Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фриделя Крафтса и ионной полимеризаци

    Катионная, или карбониевая, полимеризация протекает с образованием иона карбония - полярного соединения с трехвалентным атомом углерода, несущим положительный заряд. Катализаторами служат вещества, активные в реакциях Фриделя -Крафтса. Катализатор является акцептором, а полимеризую-щийся мономер - донором электронов  [c.254]

    Ионная полимеризация протекает благодаря образованию из молекулы мономера реакционноспособных ионов в присутствии катализаторов (кислоты, катализаторы Фриделя — Крафтса, щелочные металлы, амиды этих металлов, металлорганические соединения, комплексные катализаторы Циглера — Натта и др.). При ионной полимеризации катализатор регенерируется и не входит в состав полимера. Ионная полимеризация может происходить как по цепному, так и по ступенчатому механизму. В зависимости от природы катализатора различают полимеризацию катионную (рост цепи осуществляется карбкатионом) и анионную (рост цепи осуществляется карбанионом)  [c.262]


    На рис.2.9 приведена температурная зависимость изменения констант скорости убыли толуола, представленных в табл.2.17. Левая ветвь кривой (область температур выше 298 К) характерна для типичной реакции алкилирования арена мономером (Е = 26 кДж/моль). Излом при переходе в более низкотемпературную область (значение Е близко к нулю) указывает на преобладающую роль процесса полимеризации изобутилена. Диссоциация ионных пар при понижении температуры повышает активность ионов карбония как в отношении реакции роста цепи, так и в отношении ограничения ее при использовании толуола. При этом значение EдJ = -25,1 кДж/моль (энергия активации изменения степени полимеризации изобутилена) в присутствии толуола близко к Ед процесса, протекающего в отсутствие арена, т.е. в области отрицательных температур имеет место полимеризация изобутилена с ограничением цепи толуолом или своеобразная реакция алкилирования по Фриделю - Крафтсу. [c.103]

    Существует большое число сведений технического характера об условиях, способствующих получению топлива с высоким октановым числом, однако в отношении рассматриваемых механизмов наблюдается неопределенность. Ион карбония, образующийся в вышеуказанной реакции, может присоединиться к другой молекуле олефина. Со многими олефинами типа изобутилена эта ионная реакция может привести к образованию высших полимеров. Реакции ионной полимеризации, катализируемые кислотами или по Фриделю — Крафтсу, обсуждаются в разд. 3 гл. X. [c.83]

    Известно [32], что циклопентадиен подвергается ионной полимеризации под воздействием катализаторов Фриделя—Крафтса. Его полимеризация под воздействием у-излучения сильно подавляется аммиаком или аминами и в меньшей степени — дифенил-пикрилгидразилом или кислородом [33]. Это вновь указывает на ионную, а не на свободно-радикальную природу радиационной полимеризации. Было постулировано, что ингибирующий эффект аммиака объясняется реакциями следующих типов  [c.94]

    Карбоний-ионная полимеризация . Кроме полимеризации, протекающей по свободно-радикальному механизму, которая рассматривалась в предыдущем разделе, ряд мономеров дает полимеры высокого молекулярного веса в присутствии сильных киелот и класса веществ (AI I3, Sn J , BF3, Jg и т. д.), часто объединяемых под общим названием катализаторы Фриделя—Крафтса или кислоты Льюиса . Поскольку все эти реагенты принадлежат к соединениям того типа, которые индуцируют типичные реакции с образованием ионов карбония в органических ве- [c.156]


    Природа начальной стадии карбоний-ионной полимеризации является особенно важной, поскольку, как и в свободно радикальной реакции полимеризации она является ключом, при помощи кotopoгo можно обеспечить воспроизводимость и контроль реакции. Легкая полимеризация соответствующих олефинов в присутствии катализаторов Фриделя—Крафтса привела в более ранних работах к предположению, что инициирование цепи может происходить в результате электрофильной атаки таких реагентов па л-электроны двойной связи [123], нанример  [c.157]

