Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конформационный анализ гош-Конформация

    Термин конформация , по нашему мнению, имеет концептуальный характер, поскольку, как постепенно выяснилось, с ним связан определенный подход к стереохимии, приведший к возникновению целой группы производных понятий (конформер, конформационный переход, конформационный эффект и т. д.) и к выделению конформационного анализа в самостоятельную область химии. [c.128]


    Неформальное общение осуществляется преимущественно в пределах одного коллектива исследователей, знакомство же с взглядами прочих групп, в особенности, если речь идет о группах зарубежных, происходит, как правило, по публикациям или официальным выступлениям. Поэтому, вероятно, до появления работ 1950 г. слова конформация и констелляция использовались, соответственно, в англо- и немецкоязычных группах независимо. После этих публикаций названные термины стали широко использоваться в печатных работах, и уже к середине 1950-х гг. оформились принципы конформационного анализа, главным из которых является связь физиче ских и химических свойств соединения с предпочти- [c.128]

    Как уже говорилось, в адиабатическом приближении каждому электронному состоянию молекулы соответствует единственная поверхность потенциаль ной энергии ППВ) в координатах ядер. По существу, конформационный анализ можно представить как анализ топологических особенностей многомерной ППЭ. Устойчивым конформациям отвечают локальные минимумы адиабатического потенциала глубиной не менее двух квантов колебаний (для каждой степени свободы) в минимуме. Оптимальные пути перехода между ними лежат через седловые точки первого порядка, отвечающие переходным состояниям. Обычное представление об определенном механизме реакции [c.137]

    В конформационном анализе отмечается существование трех конформаций олефинов [65]  [c.119]

    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]


    Такой метод исследования конформации белков прост и отличается большей точностью и надежностью от применяемого ранее метода конформационного анализа белков по плавным кривым ДОВ (в области от 400 до 240 нм). [c.46]

    Высшие нормальные углеводороды при конформационном анализе можно рассматривать как ряд н-бутановых систем, причем каждую связь С—С поочередно считать центральной связью молекулы. Таким способом можно установить, что все эти н-бутановые системы должны существовать преимущественно в анги-планарной конформации, так что вся молекула представляет собой копланарную зигзагообразную цепь, [c.802]

    Конформация тропановых алкалоидов. Методы конформационного анализа, разработанные для производных циклогексана (стр. 802 и сл.), могут быть перенесены [c.1078]

    Рассуждения о стабильности, вероятности обнаружения в данном веществе, энергии и других свойствах конформаций молекул называются конформационным анализом. [c.78]

    С точки зрения конформационного анализа особый интерес представляют циклические соединения, в которых внутреннее вращение вокруг простых связей ограничено тем, что атомы в их молекулах образуют кольцо. В то время как трехчленные кольца плоские (например, циклопропан), а четырех- и пятичленные кольца (например, циклобутан и циклопентан) почти плоские, представитель шестичленных насыщенных циклов, циклогексан, может существовать практически только в неплоских конформациях. Наиболее важными являются конформации кресла и ванны, изображенные на рис. 28.  [c.78]

    Изучение конформаций органических молекул развилось в последние десятилетия в обширную и важную область стереохимии — конформационный анализ. Создание конформационных представлений явилось наиболее существенным шагом вперед в области стереохимии со времен Вант-Гоффа. С конформациями мы постоянно будем встречаться на протяжении всей данной книги, поэтому особенно важно уже во введении усвоить способы графического изображения конформаций и номенклатуру в этой области. [c.29]

    Много данных собрано о конформациях соединений, содержащих два атома галогена. Основы конформационного анализа алифатических соединений были заложены именно при [c.241]

    Заместители, не имеющие цилиндрической симметрии, могут быть не только аксиальными или экваториальными, но, кроме того, еще иметь ту или иную конформацию по связи, соединяющей их с циклогексановым кольцом. В качестве примера можно привести карбоксильную группу [69]. В заключение укажем на некоторые обзоры [70], посвященные обсуждавшимся в данном разделе проблемам конформационного анализа. [c.358]

