Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разрушение и релаксационные процесс

    Для описания поведения полимера в области малых деформаций при растяжении используют модель невзаимодействующих пружин. Выбор модели без вязких элементов связан с тем, что в этих условиях благодаря большим временам разрушения релаксационные процессы можно не учитывать, так как они практически завершаются задолго до разрыва. [c.275]

    Обращает на себя внимание затяжной скачкообразный неуста-новившийся режим ползучести для малых напряжений.. Например, на кривой 1 в течение первых часов наблюдается затухающее развитие деформации, поэтому обычно на этом этапе исследователи прерывают наблюдение. Затем отмечается возрастание скорости деформации и вновь ее уменьшение. Такие подъемы (ступени) повторяются и далее, пока при наблюдениях свыше 30 ч не устанавливается линейный ход вязкого течения. При снижении температуры ступенчатость процесса выражена отчетливее, а при повышении температуры, как и при увеличении напряжения, это явление постепенно исчезает, что объясняется постепенным разрушением надмолекулярных структур. Наблюдаемые подъемы деформационных кривых эластомеров соответствуют временам порядка 10 —10 с и свидетельствуют о дискретности их надмолекулярных структур и спектра времен релаксации, связанных с медленными физическими релаксационными процессами. [c.137]


    При малых напряжениях в высокоэластическом состоянии проявляется процесс, напоминающий явление вынужденной эластичности, так как при некотором критическом напряжении происходит разрушение вторичных узлов пространственной сетки и изменяется сопротивление эластомера деформированию. Этот релаксационный процесс объясняется существованием микрообластей, образующих со свободными цепями пространственной сетки дополнительные вторичные узлы нехимического происхождения, которые распадаются при достижении критического напряжения. [c.141]

    Рассмотрим атермический процесс разрушения в хрупком состоянии полимера, когда деформационные (релаксационные) потери первого вида практически не наблюдаются. В этом состоянии наблюдаются потери в виде рассеяния упругой энергии при разрыве химических связей в вершине микротрещины (потери третьего вида) и динамические потери — переход упругой энергии в кинетическую энергию раздвижения стенок трещины, которая затем рассеивается в теплоту (потерн второго вида). Потерн третьего вида, как уже известно, не зависят от скорости роста трещины и поэтому не дают вклада в кинетику разрушения. Вследствие этого кинетику разрушения атермического процесса разрушения, наблюдаемого при напряжениях о стк, определяют потери второго вида, зависящие от скорости роста трещины. [c.308]

    Для большинства неориентированных полимеров (пластмасс, эластомеров) температура хрупкости лежит ниже 0° С (рис. 11.12). Выше Тхр полимер находится в твердом состоянии вплоть до температуры стеклования 7с, но разрушение полимера в этой области имеет квазихрупкий характер в связи с проявлением релаксационных процессов. Разрушение твердых полимеров в нехрупком состоянии связано с тем, что релаксационные процессы и соответствующие им механические потери играют существенную роль в процессах разрушения выше температуры хрупкости. [c.314]

    Процесс разрушения более чувствителен к релаксационным процессам, чем ползучесть. Скорость процесса разрушения задолго до разогрева образца в целом изменяется за счет локальных перегревов в вершинах трещин. В этом случае критерий Бейли записывается в более общем виде  [c.330]

    Отсюда следует, что кинетика процесса разрушения эластомера определяется главным образом не разрывом химических связей, происходящим на последнем этапе микрорасслоения, а процессами вязкоупругости в местах концентрации напряжения (в очагах разрушения). Таким образом, вклад релаксационных процессов в кинетику процесса разрушения является определяющим в отличие от хрупкого разрушения, где основной вклад в кинетику разрушения дают термофлуктуационные разрывы химических связей полимерных цепей. [c.344]


    Таким образом, анализ данных, полученных при исследовании температурно-временных зависимостей комплекса важнейших механических характеристик сшитых и несшитых эластомеров, таких, как релаксация напряжения, вязкое течение, процессы разрушения (долговечность и разрывное напряжение), приводит к выводу, что выше температуры стеклования Тс и ниже температуры пластичности Тп температурная зависимость релаксационных процессов и разрушения характеризуется одним и тем же значением энергии активации, но различным для различных эластомеров. Эта же энергия активации характерна и для Я-процессов релаксации в эластомере, наблюдаемых на спектрах времен релаксации. Из этого следует, что механизмы релаксационных процессов и разрушения неполярных эластомеров определяются перестройкой и разрушением надмолекулярных структур — микроблоков. Различие между про- [c.347]

