровождается его пластической деформацией, которой могут сопутствовать химические реакции и в ряде случаев необратимое изменение физических свойств, приводящее к возникновению принципиального отличия между характеристиками исходного материала и характеристиками готового изделия (отверждение термореактивных материалов, вулканизация резин, ориентация волокна и т. д.). [c.6]


    Кожухотрубный графитовый теплообменник по конструкции похож на теплообменник, изготовленный из металла и состоит из труб и кожуха. Графитовые трубы изготавливаются выдавливанием, при этом кристаллы ориентируются преимущественно параллельно каналу трубы. Такая ориентация улучшает теплопроводность в продольном направлении и ухудшает ее в радиальном направлении, т. е. в направлении необходимой теплопередачи. Трубы монтируются в графитовых головках и вставляются в стальной кожух. Кожух теплообменника сделан из сплавов меди, алюминия, стали, покрытой резиной, свинцом или стеклом, и из графита. [c.112]

    Процесс набухания может вызывать необратимые изменения механических свойств эластомеров за счет ослабления межмолекулярных связей. При малой степени набухания преобладает положительное влияние гибкости цепей, способствующее ориентации, и прочность повышается. Если же эффект повышения гибкости цепей незначителен, то превалирует понижение прочности. Долговечность ненапряженных резин уменьшается тем значительнее, чем больше они набухают. При набухании резин в водных средах в напряженном состоянии (НК, ХП) оказалось, что, наоборот, долговечность их при набухании возрастает. Это явление объясняется облегчением накопления остаточной деформации при увеличении степени набухания, что приводит к уменьшению действующего напряжения [c.117]

    Наличие ориентации волокнистых наполнителей в резинах устанавливали непосредственно по микрофотографиям поверхности разрушения или срезов, а также косвенно, по изменению свойств смесей или вулканизатов в зависимости от направления расположения волокон. Известно, что тип волокон влияет на степень их ориентации в эластомерной матрице. Жесткие волокна легче ориентируются, чем гибкие последние обладают повышенной скручиваемостью, а также склонностью к агломерации, которая проявляется у всех видов органических волокон с необработанной поверхностью. Углерод- [c.183]

    Полученная формула применима и к твердым, и к высокоэластическим телам, однако физическая природа всех ее членов одинакова лишь в первом случае. Для резины только первый член, выражающий работу против сил всестороннего сжатия, имеет деформационную природу, характерную для твердых тел. Последующие же два члена обусловлены совершенно иной—высокоэластической — природой деформации, связанной с перегруппировкой и ориентацией звеньев цепных молекул. Если образец имеет форму параллелепипеда, грани которого в недеформированном состоянии равны Soi, S02, S03, то часто удобнее использовать условное напряжение Pi = Pi/so. Формула для работы примет тогда вид  [c.114]

    Световая микроскопия относится к визуальным методам, основанным на использовании электромагнитных колебаний с длиной волны, намного меньшей размеров изучаемого объекта. Применительно к полимерам метод позволяет определить размеры и форму надмолекулярных образований не менее 0,4 мкм, поскольку использует длину волны видимого света (0,4-0,8 мкм), и применяется для изучения морфологии поликристаллов, изучения толщины и поперечного сечения образцов. Этим методом можно изучать распределение концентрации и ориентацию наполнителя (в том числе, резины как наполнителя для других полимеров), взаимодействие между резиновой матрицей и наполнителем, исследовать поверхность резин. [c.195]


    Влияние величины деформации на морозостойкость изучается при деформациях сжатия и растяжения (ГОСТ 408-78. Резина. Методы определения морозостойкости при растяжении). В области малых деформаций растяжения с возрастанием деформации коэффициент морозостойкости возрастает наиболее отчетливо это проявляется для резин, наполненных техническим углеродом, структура которого разрушается при небольших деформациях. Экстремальный характер зависимости для ненаполненных резин связан с ориентацией и кристаллизацией цепей при растяжении, а также с разрушением и перестройкой их структуры под действием больших напряжений. Вследствие существенного влияния величины деформации на коэффициент морозостойкости следует проводить испытания при деформациях, близких к реальным для изделий значениям. Кроме того, необходимо учитывать, что все используемые методы определения морозостойкости не пригодны для оценки эксплуатационных свойств РТИ, которые определяются помимо морозостойкости резины еще и конструкцией и формой детали, режимами и условиями ее эксплуатации. [c.548]