    Конформационный анализ белков. Нативные белки характеризуются чрезвычайно специфическими конформациями, которые сравнительно легко могут быть нарушены различными воздействиями. Такие воздействия вызывают резкие изменения физико-хи-мических свойств белка без нарушения их ковалентных связей. [c.45]

    Интересно и важно для дальнейшего, что спираль оказалась двойной две цепи с одинаковым направлением гликозидных связей тесно связаны водородными связями и закручены в правую спираль с шагом 26 А. Такая двойная спираль является довольно устойчивым образованием. Геометрические параметры каждой отдельной цепи диктуются конформацией повторяющегося звена 19 и хорошо обосновываются теоретическими методами современного конформационного анализа полимеров. Шаг этой спирали достаточно велик, так что между соседними витками остается большой промежуток ( пружина сильно растянута). В этот промежуток точно укладываются витки второй спирали причем таким образом, что между соседними остатками из двух разных цепей возникают водородные связи, поддерживающие стабильность всей конструкции. [c.166]

    Анизотропный эффект [эффект анизотропии (диа)магнитной восприимчивости]. Циркуляция электронов индуцирует магнитное поле, которое в данной точке может складываться с приложенным магнитным полем Яо или вычитаться из него. Если эффект (величина и направление) индуцированного поля на данный протон является функцией ориентации этого протона относительно индуцированного поля, то он рассматривается как анизотропный. Вообще, термин анизотропный означает пространственно-несимметричный или неодинаковый по направлению . Можно ожидать, что анизотропный эффект будет зависеть от конформации, и действительно, конформационный анализ, проводимый методом ЯМР, часто основан на наличии в молекуле анизотропных индуцированных магнитных полей. [c.577]

    Конформационный анализ), когда устойчивым конформациям соответствуют разные по глубине минимумы потенциальной энергии, т. е. возникают различающиеся по форме и св-вам поворотные изомеры (конформеры). В частности, у молекул типа 1,2-дизамещенных этана имеются три стабильных конформации-одна транс- (или анти-) и две гош-конформации (см. рис. 2). Относит, стабильность поворотных изомеров определяется разностью их энергий АЕ, т. е. разностью значений энергии в минимумах потенциальной кривой. Напр., транс-изомер 1,2-дихлорэтана более устойчив, чем гош-изомер, т.к. его энергия (в газовой фазе) ниже на 5,6 кДж/моль. При достаточно низких потенциальных барьерах (неск. десятков кДж/моль) поворотные изомеры находятся в термодинамич. равновесии, положение к-рого зависит от т-ры, давления и природы среды. Для барьеров порядка 10 к Дж/моль время жизни конформеров составляет 10 °с. При высоких значениях Уд (выше 100 к Дж/моль), когда В. а отсутствует, конформеры даже при малой разности их энергий могут существовать как индивидуальные в-ва. В. в. молекул возможно в газовой и жиДкой фазах, параметры К(ф) зависят от характера среды и электронного состояния молекулы. В кристаллах В. в., как правило, отсутствует и стабилен лишь один конформер иногда существуют твердые фазы (напр., у некоторых фреонов), в которых стабильны разные конформеры и между ними осуществляются переходы. [c.392]


    КОНФОРМАЦИИ МОЛЕКУЛЫ, M. Конформационный анализ. [c.457]

    Конформации циклопенгана и циклогексана подробно рассмотрены в разделе, посвященном конформационному анализу. Конформации макроциклов столь же многообразны, как и конформации алканов с тем же числом углеродных атомов в цепи. Замыкание циклов не изменяет прочности химических связей С-С и С-Н, присущих алканам. [c.323]