    Очевидно, что полимеризация проходит при помощи цепной реакции. Это может быть цепь свободных радикалов, если первоначальное инициирование реакции осуществляется перекисями или радиацией или же это ионная цепь, если реакция катализирована карбоний-иопом или карбанионом. Катализаторами, снабжающими процесс карбоний-ионами являются кислоты (серная, сернистая, фосфорная, борофосфорная, фтористый водород, ди-водород-фтористо-борная) и катализаторы Фридель — Крафтса (хлорид и бромид алюминия, трифторид и трихлорид бора, хлорид железа, хлористый цинк, хлорид олова и хлорид титана) [323]. Примером катализаторов, образующих карбанионы, являются натрий [324—326], алкил-натрий-натрий-алкоокисло-натрий хлорид [327—330] и другие натрийорганические соединения [331]. В соответствии с теорией реакций при помощи кар-боний-иона протон кислотного катализатора присоединяется к олефиновой связи, образуя положительно заряженный остаток. [c.106]

    Катионная (карбониевая) полимеризация. Этот тип полимеризации протекает через образование катионов. В этом случае используют катализаторы, обладающие электроноакцепторными свойствами. Присоединяя молекулу мономера, они образуют катион — ион карбония. В качестве веществ, катализирующих катионную полимеризацию, могут выступать кислоты и катализаторы Фриделя — Крафтса (А1С1з, ВЕз, Т1С14 и др.). Катионную полимеризацию можно ускорить с помощью добавок — сокатализаторов (вода, кислоты и другие вещества, являющиеся донорами протонов). Сокатализато-ры существенно влияют на активность катализатора. В присутствии таких добавок катионную полимеризацию можно представить в виде следующих элементарных реакций (актов). [c.394]

    Катионная полимеризация протекает в присутствии кислот и катализаторов Фриделя—Крафтса (А1СЬ, ВРз, ИС , 5пС14 и др.). Эти катализаторы являются электроноакцепторнымп и, присоединяя мономер, образуют ион карбония. Схематически этот процесс можно представить следующим образом  [c.80]

    Развитие принципов катализа галогенидами Фриделя - Крафтса, в частности системами МеХ -КНа1, послужило основой для создания метода синтеза блок-и привитых сополимеров изобутилена. Подобно реакциям алкилирования аренов [50] или ионной теломеризации олефинов [51], активация связи радикал-На1 с помощью кислот Льюиса является эффективным приемом генерирования катионных частиц вызывающих полимеризацию и другие электрофильные превращения изобутилена  [c.205]

    За последние годы все больше привлекает внимание исследователей ионная и координационная полимеризация циклических мономеров, протекающая (обычно с большой скоростью) под влиянием таких катализаторов, как сильные щелочи, щелочные и щелочноземельные металлы, металлоргаиические соединения, катализаторы Фриделя — Крафтса и т. д. [7]. [c.215]

    Собственно, реакция Фриделя — Крафтса [45] заключается в алкилировании или ацилировании ароматического кольца в присутствии кислот Льюиса типа хлористого алюминия. Кроме того, эта реакция может быть распространена на алкилирование и ацили-рование алифатических углеводородов, как насыщенных, так и ненасыщенных [46, 47]. Основная реакция часто сопровождается вторичными реакциями типа полимеризации или изомеризации субстрата или алкилирующего агента. Далее реакция осложняется образованием комплекса между реагирующими веществами, катализаторами и продуктами, как уже указывалось в гл. I некоторые из этих комплексов могут образовывать отдельные фазы [48]. Хотя основная схема механизма реакции твердо установлена, количественное рассмотрение кинетических закономерностей наталкивается на трудности, поэтому количественный анализ проведен только для нескольких реакций, осуществленных в благоприятных условиях. К числу используемых катализаторов относятся галоидные соединения бора, алюминия, галлия, железа, циркония, титана, олова, цинка, ниобия и тантала. Все эти соединения являются акцепторами электронов и, по определению Льюиса, общими кислотами. Их функция, по-видимому, состоит в облегчении образования ионов карбония из олефинов, галоидалкилов или спиртов, из хлорангидридов алкил- или арилкарбоновых кислот, ангидридов кислот или сложных эфиров [49]. Ионы карбония легко реагируют с ароматическими углеводородами, и эти реакции открывают важные пути синтеза производных ароматических углеводородов. [c.79]