    Регулярность строения каучука имеет решающее влияние на его способность ориентироваться и кристаллизоваться. При растяжении гибкие участки макромолекул каучука начинают выпрямляться и ориентироваться в направлении действия деформирующей силы. При этом некоторые каучуки способны к фазовому переходу из аморфного в кристаллическое состояние (НК, СКИ-3, СКД, Б К, хлоропреновый каучук). Резины на их основе обладают повышенной прочностью (см. Приложение IX). Резины на основе ориентированных некристаллизующихся каучуков ведут себя при растяжении подобно резинам на основе кристаллизующихся каучуков. По мере распрямления участков макромолекул проявляется их высокая степень ориентации, при этом, как следствие, возрастает жесткость, а следовательно, прочность резин (рис. 8.2). [c.113]

    Воздействие жидких агрессивных сред сопровождается набуханием резин, вызывающим в напряженном состоянии два противоположных явления. Положительно сказывается на прочностных свойствах выравнивание напряжений, облегчение ориентации при растяжении из-за увеличения подвижности молекул, но при больших значениях набухания наблюдается уменьшение прочности из-за ослабления межмолекулярных взаимодействий. [c.200]

    Таким образом, увеличение механической прочности полимерной композиции при введении в него наполнителя обусловлено силами адгезии и упрочнением самого полимера вследствие уменьшения его толщины и ориентации макромолекул. Так как силы адгезии могут достигать величины порядка 3000 кг/см2, что превосходит техническую прочность каждого из компонентов композиции, большое значение имеют структура наполнителя (анизотропность, волокнистость, слоистое строение) и другие факторы, определяющие его механическое поведение. Поэтому у резин, содержащих легко расщепляемые на чешуйки графит или тальк, усиливающий эффект наполнителя очень мал несмотря на высокую адгезию полимера к нему. Напротив, усиливающий эффект очень велик у таких наполнителей, как ткань, хлопковые очесы, древесный шпон, бумага и другие слоистые и волокнистые материалы. [c.472]

    Структура полимерного материала оказывает сильное влияние на прочность. Для пространственно-структурированных полимеров (например, резин) главным структурным фактором является степень поперечного сшивания (число поперечных связей в пространственной сетке), а также структуры, образуемые активными наполнителями. Для твердых полимеров одним из главных структурных факторов, резко повышающим прочность, является ориентация цепей, сохраняющаяся неопределенно долгое время из-за заторможенности релаксационных процессов в твердых полимерах. Влияние молекулярной ориентации на прочность специфично только для полимерных материалов. На этом свойстве основываются процессы получения синтетических волокон, пленочных материалов, ориентированного органического стекла. [c.127]

    Природные волокна имеют заранее ориентированную структуру до их переработки. В изделиях из резин и пластмасс, в которых материал находится практически в изотропном состоянии, ориентация, обычно незначительная, возникает лишь в процессе деформации. При эксплуатации этих изделий обычно наблюдаются небольшие деформации или вообще такие виды напряженного состояния (например, сжатие), при которых заметное упрочнение материала не происходит. Поэтому для упрочнения резин и пластмасс пользуются другими методами, например введением различных наполнителей. [c.134]

    Способность резин к ориентации сопоставлялась с их прочностью при растяжении. Ненаполненная резина из СКС-30 обладает малой способностью к ориентации и низкой прочностью. При удлинении на 400% степень ее ориентации определяется величиной ср=0,10, а прочность при растяжении равна 20 кгс см . При наполнении активным наполнителем степень ориентации перед разрывом резко возрастает, увеличиваясь в 8—10 раз. В такой же степени увеличивается прочность при растяжении (рис. 92), Степень ориентации и прочность достигают максимума у резин, содержащих примерно 30 г сажи на 100 г каучука. Дальнейшее наполнение вызывает уменьшение степени ориентации и падение прочности. [c.154]


    Следовательно, резины растягиваются до тех пор, пока при возрастании напряжения еще возможно увеличение количества ориентированных цепей и главным образом улучшение ориентации. После того как дальнейшее перемещение макромолекул ста- [c.154]

Рис. 92. Зависимость между прочностью и степенью молекулярной ориентации перед разрывом в технических резинах из СКС-30 с различным содержанием сажи . Рис. 92. <a href="/info/1779196">Зависимость между прочностью</a> и <a href="/info/220946">степенью молекулярной ориентации</a> перед разрывом в <a href="/info/403831">технических резинах</a> из СКС-30 с <a href="/info/201414">различным содержанием</a> сажи .
    Это сходство подтверждается также образованием продольных треш,ин при экспозиции в озоне резин из НК и наирита, растянутых до 500—600% (рис. 156). Ориентация и кристаллизация при растяжении приводит, как известно, к упрочнению резин, прорастание трещин перпендикулярно направлению ориентации затрудняется, а образование трещин путем роста параллельных сколов облегчается. Аналогичное явление—образование продольных трещин серебра наблюдалось при вынужденно-эластической деформации ряда волокон и пластиков в условиях их кристаллизации и ориентации пачек- . [c.283]