    При температуре перехода Г не только изменяется скачком коэффициент т (см. рис. 12.14), но меняется и энергия активации (рис. 12.16). Ниже температуры перехода эластомер (СКН-40) характеризуется близкими значениями энергии активации для различных процессов (96—100 кДж/моль). Практически этим значением энергии (96 кДж/моль) характеризуется релаксационный я-процесс у этого эластомера. Выше Г энергия активации процессов разрушения совпадает с энергией релаксационного Я-процесса (50 кДж/моль). Эти данные приводят к выводу о тесной взаимосвязи релаксационных процессов и процессов разрушения в полярных эластомерах.. Можно сказать, что природа процессов разрушения в полярных эластомерах является релаксационной и определяется двумя релаксационными процессами Я-процессом, наблюдаемым как в неполярных, так и в полярных эластомерах, и я-процес-сом, специфическим только для полярных эластомеров. [c.351]

    Как и в первом режиме испытания, со временем кроме релаксационных процессов происходит утомление, т. е. снижение прочности полимера. Когда прочность достигнет величины заданного суммарного напряжения, произойдет разрушение. Число циклов деформации до разрушения является мерой динамической выносливости. [c.209]

    В литературе нет сколько-нибудь существенных данных о влиянии условий монтажа колонны на ее надежность. Вероятно, роль этого этапа в накоплении повреждений относительно невелика по сравнению со стадией изготовления. Тем не менее, недостаточная техническая культура выполнения монтажных работ может привести к появлению дефектов в виде вмятин. Соответствующими нормативными документами допускаются определенные локальные деформации элементов аппаратов. При силовом и термическом нагружении в результате релаксационных процессов размеры дефекта могут изменяться вплоть до его полного исчезновения. Однако возможен и противоположный исход, когда местные пластические деформации могут послужить причиной дальнейшего перенапряжения конструкции и ее разрушения. Поэтому в конкретных случаях необходимо учитывать поврежденность, полученную на стадии монтажа, [c.22]

    Скорость деформации, как и в случае прочности, однозначно влияет на характер разрушения. Повышение ее, скрадывая релаксационные процессы, усиливает хрупкость. При этом может быть показана условность понятий хрупкости и пластичности. У 26%-ной каолиновой суспензии при скорости деформирования 145 мк/с структура разрушается хрупко, а при скорости 5 мк/с — пластично. В. Д. Кузнецов считает кинетический фактор мерилом пластичности. Числовой характеристикой его является максимальный градиент скорости, при котором может происходить пластическая деформация без разрушения тела. [c.248]

    Вид зависимостей напряжение — удлинение определяют температура и время действия силы. Так, при высокой скорости деформации и пониженных температурах в кристаллических полимерах не происходит рекристаллизации, а часто наблюдается их хрупкое разрушение. Это явление также связано с релаксационными процессами. [c.31]

    Принципиальным отличием трехмерных полимеров от линейных является наличие химических узлов, практически не разрушающихся при умеренных температурах и нагрузках разрушение этих узлов ведет к разрушению полимера. Появление химических узлов делает невозможным движение всей макромолекулы или ее достаточно больших частей, т, е, существенная часть молекулярных движений, возможных в линейных полимерах, в трехмерных полностью вырождена, В трехмерных полимерах может проходить химическая релаксация, связанная с медленной перестройкой сетки химических связей под действием внешней нагрузки [I], При большой плотности узлов могут выродиться и сегментальные движения, что проявляется в исчезновении области высокоэластического состояния. При рассмотрении релаксационных процессов в эпоксидных полимерах следует также иметь в виду, что, как было показано в предыдущих разделах этой главы, структура, замороженная при переходе в стеклообразное состояние, зависит от скорости охлаждения в области Тс, механических деформаций и других факторов [38], [c.64]


    Таким образом, способность смоляных частиц деформироваться под действием напряжения приводит к распределению напряжения в вершине растущего очага разрушения и к увеличению его критического значения Процессу релаксации напряжения при усилении неорганическими наполнителями способствуют лишь гистерезисные свойства каучука и природа поверхностного взаимодействия, связанного с движением части молекул по поверхности наполнителя В вулканизате, усиленном полимерным наполнителем, уменьшению напряжения способствуют еще релаксационные процессы, происходящие в самой деформированной смоляной частице. [c.79]