    В конце 40-х годов полагали, что сами кислоты Льюиса, так называемые катализаторы Фриделя—Крафтса (соединения общей формулы ЕХ , где Е — бор, алюминий, титан, олово и др., а X — галоген), являются катализаторами катионной полимеризации. Однако после того как Эванс и Мидоус [14] обнаружили (1950 г.), что полимеризация в системе изобутилен—хлористый алюминий имеет место лишь в присутствии каталитического количества воды, стала ясной ошибочность этого представления. Дальнейшие исследования показали необходимость участия дополнительного агента, сокатализатора, в большинстве случаев полимеризации в системах мономер—кислота Льюиса. Как теперь хорошо известно, активные возбудители катионной полимеризации на основе кислот Льюиса образуются только при участии оснований Льюиса. Взаимодействие соединений такого рода приводит к координационным комплексам, способным в определенных условиях (полярная среда, присутствие акцептора положительных ионов) к отщеплению протона или карбкатиопа. К первому типу относятся комплексы с участием таких оснований Льюиса, как вода, спирты, органические кислоты и др., например [c.302]

    В полиизопропилстироле, полученном при полимеризации и-изопро-пилстирола 1152] или в результате реакции Фриделя — Крафтса полистирола с изопропилхлоридом в присутствии хлористого алюминия [150 ], изопронильные группы частично превращаются в гидроперекисные при барботировании кислорода в присутствии перекиси бензоила. Полимер, содержащий гидроперекисные группы, был использован в качестве инициатора в процессах блочной сополимеризации стирола и метилметакрилата и при эмульсионной полимеризации метилметакрилата в присутствии ионов железа(П) [c.293]

    Механизм. В настоящее время основной особенностью наиболее вероятного механизма образования полимера из олефипа под действием кислот Льюиса или катализаторов Фриделя-Крафтса считается рост положительных ионов (как и следует из теории катионной полимеризации). Терминология, весьма облегчающая обсуждение, разработана по образцу терминологии свободнорадикальной полимери-зации. Важное отличие ионных механизмов — наблюдаемое обычно отсутствие зависимости скорости реакции от квадратного корня из концентрации катализатора. Это приводит к допущению мономолекулярной стадии обрыва,, хотя природа катализатора вследствие явления сокатализа не всегда определенно известна. Что касается стадии роста цепи, то тут сходство между свободнорадикальным и ионным механизмом совершенно очевидно. [c.249]

    Более или менее наглядными примерами ионной полимеризации являются реакции ноликонденсации, дающие полиэфиры или полиамиды. Такие полимеры могут быть образованы из двухосновных кислот и двухатомных спиртов или из диаминов, их циклических солей, лактонов и лактамов с обычными кислотами или основаниями. Более интересные реакции — образование полиэфиров или нолиаминов под действием кислоты или основания на окись этилена и соединения типа этиленимина. Полимеризация окиси этилена была известна и раньше [210]. Свободнорадикальные системы в данном случае неэффективны, но можно использовать катализаторы Фриделя-Крафтса, как, например, четыреххлористое олово [260]. Другими и более умеренными но-лимеризующими агентами являются гликоли, амины, меркаптаны и обычные кислоты или основания подобное действие проявляет и этиленимин [258]. Эти реакции, вероятно, протекают через стадию роста  [c.258]

    Преимущество комплексов Фриделя-Крафтса (т. е. Н ВРзОН или К+АЮ ) как катализаторов полимеризации можно приписать тому обстоятельству, что в этих комплексах невозможна рекомбинация ионов с образованием ковалентной связи или, другими словами, 0(Н —ВРдОН) равно нулю. Однако обычный ион хлора может соединиться и действительно соединяется с карбоний-ионом. [c.261]