    При испытании резин в области больших деформаций по сравнению с испытаниями в области малых деформаций происходит сильная ориентация и упрочнение полимера. Очень сильное изменение структуры и упрочнение происходит в резине из НК. Об этом свидетельствуют значения константы В в выражении [c.293]

    Изменение межмолекулярного взаимодействия может, влияя на рост напряжения и упрочнение с увеличением деформации, привести к сдвигу в область больших или меньших деформаций. Можно грубо оценить роль этого фактора, рассмотрев для наглядности графическую схему возникновения и сдвига г, , представленную на рис. 180. На этой схеме кривая 1 отражает гипотетическую зависимость -с от в при условии неизменности структуры резины в области разных деформаций. С ростом е величина х уменьшается (из-за одновременного увеличения с). Вследствие того, что фактически с ростом деформации происходит ориентация и упрочнение полимера, т должно возрастать. Влияние упрочнения определяется гипотетической кривой 2. В результате суммирования значений х на кривых / и 2 при соответствующих деформациях получается реально наблюдаемая зависимость т от е с минимумом—и максимумом—(кривая 5). При увеличении межмолекулярного взаимодействия сопротивление статической усталости будет возрастать и кривая 1 перейдет в кривую 4. а ориентация с ростом деформации будет затрудняться и кривая 2 перейдет в кривую 5. Р1 то и другое должно привести к сдвигу е,, 3 сторону большей деформации (кривая 3 переходит в кривую 6). И наоборот, с ослаблением межмолекулярного взаимодействий [c.323]

    Ковалентная вулканизация карбоксилсодержащих каучуков придает резинам свойства, аналогичные эластомерам без карбоксильных групп. Поэтому для карбоксилсодержащих каучуков важное значение приобретает вулканизация с помощью окисей, гидроокисей и других соединений металлов за счет реакции соле-образования. Получаемые при этом резины уже при относительно низком содержании звеньев метакриловой кислоты в сополимере (1—3%) характеризуются высокими механическими и эластическими свойствами. Рентгенографически в солевых резинах при растяжении обнаружен сильный ориентационный эффект. Тем самым установлено, что дефекты в структуре полимерной цепи, обусловленные неоднородностью ее строения, и отсутствие вследствие этого склонности к ориентации и кристаллизации, могут быть компенсированы за счет изменения природы вулканизационной сетки [1]. [c.400]

    Примером неориентированных изоморфных графов могут служить графы, изображенные на рис. IV-6, а, б. Обязательным условием пзоморфности ориентированных графов является одинаковая ориентация всех дуг. Получение графа, изоморфного некоторому исходному графу, можно наглядно представить, изобразив этот исходный граф на упругой поверхности, например на листе резины. Какой бы деформации без разрушения не подвергалась поверхность листа резины, изображенный на ней граф не претерпит топологических изменений. Каждый вновь образующийся граф при данной деформации листа резины будет изоморфен исходному графу, хотя геометрические фигуры, изображающие графы, при этом существенно отличаются друг от друга. [c.118]

    Уменьшение эластичности кристаллического полимера после ориентации наглядно иллюстрирует рис. 24. Неориентированный кристаллический полиамид ведет себя под нагрузкой как высокоэластичная резина. После ори ентации силы межмолекуляр ного взаимодействия настолько возрастают, что. этот же материал становится жестким и твердым Кристаллические по-, имеры можно подвергап. ори- [c.56]

    Скорость кристаллизации достигает максимума при —25. При этой температуре процесс кристаллизации заканчивается в течение 10 час., тогда как при +20 он происходит в продолжение года. Растяжение натурального каучука приводит к ориентации полимера, следовательно, способствует повышению скорости и степени кристаллизации. Этим объясняется высокий предел прочности при растяжении резин на основе натурального каучука. Выше 45° натуральный каучук утрачивает кристалличность и переходит в аморфное состояние, одновременно начинают возрастать пластические деформации. При обычной температуре натуральный каучук представляет собой высокоэластичный полимер. Высокую эластичность каучук сохраняет и при низких температурах, вплоть до —70°, что свидетел1>ствует о высокой морозостойкости этого полимера. Температура перехода его в стекловидное состояние составляет минус 70—минус 75  [c.236]