    При низких температурах и быстром разрыве, когда релаксационные процессы не успели еще проявиться, образовавшиеся трещины, прорастая, дают зеркальную зону с линиями сколов, сходными с рисунком на поверхности хрупкого разрыва полимерных стекол. Таким образом, для первой, медленной стадии эластического разрыва специфичен волокнистый механизм разрушения, а для второй — механизм прямого разрыва связи. [c.422]

    Учитывая, что релаксационный механизм процесса набухания является преобладающим, можно утверждать, что в системах с незавершенными релаксационными процессами набухание может проходить с большей скоростью и до больших равновесных значений. Чем более напряжен полимер, тем более быстрой кинетики и большей равновесной величины набухания можно ожидать, так как внутренние напряжения, действующие в полимере, облегчают разрушение межмолекулярных связей при проникновении в него молекул сорбата. При этом, если вырождаются большие времена релаксации, процесс набухания в напряженном полимере должен протекать быстрее, чем в ненапряженном. Экспериментально это было подтверждено в процессе сорбции [c.226]

    При хрупком разрушении низкомолекулярных твердых тел нарастание напряжений в процессе предшествующей деформации может быть компенсировано и ограничено течением или релаксационными процессами. Особенностью хрупкого разрушения полимерных материалов является относительно большое значение релаксационных процессов в деформациях, предшествующих разрушению [104, с. 287]. Это относится также к образованию и росту первичных трещин. [c.18]

    Разрушение полимеров, находящихся в высокоэластическом состоянии, имеет свои особенности. Медленная стадия в отличие от хрупкого разрыва дает шероховатую, а быстрая — зеркальную зону поверхности разрыва. В высокоэластическом состоянии полимеры проявляют способность к дополнительной ориентации в области распространения разрыва. Микродефект в этом случае уже нельзя называть микротрещиной, так как он имеет при одноосном растяжении форму овала или полуовала. Большая скорость протекания релаксационных процессов по сравнению со скоростью нагружения обусловливает рассасывание напряжений и образование тяжей в области разрыва. [c.137]

    Так как разрушение сопровождается протеканием релаксационных процессов, то естественно ожидать изменения механизма разрушения с изменением температуры и скорости нагружения. [c.236]

    Изучение процесса разрушения индивидуальных и комбинированных материалов методом киносъемки в поляризованном свете дало основание говорить о наличии второго фактора, ответственного за эффект упрочнения. Этот фактор может быть определен как эффект блокировки , т. е. поглош,ения кинетической энергии, освобождающейся при элементарном акте надрыва слоем связующего, в котором эта энергия рассеивается. Кинофильмы, запечатлевающие разрушение комбинированных пленок, снятые в поляризованном свете, свидетельствуют о наличии релаксационных процессов рассасывания перенапряжений в дефектных местах комбинированного материала. [c.303]

    Большая вязкость расплавов и растворов кристаллических полимеров и замедленность в них релаксационных процессов создают условия для образования сферолитных структур. Сферолиты размером 4 мм были получены, например, для полиэтиленсебаци-ната (ПЭС). Присутствие крупных сферолитов в пленке приводит к ее помутнению из-за появления оптической неоднородности. Дефектность полимеров, имеющих крупные сферолиты, проявляется наиболее отчетливо. Разрушение их сопровождается образованием трещин по границам и внутри сферолитов. В процессе структурообразования могут быть получены два типа сферолитов радиальный и кольцевой). Радиальные сферолиты образуются при быстрой кристаллизации, а кольцевые — при медленной (протекающей при более высоких температурах). [c.22]

    Термофлуктуационный механизм осложняется тем, что релаксационные процессы проявляются в полимерах тем отчетливее, чем выше температура. Так, по мере перехода к высоким температурам в микрообъемах перенапряжения проявляется вынужденная эластическая деформация. Вначале этот релаксационный процесс приводит к высокоэластическим деформациям в местах концентрации напряжений, главным образом у вершины микротрещин (термо-флуктуационно-релаксационный ме.ханизм), а затем при более высоких температурах — к образованию трещин серебра , стенки которых связаны между собой микротяжами (релаксационный локальный механизм разрушения). Выше температуры стеклования в высокоэластическом состоянии господствующими являются релаксационные процессы и механизмы разрушения приобретают резко отличительные черты (в табл. 11.2 — вязкоупругий механизм разрушения). Здесь в местах концентраций развивается локальное вязкое течение, которое приводит к образованию так называемых надрывов , являющихся аналогами трещин в хрупком состоянии. На схеме прочностных состояний (рис. 11.4) указаны области действия различных механизмов разрушения некристаллических полимеров, а также область пластического состояния между температурой пластичности и температурой текучести Т . Разрушение в [c.289]