    При замене в молекуле циклогексана двух или более атомов водорода, находящихся при разных атомах углерода, на радикалы возникает новый вид пространственной изомерии — цис-транс-изомерия ди- и полизамещенных циклоалканов. В согласии с конформационным анализом, цис-1,2-, транс-1,3- и г(ыс-1,4-диметилциклогексаны имеют по одной аксиальной и экваториальной группе. Для них возможна лишь одна конформация, поскольку конверсия кольца дает идентичную структуру (е,а г а,е). В свою очередь, транс-, 2-, цис-, 3- и траке-1,4-диметилциклогексаны могли бы состоять каждый из двух форм —е,е и а,а. Однако в диметилциклогексанах сильное несвязанное 1,3-взаимодействие двух аксиальных СНз-групп с атомами водорода создает дополнительное напряжение в молекуле. Оно настолько велико, что концентрация диаксиальной формы в равновесной смеси ничтожна. [c.41]

    Большая или меньшая трудность перехода от обычной конформации к реакционной для разных молекул определяется энергией, которую надо затратить на со-ответствуюшие повороты вокруг С—С-связей. Конформационный анализ позволяет очень приближенно оценивать эти энергии, уподобляя отдельные участки молекулы рассматриваемого углеводорода молекуле н-бутана, для которого энергетика различных поворотов вокруг связи между С-2 и С-3 достаточно точно известна. Для перехода н-гексана в г-конформацию (II) нужно осуществить повороты по 120° вокруг двух С—С-связей, например С-3—С-4 и С-4—С-5. На эти повороты надо затратить 50 кДж/моль [99] это следует из обычных конформационных расчетов для двух переходов из заторможенной в заслоненную конформацию (по 25кДж/ /моль). Кроме того, возникает дополнительное напряжение за счет отталкивания метильной и метиленовой групп. Эти значения точно не известны, но сопоставление подковообразных конформаций н-бутана, н-пентана и н-гексана на моделях Стюарта — Бриглеба позволяет считать, что они близки к 13 кДж/моль. Таким образом, для перехода к-гексана в г-конформацию необходимо предварительно затратить 63 кДж/моль. Для 2,2,4-триметилпентана уже простое сопоставление перспективных формул обычной (III) и г-конформаций (IV) показывает, что здесь энергия перехода должна быть меньше. Действительно, в этом случае первый и пятый угле- [c.212]

    Симптоматично, что сформировавшийся, на протяжении жизни одного поколения конформационный анализ стал уже обрастать легендами. Наиболее странная и романтическая из них связывает появление термина конформация с литературными пристрастиями выдающегося английского химика У. Н. Хоуорта. [c.123]

    В своей монографии Строение сахаров (1929 г,) Хоуорт писал именно о конформациях моделей , которые, в его понимании, должны были отражать реально наблюдаемую геометрию структурных единиц сахаров. Термин конформация должен был служить целям отграничения и объединения определенного вида структурной информации. Ныне мы ясно понимаем, что необычайная важность для химии тонких структурных эффектов, относящихся к сфере конформационного анализа, сделала вполне оправданным введение особого термина для их обозначения. Однако к моменту выхода монографии Хоуорта появились лишь первые разрозненные данные рентгеноструктурного анализа и химических исследований), подтвердившие теорию неплоских циклов Заксе — Мора. Поэтому обобщения и вывод о перспективности этой теории представляются авторам поздней монографии Конформационный анализ (Э. Илиел и др., 1965 г.) несколько преждевременными . [c.126]

    Одновременный выход в 1965 г. монографий Конформационный анализ , о которой мы уже упоминали, и Конформационная теория М. Ханака ознаменовал окончательное становление конформационного анали за. Традиции, зачастую не воспринимаемые сознательно, нередко определяют использование теоретических концепций и терминологии. Термин конформация появился в органической химии, и поэтому конформационный анализфассматривался главным образом как раздел последней. Однако после развития их органиками конформационные представления перехми и в другие разделы ХИМИИ. Термин конформация стал широко использоваться и в химической физике. Подобное проникновение очень характерно для науки второй половины XX в., отличительной чертой которой стала взаимосвязь и пересечение различных областей знания. Однако следуёт отметить, что собственно конформационному анализу взаимодействие с химической физикой сослужило в одном отношении дурную службу. Как известно, химики нередко склонны к излишнему пиетету по отношению к работе физиков. Многочисленные публикации по внутреннему вращению, появившиеся во время становления конформационного анализа, повлияли на восприятие конфор ма-циоинои изомерии, причём установилась обусловленная психологическими причинами традиция связывать [c.129]