    Процесс релаксации напряжения в эластомерах, в частности в резинах, связан с протеканием в них как физических, так и химических процессов (см. 2 гл. П). Физическая релаксация объясняется перегруппировкой различных структурных элементов, выведенных из состояния равновесия внешними силами, и происходящими в поле действия межмолекулярных сил. Процессы ориентации свобо)1ных сегментов определяют быструю стадию физической релаксации, протекающую при обычных температурах практически мгновенно. Именно подвижность свободных сегментов ответственна за основной процесс стеклования, которому соответствует а-процесс в уже знакомом нам (гл. I) спектре времен релаксации, приведенном на рис. П. 14 для резин из диметилстирольного каучука при 20°С. Медленная стадия физической релаксации связана с молекулярной подвижностью сегментов, входящих в элементы надмолекулярной структуры с временами релаксации, находящимися в пределах 10 —10 с (при 20 °С). Это как раз сегменты с максимальной взаимной корреляцией движений. В зависимости от размеров и типа упорядоченных микрообластей, [c.99]

    Получают К. к. эмульсионной сополимеризащ1ей мономеров (в кислой среде). Способны вулканизоваться оксидами двухвалентных металлов (ZnO, MgO или др.). В возникающей при этом гетерог. вулканизац. сетке принимают участие и частицы оксида металла, на пов-стях к-рых образуются лабильные связи солевого типа с группами СООН полимера (энергия связи 4-8 кДж/моль). Это обусловливает высокий ориентац. эффект при деформации, способствующий высокой прочности ненаполненных вулканизатов (резин). Для предотвращения больших остаточных деформаций (разнашиваемости) вулканизацию осуществляют оксидами металлов в сочетании с серой и серосодержащими соед., иапр. с тиурамами. Резины характеризуются повышенными долговечностью, сопротивлением раздиру и росту трещин, прочностью связи с кордом и металлич. пов-стями, высокими тепло- и износостойкостью а 20 50 МПа, относит, удлинение 600-900%. Однако для К. к. характерна повыш. склонность к подвулканизации, что препятствует их широкому применению. Один из путей преодоления этого недостатка-замена карбоксильных групп на сложноэфирные, омыляемые при вулканизации. [c.320]

    ПРОТИВОУТОМИТЕЛИ, хим. добавки к полимерньпи материалам, гл. обр. резинам, повышающие их усталостную вьшосливость (долговечность), т. е. число циклов деформации до разрушения, а также замедляющие изменение св-в при многократных переменных мех. воздействиях (т. наз. утомление). Утомление может вызывать изменение макроскопич. размеров образца (напр., под влиянием накопления остаточной деформации), физ. структуры (возможна кристаллизация, ориентация макромолекул), строения трехмерной сетки у сшитых полимеров, техн. св-в (напр., упругих, прочностных, диэлектрич.). [c.125]

    Перегруппировка звеньев цепных молекул, происходящая при ориентации, не приводит к изменению газопроницаемости полимеров, находящихся в высокоэластическом состоянии . Влияние растяжения на проницаемость резин из натурального каучука, вулканизованного перекисями, было изучено Барри и Пляттом Они определяли проницаемость по отношению к пропану, н-бу-тану и изобутану при растяжении от О до 400% в интервале температур 30—50 °С. Полученные результаты экстраполировались к нулевой концентрации При 200%-ном растяжении резины изменения коэффициента проницаемости не наблюдалось, выше 200% происходило постепенное снижение проницаемости (до 40% от исходной). Интересно, что экспериментально полученное значение Р для частично закристаллизованных пленок медленно уменьшается со временем (1% в месяц), стремясь к равновесному значению Р°°. Это уменьшение может быть обусловлено постепенной кристаллизацией [c.151]

    Систематические исследования, проведенные в последние годы, показали, что некоторые свойства резин при переходе от одного типа поперечных связей к другому меняются так же, как и при изменении структуры эластомера Характер вулканизационных связей влияет на стойкость вулканизатов к окислению и утоМле-нию и долговременную прочность. Например, при вулканизации серой в присутствии днфенилгуанидина образуются полисульфид-ные связи —С—8зс—С—, не стойкие к термомеханическим воздействиям, но обеспечивающие благоприятные условия для ориентации каучука при растяжении. Резины с указанной вулканизующей системой обладают высокой прочностью. При структурировании перекисями и излучении высоких энергий возникают —С—С-связи, затрудняющие ориентацию каучука при растяжении. Резины имеют низкую прочность, но высокую термомеханическую и термоокислительную стойкость. Поэтому для создания резин с высокими эксплуатационными характеристиками применяют соединения, обеспечивающие получение поперечных связей различного строения, в том числе алкилфеноло-формальдегидные (АФФС) и бисфеноль-ные (БФС) смолы. I [c.149]