    Термофлуктуационный механизм является наиболее общим механизмом разрушения твердых тел, так как связан с фундаментальным явлением природы — тепловым движением. В наиболее чистом виде он реализуется при хрупком разрушении, а при других видах разрушения ему сопутствуют релаксационные процессы, которые по мере увеличения температуры играют все большую роль. При хрупком разрушении (ниже температуры хрупкости Тхр) очагами разрушения обычно являются микротрещииы, причем долговечность определяется ростом наиболее опасной микротрещины, которая в своем развитии переходит в магистральную трещину, приводящую к разрыву образца. Разрыв напряженных химических связей происходит под действием флуктуаций, возникающих при неупругом рассеянии фононов относительно высокой энергии. Растягивающее напряжение увеличивает вероятность разрыва связей. [c.294]

    Термофлуктуационный механизм разрыва химических связей (в микротяжах) наблюдается и здесь, но кинетику разрушения определяет процесс микрорассеяния на микротяжи, т. е. релаксационный процесс, активированный локальными перенапряжениями. [c.322]

    Релаксационные процессы в полимерах определяют их вязко-упругие свойства и влияют на прочностные свойства этих материалов. Влияние релаксационных процессов на разрушение полимеров в высокоэластическом состоянии более существенно, чем в твердом [63]. В связи с этим понять природу процессов разрушения эластомеров и физический смысл наблюдаемых закономерностей можно на пути выяснения прежде всего фундаментального вопроса о взаимосвязи релаксационных процессов с процессом разрушения. Решение этого вопроса было осуществлено в работах [12.17 12.19], где проведены широкие исследования температурной зависимости комплекса характеристик релаксации напряжения, вязкости, процессов разрушения (долговечности и разрывного напряжения). Для исследований были выбраны несшитые и сшитые неполярные эластомеры бутадиен-стирольный СКС-30 (Гс = —58° С) и бутадиен-метилстирольный СКМС-10 (Гс=—72°С), а также полярные бутадиен-нитрильные эластомеры. Условия опытов охватывали широкий диапазон напряжений и деформаций растяжения и сдвига (несколько порядков величины). Исследования физических свойств проводились для каждого эластомера на образцах, полученных при одних и тех же технических режимах приготовления образцов (переработка и вулканизация). [c.341]

    Энергия активации определена для этих же образцов из наклона прямых в координатах 1 тд Г (рис. 12.10) и равна 56,0 кДж/моль для сшитого и 55,0 кДж/моль несшитого СКС-30, Такое же совпадение (в пределах точности измерения 2,0 кДж/ моль) с энергией активации релаксационных процессов наблюдается и для СКМС-10, энергия активации процесса разрушения кото- [c.343]

    Графики в правой части на рис 109 показывают, как протекают релаксационные процессы при постоянной деформации. Вследствие более интенсивного разрушения структуры полизчерных систем При высоких скоростях предварительного деформирования релаксация, по крайней мере на начальных ее стадиях, Протекает быстрее [c.247]

    Следует отметить, что прочность, как и вязкость, в значительной мере зависит от скорости приложения нагрузки. Так, npii очеиь высоких скоростях нагружения значения прочности битума, как и значения вязкости, очень велики. За это время не успевают пройти релаксационные процессы. При очень малых скоростях приложения нагрузки вязкость битума приобретает минимальное постоянное значение, соответствующее вязкости предельно разрушенной структуры битума. В то же время значения прочности битума при очень медленных скоростях нагружения стремятся к нулю. Поэтому прочность ( когезия) битума, определенная ири некоторой заданной скорости приложения нагрузки, является условной и может применяться лишь для сравнения различных битумов. [c.75]