    В соответствии с такой точкой зрения М. Ханак (1965 г.) предлагал использовать термин конформация тольТ<о в отношении структур, отвечающих минимуму" адиабатического потенциала, а прочие метастабильные структуры называть формами. Однако взгляд на конформацию как на Изомер, в конечном счете, не получил поддержки. Вероятно, это связано с тем, что конформационный анализ на раннем этапе его развития в представлении химиков ассоциировался с внутренним вращением. Поэтому использование термина конформация в смькле изомер выглядело ненужным дублированием термина ротационный изомер . Впрочем, термин конформационный изомер , или конформер ,. вскоре также получил широкое хождение, причем под конформером понималась стабильная конформация из бесконечного множества расположений атомов, возникающих из-за вращения вокруг ординарных связей. [c.133]

    Роль энтропийного фактора (Д5т ), как это следует из самой природы формулы (1), становится особенно заметной при повышенных температурах. Поэтому приведенные в табл. 1—5 данные по равновесным концентрациям стереоизомеров при 500—бОО Кважны тем, что они учитывают сложную зависимость между строением и энтропией углеводородов. В то же время при более низких температурах разница в свободных энергиях пространственных изомеров, особенно для относительно простых структур, может быть достаточно точно определена на основании некоторых обш их положений конформационного анализа. Так, например, разницу в энергетическом содержании цис- и пракс-1,2-диметилциклопен-танов можно приравнять разнице в энергиях между заслоненной (характерно для г йс-вицинального расположения заместителей 5300 кал/молъ) и частично заслоненной (характерно для транс-вицинального расположения заместителей 3500 кал/молъ) бута-новыми конформациями. Энергетически эта разница соответствует двум скошенным (гом) бутановым конформациям и составляет примерно 1800 кал моль. [c.25]

    Конформационный анализ посвящен рассмсп рению тех бесчисленных молекулярных структур, которые возникают и результате вращения в молекуле групп атомов вокруг ординарных связей эти структуры называются конформациями. Каждая конформация характеризуется определенным пространственным расположением атомов н, в связи с этим, определенным содержанием энергии. При вращении группы атомов вокруг ординарной связи потенциальная энергия молекулы претерпевает изменение, которое может быть описано синусоидальной кривой. Те конформации, которым на этой кривой соответствуют минимумы, способны реально существовать и называются поворотными изомерами или у с т о н ч и з ы ми к о н ф о р м а-циями . Остальные конформации представляют такие энергетические состояния, которые молекула должна пройти для превращения одной устойчивой конформации в другую. Относительно низкие значения энергии активации взаимного превращения устойчивых конформаций, как правило, являются причиной невозможности разделения поворотных изомеров при обычных температурах (исключением являются некоторые производные дифенила и аналогичные нм соединения, рассмотренные на стр. 490). Так как разные поворотные изомеры обычно энергетически неравноценны, то большинство молекул каждого соединения существует преимущественно в одной или лишь в очень немногих устойчивых конформациях. Однако под действием специфических сил в условиях химической реакции соединение может также временно принять какую-либо из энергетически менее выгодных конформаций. [c.800]

    Наряду с указанными классическими, современный конформационный анализ рассматривает геометрию искаженных конформаций полукресла и полуванны. [c.138]