    Реакции каталитической полимеризации можно классифици- ровать на свободнорадикальные и ионные. Последние подразделяются на катионные и анионные. Катализаторами свободнорадикальной полимеризации служат перекиси и другие хорошо известные источники свободных радикалов. Катализаторами анионной полимеризации являются вещества основного характера, например металлический натрий. К катионным катализаторам относятся кислоты (например серная), твердые окислы, (алюмосиликат) и катализаторы реакции Фриделя-Крафтса (хлористый алюминий). Эти катализаторы катионной полимеризации долгое время считались химически разнородными. Однако все они могут действовать как сильные кислоты, и это является их основным свойством и причиной их каталитической активности в реакции полимеризации. [c.330]

    На необходимость присутствия сокатализаторов при проведении реакций полимеризации с катализаторами Фриделя-Крафтса вновь указали в 1946 г. Пайне и Векер [150], Облэд и Горин [135], Эванс и Плеш с сотрудниками [40, 413, 44, 45, 157]. Ими было более четко сказано о той важной роли, какую играют сокатализаторы в недавно принятом карбоний-ионном механизме. Вслед за этим английские исследователи интенсивно изучали сокатализаторы, придавая особое значение теоретической стороне вопроса и проводя тщательные эксперименты с системами высокой чистоты. Исследования показали, что все катализаторы Фриделя-Крафтса и даже фтористый бор в реакции полимеризации жидкого изобутилена требуют добавления сокатализатора [42]. [c.334]

    Обычно катализаторами катионной полимеризации являются катализаторы Фриделя -- Крафтса BF3 Al b Sn U Ti U, т. е. сильные электроноакцепторные вещества. Они проявляют свою активность в присутствии небольших количеств сокатализатора (например, следов Н2О) для образования гидрид-иона (Н+). Энергия активации катионной полимеризации обычно не превышает 63 кДж/моль (15 ккал/моль) и поэтому скорость ее очень высока, а температурный коэффициент отрицателен (т. е. с понижением температуры скорость реакции возрастает). Папример, полимеризация изобутилена под действием BF3 проходит за несколько секунд при —100° С, причем образуется полимер очень высокой молекулярной массы. Обычно принятый механизм катионной полимеризации вклю чает образование комплексного соединения катализатора и сокатализатора, обладающего свойствами сильной кислоты  [c.19]

    Эти же авторы [1072] изучили реакцию ионного хлорирования полистирола в темноте в присутствии Jз и РеС1з. В этих условиях протекает только реакция замещения, как в ароматических ядрах, так и в главной цепи, ускоряющаяся с повышением концентрации катализатора. Установлено, что при хлорировании заместитель вступает преимущественно в п-, затем в о-положение. При дальнейшем хлорировании образуется 3,4-, 2,5- и в меньшей степени 2,4-дихлорзамещенные фенильные группы, причем степень полимеризации полистирола при хлорировании уменьшается, особенно в случае применения в качестве катализатора РеС1з. Авторы предполагают, что деполимеризация идет через образование промежуточного карбониевого иона по механизму диспропорционирования изопарафинов в присутствии катализатора Фриделя — Крафтса. [c.225]

    Было показано, что полипропилен, полученный низкотемпературной полимеризацией в присутствии катализаторов Фриделя—Крафтса, содержит пропильные и этильные группы, причем содержание их не зависит от природы катализатора, сокатализатора и от других условий. Это было объяснено ими внутри- и межмолекулярной миграцией гидрид-иона. Авторы делают вывод о том, что образование карбоний-иона из недиссоции-рованного комплекса полимер — катализатор определяет скорость обоих процессов присоединения мономера и миграции гидрид-иона 9 . [c.121]

    Катионная полимеризация. Возникновение активного центра при катионной полимеризации связано с потерей одним атомом углерода электрона и образованием карбониевого иона. Катионная полимеризация протекает в присутствии кислот и катализаторов Фриделя — Крафтса (А1С1з, ВгРз, ЗпСи и др.). Эти катализаторы являются электроноакцепторными и, присоединяя мономер, образуют ион карбония. Схематически этот процесс можно представить следующим образом  [c.317]