    По этим данным можно судить, что на первой стадии вытягивания происходит увеличение доли свободного объема, распрямление части макромолекул или развертывание свернутых сегментов макромолекул в аморфных областях [93]. Однако при непрерывном уменьшении количества го(я-изомеров число транс-изомв-ров на начальной стадии вытягивания при 95 °С не увеличивается. Это объясняли [92] тем, что интенсивно протекающие релаксационные процессы при малых кратностях вытяжки препятствуют непосредственному образованию вытянутых транс-изомеров. Возможна), существует промежуточная конформация между гош- и транс-конформациями [94]. Предполагают [95], что при небольших деформациях полиэфирного волокна происходит увеличение свободного объема по слабым местам структуры, при этом плотность и доля звеньев в пракс-положении могут даже уменьшаться. Но эти изменения не связаны с разрушением структурных элементов, поскольку они обратимы — при отжиге система возвращается в первоначальное состоЯЕгие. [c.133]

    Как уже отмечалось, вклад потерь, обусловленных релаксационными процессами, в разрушение наиболее заметен для зластомеров, которые деформируются по высокоэластическому механизму. Повышение доли dQ снижает вероятность разрушения (т, е. образования новой поверхности). Поэтому чем больше потери, т. е, чем шире набор релакснрующих единиц в момент разрушения, тем выше кратковременная и длительная проч- [c.332]

    Традиционные методы ЭПР для изучения молекулярных движений в полимерах основаны на исследовании температурных изменений ширины линии и формы сигнала, возникающего при низкотемпературном разрушении (или облучении) полимера. Для изучения молекулярной динамики, релаксационных процессов и морфо]югии полимеров используются различные методики электронного парамагнитного резонанса [44]. [c.291]

    В проявлейие аномалии вязкости кроме релаксационных процессов вносит еще вклад разрушение существующих в расплавах полимеров надмолекулярных структур, которое происходит, начиная с некоторых значений скоростей сдвига (участок II кривой течения 2 на рис. И. 14). Надмолекулярные структуры сохраняются в расплаве при малых скоростях сдвига, т. е. иа начальном участке I кривой течения полимера, и полностью отсутствуют при очень больших скоростях деформирования полимера, т. е. на участке III. Аномалию вязкости поэтому связывают с понятием структурной вязкости. Системы, аномалия вязкости которых выражается в уменьшении вязкости с ростом скорости сдвига, называют псевдопластичными. Многие полимеры в вязкотекучем состоянии являются псевдопластичными высоковязкими жидкостями, эффективная вязкость которых в реальных условиях переработки снижается в сотни и тысячи раз. [c.36]

    Для исследования релаксационных процессов, внутри- и межмолекулярных взаимодействий в полимерах большое значение имеют акустические методы, которые также могуг быть использованы для определения геплоемкости при температурах, близких к абсолютному нулю, прочности высокомолекулярных материалов, ориентации макромолекул, степени сшичания и т. Д. Наличие четкой зависимости химического строения, физической структуры, молекулярной подвижности и т. д. от 1аких параметров, как скорость и коэффициент поглощения звука, позволяет быстро и точно измерить Е" и tg ср в широком диапазоне частот и амплитуд без изменения структуры или разрушения изделия, что облегчает интерпретацию полученных результатов в случае акустических спектрометров эти измерения автоматизированы. Особо перспективно применение акустических методов в дефектоскопии полимеров и при неразрушающих испытаниях. См. [14]. [c.389]

    Применение метода ВЛФ к прочности каучукоподобных полимеров в какой-то степени может быть оправдано, так как в основе механизмов их длительного разрушения и вязкого течения лежат весьма близкие процессы. Л1еханизм же хрупкого разрыва твердых полимеров далек от механизма релаксационных процессов в полимерах. Кажущийся успех применения метода ВЛФ к твер-ды.м полимерам можно объяснить тем, что время релаксации и долговечность [уравнения (П. 1) и (I. 13)1 аналогично зависят от температуры и напряжения. [c.86]

    НО с образованием трещин даже при внещне хрупком разрушении. Из-за вынужденно-эластической деформации трещины раскрываются достаточно щироко (на 0,5 мк и больше). Чем больше влияние релаксационных процессов деформации, тем шире раскрываются трещины. Так как скорость релаксации экспоненциально растет с напряжением, то релаксационные процессы сущест- [c.97]