    Каучук или резина при обычных условиях деформации быстро восстанавливают исходную форму после удаления внешнего усилия, но если деформировать тот же каучук в более жестких условиях, когда возможно течение его, он приобретает заметную анизотро-дию, обусловленную ориентацией цепей и сохраняющуюся в течение многих часов. При деформации вулканизатов и при не слишком больших нагрузках, когда исключено перемещение цепей, соединенных между собой прочными химическими связями, ориентируются одни звенья. [c.460]

    Если в резиновой смеси мало наполнителя (до 5%), то образец разрешается по объемному, более слабому каучуку, поверхность разрыва Р возрастает вследствие огибания ею частиц наполнителя и связанного с ними пленочного каучука. Для достижения разрывного напряжения а = Р/Р необходимо компенсировать увеличение Р повышением усилия Р, что и приводит к упрочнению резины. При наполнениях, достаточных для перевода большей части каучука в пленочное состояние, поверхность разрыва образуется по пленочному каучуку с наполнителем, где вследствие ориентации макролюле-кул прочность материала больше. Такая ориентация может быть достигнута также в результате растяжения каучука наполнителем. Поэтому даже неактивные наполнители дают известное упрочнение резины. [c.474]

    Разрыв высокоэластического материала отличается от хрупкого тем, что ему предшествует большая деформация связанная с ориентацией и выпрямлением полимерных цепей. Вместе с тем, как и при хрупком разрыве, сечение образца до приложения нагрузки и после разрыва и сокращения концов образца не изменяется, а поверхность разрыва располагается, как правило, нормально к растягивающим усилиям. При переходе от хрупкого к высокоэластическому разрыву прочность резины достигает в области стеклования максимального значения (рис. 39), а затем до-иольио резко снижается с повышением температуры. [c.76]

    Вблизи вершины надрыва материал находится в перенапряженном состоянии, вследствие чего в этом месте происходит дополнительная деформация и ориентация материала. Это обнаруживается при наблюдении образцов прозрачных резин в поляризованном свете (рис. 67), а] также при скоростной кино- ъeмкeЗ " . [c.108]

    Образование тяжей можно рассматривать как процесс расслоения ориентированного полимерного материала в неоднородном поле напряжений. Как следует из наблюдений Гуля и Черни-на39,4о, следы тяжей начинают образовываться в сечении образца впереди растущего надрыва. Следовательно, так же как у пластмасс впереди трещины имеется зона расслоившегося материала в виде трещины серебра , так и у резин впереди надрыва имеется зона материала, подготовленного к расслоению на тяжи. Это подтверждается исследованиями в которых было показано, что структура полимерного материала вблизи дефекта, разрастающегося в процессе разрыва, сильно отличается от структуры, характерной для образца в целом. По существу, рвется не исходный полимерный материал, а материал иной структуры, ориентированный и обладающий иными (по сравнению с исходным) релаксационными свойствами. Изменения, которые претерпевает материал в месте роста надрыва, определяют характер процесса разрущения образца. При существенном изменении степени дополнительной ориентации соответственно изменяются все характеристики прочности материала. Скоростной киносъемкой процесса разрыва удалось измерить дополнительную ориентацию в месте растущего надрыва, определить форму и размеры растущего дефекта при быстром разрушении и скорость роста надрыва на различных стадиях процесса разрушения. К концу процесса разрушения скорость роста надрыва быстро и скачкообразно увеличивается, что, вероятно, связано с обрывом тяжей. [c.112]

    Способность к молекулярной ориентации резин из некристал-лпзующихся каучуков исследовалась затем Лукиным . При растяжении таких резин относительная интенсивность аморфного гало на рентгенограммах перераспределяется, в результате чего возникают текстуры. Появление текстур на аморфном гало является свидетельством ориентации участков молекулярных цепей под действием внешнего напряжения. После фотометрирования рентгенограмм по двум взаимно перпендикулярным направлениям—по экватору и меридиану—степень ориентации определялась по формуле ф=а/й—1, где ф—степень ориентации, изменяющаяся от О для нерастянутых образцов а=Ь) до с э (предельная ориентация) а—интенсивность аморфного гало по экватору, Ь—по меридиану. [c.154]