    Для экспериментального доказательства той или иной конформации молекулы углевода используются физические и химические методы. Среди первых большое значение приобрел ядерный магнитный резонанс. Применяя этод метод исследования, Лемьё установил, что метил-2-де-зокси- >-рибозид в водных растворах имеет преимущественно конформацию С1, а в хлороформе — 1С. Полуэмпири-ческие расчеты молекулярного вращения также дают возможность выбора конформации. Особенно широко в конформационном анализе углеводов была использована способность сахаров образовывать медные и боратные комплексы. Раствор аммиакатов меди, содержащий ионы Си(ЫНз) , изменяет свою проводимость, если вступает в реакцию комплексообразования с углеводами. При этом молекулярное вращение сахара также изменяется. Этот эффект незначителен, если комплексообразование мало сказывается на геометрии молекулы, и он достигает больших величин, если формирование комплекса требует искажения исходной конформации. Замыкание клешнеобразного комплекса атома меди с кислородами происходит обычно у вицинальных гидроксилов, расположенных под углом 60°, но не 120 или 180°. Расстояние между атомами кислорода не должно превышать 3,45 А. На основе образования медноаммиачного комплекса для О-метил-р-О-глюкопиранозида [c.146]

    Производные пергидроциклопентанофенантрена — стероиды — помимо биохимического приобрели большое значение и в развитии теоретических основ органической химии и прежде всего основных положений конформационного анализа. Это связано в особенности с тем, что циклическая система циклопентанопергидрофенантрена обладает жесткостью, в ней полностью исключена конформационная подвижность. Поэтому заместитель, имеющий определенную конфигурацию (а- или р-) относительно циклической системы, имеет в то же время определенную конформацию (экваториальную или аксиальную) его положение относительно кольца и относительно соседних заместителей строго фиксировано. Это позволяет на примере стероидных соединений особенно наглядно видеть влияние стереохимических факторов на устойчивость соединений, на направление и скорость реакций, спектральные и другие характеристики. [c.400]

    По обычным канонам конформационного анализа предпочтительной должна была бы быть экваториальная ориентация атома галогена, однако из-за такого же диполь-дипольного взаимодействия, как в соединениях ряда пирана, экваториальная конформация Х1Ха дестабилизуется и создаются условия [c.544]

    Стоддарт Дж. Стереохимия углеводов. М. Мир, 1975, 304 с. Рассмотрены основные аспекты стереохимии углеводов. Основное внимание уделено конформационному анализу, особенно влиянию конформационных факторов на состояние равновесий и экспериментальным методам определения преобладающих конформаций. [c.173]

    Изучение свободного вращениян химических свойств конформеров назьшается конформащонным анализом. Основы конформациониого анализа циклических углеводородных систем будут даны в гл.24 конформации алканов уже рассматривались в гл. 4. [c.632]

    В отличие от твердых кристаллич. тел деформация полимеров в B. . связана не с изменением ме цатомных или межмол. расстояний, а с частичным развертыванием хаотически свернутых цепных молекул, что и обусловливает возможность больших деформаций. При этом возвращающая сила / вызывается не силами притяжения между молекулами деформируемого тела, а тепловым движением, к-рое по своей интенсивности такое же, как тепловое движение молекул в жидкостях. Т. обр. упругость полимеров в B. . имеет энтропийную природу подобно объемной упругости газов. Поэтому модуль упругости полимеров в В. с. пропорционален абс. т-ре Т и имеет низкие значения (0,1-10 МПа), тогда как модуль всестороннего сжатия, определяемый силами межмол. взаимодействия, типичен для конденсиров. сред (10 МПа). Вследствие этого деформация эластомеров практически не сопровождается изменением объема, и связанное с этим изменение внутр. энергии и ничтожно. Наблюдаемые на опыте изменения U при деформации эластомеров связаны с изменением набора энергетически неравноценных конформац. изомеров (см. Конформационный анализ) при развертывании цепей. В зависимости от разности энергетич. уровней транс- и гош-кон-формеров изменение внутр. энергии при деформации AU и соответствующая ему составляющая возвращающей силы fg = dVjd[)vr ( энергетич. сила ) м. б. как положительными, так и отрицательными (/-длина образца, V-ero объем). Ниже приведены значения fjf для нек-рых полимеров  [c.443]