    На участке хрупкого разрушения вид напряженного состояния фактически не влияет на параметры уравнения (6.96), хотя при к=1 параметр а достигает относи-тельнего максимума, обусловленного максимальным значением коэффициента концентрации напряжений. На рис. 6.16, а показана также идеализированная зависимость параметра а от коэффициента к. Качественно она согласуется с экспериментом [70]. При к = 0 (аг = 0) и к = 4 (фактически также одноосное растяжение) значение а минимально, поскольку здесь полностью проявляются релаксационные процессы, сопутствующие вязкому разрушению. При к=Л параметр а формально достигает максимума, соответствующего хрупкому разрушению материала. В результате появляется возможность прогнозирования длительной хрупкой прочности. Рассмотрим один экспресс-метод. Проэкстраполируем участок хрупкого разрушения (см. рис. 6.16,6) для й=1 до пересечения с ординатой, соответствующей пределу текучести. По данным работы [70], ат=11,5 МПа при скорости [c.242]

    Рассматривая особенности разрушения неориентированных аморфных полимеров, Г. М. Бартенев принимает, что ниже температуры хрупкости (Гхр) полимеры ведут себя подобно хрупким твердым телам. Выше температуры хрупкости на процесс разрушения полимеров существенно влияют релаксационные процессы. В вершине растущего дефекта имеет место вынужденно-эластическая деформация. Образец покрывается так называемыми трещинами серебра. Створки трещины соединены микротяжами, которые одновременно деформируются и разрушаются. В соответствии с изложенным выше Г. М. Бартенев считает, что в различив [c.145]

    Причинами замедления роста дефекта являются релаксационные процессы в его вершине. В вершине происходит дополнительная ориентация и образование тяжей (см. гл. П). Ю. Т. Корабельников и А. С. Фрейдин установили, что долговечность полимера определяется не только развитием магистрального дефекта, но и накоплением повреждений в объеме образца. Относительный вклад этих процессов в разрушение зависит от режима нагружения (условия напряжения, температуры и т. п.). [c.292]

    Весьма перспективно применение метода суперпозиций (аналогий), основанного на том, что, например, повышение температуры эквивалентно увеличению времени действия более низкой температуры. Для полимеров установлены температурно-временная, напряженно-временн.ая, влаго-временная и другие видь суперпозиций [166, 167], которые можно применять к клеевым соединениям на полимерных клеях. При этом необходимо принимать во внимание различные ограничения, связанные как с недостаточной практической проверкой того или иного метода аналогий для реальных изделий, так И с тем, что отдельные характеристики исследуемого объекта и реального изделия различаются по напряженному состоянию, краевому эффекту, масштабу и т. п. Методы аналогий основаны на использовании факторов, (температуры, влаги и др.), ускоряющих релаксационные процессы или процессы разрушения. В первом случае речь идет о прогнозировании деформационных свойств (ползучести и т. п.), а во втором — о прогнозировании прочностных характеристик. В настоящее время более развито направление прогно,-зировани-я деформационных свойств полимеров. [c.124]

    При малых деформациях спектр времен релаксации вулканизата с сажей, обладающей однородной поверхностью, сдвигается в область больших времен, а для актданой сажи с неоднородной поверхностью — резко падает в этой области. При больших деформациях (более 50%) спектр вулканизатов с активными сажами см.ещается в область больших времен релаксации тем больше, чем больше упрочняющее действие сажи. При деформациях более 50% увеличение высоты релаксационного спектра и смещение его в область больших времен при использовании активной сажи обусловлено возникновением упрочненных структур и наличием прочных связей полимер — наполнитель. Повышение температуры ускоряет релаксационные процессы и приводит ос разрушению слабых связей, вследствие чего уменьшается высота релаксационного спектра. Молекулярная теория, позволяющая описать релаксационные свойства наполненных эластомеров, была развита Сато Йосиясу [255]. На основе статистической теории высокоэластичности им выведены формулы для расчета релаксации напряжений, модуля- упругости и механических потерь наполненных полимеров. [c.138]


Смотреть страницы где упоминается термин Разрушение и релаксационные процесс: [c.140]    [c.142]    [c.281]    [c.347]    [c.246]    [c.391]    [c.247]    [c.305]   
Прочность и механика разрушения полимеров (1984) -- [ c.201 , c.227 ]




ПОИСК





Смотрите так же термины и статьи:

Роль релаксационных процессов в механизмах разрушения некристаллических полимеров. Г. М. Бартенев



© 2025 chem21.info Реклама на сайте