    Пентахлориды удобно получать действием SO l на гидратированную окись [13]. Галогеннды плавятся и кипят при температуре от 200 до 300" и растворяются в различных органических растворителях, таких, как эфир, I4 и т. д. Они быстро гидролизуются водой с образованием гидратированной пятиокиси металла и галоидоводородной кислоты, хотя хлориды образуют прозрачные растворы в концентрированной соляной кислоте, вероятно, вследствие образования хлоридных комплексов. Хлориды Nb и Та являются активными катализаторами реакции Фриделя — Крафтса, а также полимеризации ацетиленов в ароматические углеводороды. Присущие этим соединениям свойства кислот Льюиса проявляются также в нх способности образовывать комплексы с ионами хлора (состава [c.349]

    При взаимодействии алкилгалогенидов с катализаторадш Фриделя — Крафтса может образовываться ион карбония, способный инициировать катионную полимеризацию, иапример [c.281]

    Ионная полимеризация изучена значительно меньше. В качестве ионных реагентов для полимеризации можно применять многие сильные кислоты, катализаторы Фриделя — Крафтса (например, А1С1з) или сильные основания (например, Ма, ЫаЫНг). Оба типа источников, ионные и радикальные, с успехом заменяются ионизирующим излучением. [c.341]

    Установлено, что многие реакции идут с промежуточным образованием К. и. Это — реакции типа пина-колиновых и ретропинаколиновых перегруппировок. Демьянова перегруппировки, Вагнера и Меервейна (см. Камфеновые перегруппировки), изомеризация алканов, ионная полимеризация олефинов, Фриделя — Крафтса реакция и мп. др. [c.222]

    Сильные к-ты и щелочи разрушают полимер. Основной метод получения П. основан на полимеризации формальдегида или его производных. Полимеризация формальдегида в водной среде в присутствии ионных катализаторов обычно приводит к образованию низкомолекулярного (п= 100—200) П., обладающего небольшой механич. прочностью и низкой теплостойкостью. Высокомолекулярный П. (ге>1000) получают 1) полимеризацией формальдегида в безводной среде (напр., в бутане, гексане, бензоле, метилциклогексане и др.) в качестве катализатора могут быть использованы третичные амины, арсины, стибипы, фосфины, в качестве эмульгатора — высшие жирные к-ты или эфиры полиэтиленгликоля 2) полимеризацией производных формальдегида (триоксана) в присутствии катализаторов Фриделя — Крафтса. [c.100]

    Один атом углерода теряет электрон, а образующиеся при этом ионы карбония взаимодействуют с молекулами мономера. Растущая цепь является, таким образом, катионом с увеличивающейся в ходе реакции молекулярной массой. Катионная полимеризация протекает при участии кислот и катализаторов Фриделя—Крафтса (А1С1з и др.). [c.290]

    На основании данных ИК- и ЯМР-спектроскопии можно сделать вывод о том, что в процессе роста цепи при полимеризации на катализаторах Фриделя — Крафтса происходит внутримолекулярный перенос водорода. Третичные карбониевые ионы, образующиеся при переносе водорода, обусловливают получение полимеров с циклогексилиденовыми группами  [c.89]

    Для реакции катионной полимеризации применяют следующие катализаторы сильные кислоты, галогениды металлов А1С з, ВРз (катализаторы Фриделя — Крафтса), для анионной — сильные основания или металлы и металлалкилы. Не все мономеры, полимеризующиеся по радикальному механизму, могут быть подвергнуты полимеризации с ионными катализаторами. В свою очередь, изобутилен, пропилен, простые виниловые эфиры, легко полимеризующиеся под воздействием ионных катализаторов, не полимеризуются по радикальному механизму. Однако процесс полимеризации большинства мономеров можно осуществлять как по радикальному, так и по ионному. механизму. [c.85]


Смотреть страницы где упоминается термин Фриделя Крафтса и ионной полимеризаци: [c.243]    [c.209]    [c.243]    [c.48]    [c.83]    [c.252]    [c.239]    [c.119]    [c.239]    [c.12]    [c.56]    [c.59]    [c.50]   
Катализ и ингибирование химических реакций (1966) -- [ c.429 , c.462 ]




ПОИСК





Смотрите так же термины и статьи:

Ионная полимеризация

Ионная полимеризация Полимеризация

Полимеризация Фриделя-Крафтса

Фридель

Фриделя Крафтса



© 2025 chem21.info Реклама на сайте