    В случае медленного конформац. превращения (к,, kj кз, кд) наблюдается т наз. конформац. контроль р-ции (см. Конформационный анализ). [c.374]

    КОНФОРМАЦИОННЫЙ АНАЛИЗ, раздел стереохимии, изучающий конформации молекул, их взаимопревращения и зависимость физ. и хим. св-в от конформац. характеристик. Конформации молекулы-разл. пространств, формы молекулы, возникающие при изменении относит, ориентации отдельных ее частей в результате внутр. вращения атомов или групп атомов вокруг простых связей, изгиба связей и др. Каждой определенной конформации соответствует определенная энергия. При рассмотрении пов-сти потенц. энергии основного состояния молекулы как ф-ции координат атомных ядер возможно существование одного, двух и более энергетич. ми1Шмумов. Б этом случае имеются соотв. одна, две и более устойчивые конформации (в общем случае различающиеся по своей энергии), разделенные потенц. барьером (барьерами). Множество конформаций, находящихся в окрестности энергетич. минимума с энергией ниже соответствующего потенц. барьера, представляет собой конформер. Обычно понятие конформера отождествляют с конформацией, имеющей миним. энергию. Явление существования разл. конформеров наз. конформац. изомерией. Любой переход между двумя конформациями, осу- [c.457]

    Конформационный анализ полимеров. К. а. полимеров базируется на тех же принципах и использует те же эксперим. и расчетные методы, что и К. а. низкомол. соединений. Однако значит, длина цепных макромолекул обусловливает и качественно новые св-ва (напр., гибкость), для описания к-рых требуются статистич. подходы и спец. эксперим. методы (см. Макромолекула). Изменение конформации макромолекулы происходит из-за ограничения вращения звеньев вокруг связей, в результате чего она обычно принимает наиб, вероятную форму статистич. клубка. Разл. внутри- и межмол. взаимод. могут приводить к упорядоченным конформациям (см. ниже), а также к предельно свернутой глобулярной конформации. [c.461]

    В случае липидов большой вклад в подвижность дают внутримол. движения углеводородных цепей. Они происходят путем гош-транс-поворспов (см. Конформационный анализ) смежных звеньев углеводородной цепи вокруг связи С—С. Благодаря высокой конформац. подвижности цепей в них постоянно возникают изгибы и изломы, что приводит к нарушению регулярного расположения липидных молекул в бислое и к появлению в нем дефектов упаковки, называемых кинки и джогги . [c.30]

    На основании структурных ф-л не только идентифицируется каждая М., но и выражаются мн. корреляции между св-вами М. и образованного из них в-ва. Так, последовательность хим. связей в структурной ф-ле позволяет различать структурные изомеры-М. с одним и тем же атомным составом, но разной последовательностью атомов. Разотчия в пространств, расположении атомов М. при одной и той же последовательности хим. связей позволяют идентифицировать стереоизомеры. Среди стереойзомеров выделяют поворотные изомеры, оптич. изомеры и др. (см. Изомерия, Конформационный анализ). Фиксир. группировки атомов, проявляющие четко выраженные, специфические для каждой из них <ж-ва, наз. функциональными группами. На использовании структу яых ф-л и соответствующих им моделей М. основаны конформац. анализ, структурная топология, а также ряд теорий, объясняющих реакц. способность сложных М. [c.107]


Смотреть страницы где упоминается термин Конформационный анализ гош-Конформация: [c.130]    [c.132]    [c.135]    [c.84]    [c.802]    [c.525]    [c.274]   
Органическая химия (2001) -- [ c.243 ]




ПОИСК





Смотрите так же термины и статьи:

Конформационные

Конформационный анализ



© 2024 chem21.info Реклама на сайте