    Прямая пропорциональная зависимость между прочно стью при растяжеигп и степенью орпентацип свидетельствует о том, что молекулярная ориентация является основным фактором, определяющим прочность резин. [c.155]

    Данные по временной зависимости прочности са. кенаполнен-ных резин, значительно более жестких материалов, чем ненаполненные резины, почти ложатся на прямые в обеих системах координат. Наполненные резины, следовательно, ио прочностным свойствам являются материалами, промежуточными между каучукоподобными и тверлтыми полимерами. Отсюда можно сделать вывод, что чем менее жестка резина, тем отчетливее проявляется отклонение от временной зависимости прочности, характерно для твердых полимеров. Причин этого по крайней мере две. Во-первых, чем меньше жесткость резины, тем в большей мере проявляется механизм разрыва, характерный для каучукоподобных пол 1меров (см. гл. III). Во-вторых, чем меньше жесткость резины, тем сильнее ориентация цепей каучука при больших напряжениях. [c.173]

    У резин истинное безопасное напряжение близко к нулю (см. рис. 99), ио-видр.мому, вследствие действия двух факторов, характерных для этих материалов. Во-первых, вследствие снижения. молекулярной ориентации с уменьшением нагрузки (безопасное напряженнее тем ниже, чем меньше ориентация) во-вторых. [c.175]

    Анализ экспериментальных данных приводит к выводу, что при разрыве энергия рассеивается не только вблизи вновь обра зующихся поверхностей, но во всем объеме. При этом рассеивающаяся энергия не пропорциональна площади новых поверхностей, и поэтому формулу Гриффита даже при замене поверхностного натяжения на характеристическую энергию раздира для резии применять нельзя. Кроме того, теория Гриффита, развитая им для хрупких материалов, не учитывает влияния молекулярно ориентации и изменений структуры резины при растяжении. [c.242]

    При введении пластификаторов в резину проявляется одновре-меипо две стороны их действия 1) уменьшение прочности и долговечности вследствие уменьшения межмолекулярных взаимодейст вий и 2) благоприятное влияние на прочностные свойства из-за более равномерного распределения напряжений, увеличения гибкости цепных молекул и облегчения их ориентации при растяжении. Взаимное наложение этих влияний приводит к тому, что, как показано Догадкиным, Федюкиным и Гулем , зависимость между прочностью и степенью набухания имеет сложный характер. Если при малых степенях набухания преобладает положи- [c.246]

    Молекулярная ориентация может затруднять рост как усталостных так и коррозионно-усталостных трещин. Следует иметь в виду, что в данном случае речь идет не об ориентации цепных молекул в массе образца, а о дополнительной их ориентации в вершинах трещин, где деформации значительно больше средней Например, на наполненных резинах из СКБ максимальная дополнительная ориентация в месте разрыва- превышает среднюю ориентацию в 1,5—2 раза, а на резинах из нитрильных каучуков—приблизительно в 3 раза. С уменьшением глубины надреза дополнительная ориентация уменьшается. Именно наличием дополнительной ориентации в вершинах трещин объясняется появление при таких сравнительно небольших средних деформациях, как 10—20 0. При развитии зародышевых, микроскопических трещин, в которых перенапряжения должны быть меньше, чем у макроскопических, эффект упрочнения в области малых и средних деформаций отсутствует. Следствием этого является монотонное изменение времени до появления трещин (т ) с уве1ичением г, т. е. отсутствие [c.319]

    Эти данные показывают, что игменение количества трещин, наблюдаемое при увеличении а, не является обязательным условием наличия Существование связано с изменением степени ориентации полимера при деформации и его упрочнением. Это подтверждается тем, что аналогичное явление наблюдалось Патрикеевым и Мельниковым при исследовании раздира резин с одним надрезом в отсутствие озона. По-видимому, такого же рода изменение структуры при деформации лежит в основе наблюдавшейся при многократных деформациях в воздухе экстремальной зависимости выносливости резин (ненадрезанные образцы) от 21-250,5 [c.321]


Смотреть страницы где упоминается термин Резины и ориентация: [c.184]    [c.531]    [c.264]    [c.348]    [c.115]    [c.228]    [c.174]    [c.179]    [c.182]    [c.289]    [c.322]   
Прочность и разрушение высокоэластических материалов (1964) -- [ c.154 , c.155 ]




ПОИСК







© 2025 chem21.info Реклама на сайте