Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент газов и их смесей

    Зависимость растворимости газов в жидкостях от давления. Если газ химически не взаимодействует с растворителем, то зависимость растворимости газа в жидкости от давления выражается законом Генри. Для идеальных растворов закон Генри может быть выражен уравнением (128.7). Закон Генри справедлив только тогда, когда растворение газа в жидкости не связано с процессами диссоциации или ассоциации молекул растворяемого газа. Расчет растворимостей газов по уравнению (128.7) при высоких давлениях приводит к ошибкам, если не учитывать зависимость коэффициента Генри от давления. Характер изменения растворимости некоторых газов от давления в воде при 298 К показан на рис. 126. С изменением давления газа растворимость различных газов меняется неодинаково и подчинение закону Генри (128.7) наблюдается лишь в области невысоких давлений. Различие в растворимости газовых смесей и чистых газов в жидкости определяется взаимным влиянием отдельных газов друг на друга в газовой фазе и взаимным влиянием растворенных газов в жидкой фазе. При низких давлениях, когда взаимное влияние отдельных газов невелико, закон Генри справедлив для каждого газа, входящего в газовую смесь, в отдельности. [c.383]


    Сжиженный газ, например, пропан-бутановую фракцию (см. рис. 39) заправляют в специальные топливные баллоны. Для сохранения жидкого состояния при температурах более высоких, чем комнатная (до 45-50 °С), пропан-бутановая смесь находится в топливном баллоне под давлением 1,6 МПа. Пропан-бутановые смеси характеризуются высоким коэффициентом объемного расширения при увеличении температуры на 10 °С давление в газовом баллоне повышается на 30-35 %. Во избежание разрушения при повышении температуры в топливных баллонах предусматривается газовая подушка с минимальным объемом не менее 10 % всего объема [10]. [c.154]

    Растворимость в топливе кислорода, азота и инертных газов, являющихся компонентами воздуха, различна. При 15,5° С коэффициент растворимости кислорода в керосине равен 0,0285, азота — 0,0157. Вследствие этого, кислород растворяется в топливе в большей пропорции, чем его содержится в воздухе. Поэтому газовая смесь, которая выделяется из топлива, богаче кислородом, чем обычный воздух. Объемное отношение азота к кислороду в ней составляет 2,07 1, тогда как у воздуха оно равно 3,76 1. Это явление увеличивает пределы взрываемости смесей, образующихся с парами топлива. [c.54]

    Горелка состоит из металлического каркаса — корпуса, к которому присоединен инжектор с соплом для прохода топливного газа, и заслонки, регулирующей подвод атмосферного воздуха. В металлический корпус монтируется огнеупорная керамическая чаща, центральное отверстие которой перекрывается распределительным колпачком, направляющим газовоздушную смесь на поверхность горелочного камня. Горение смеси происходит на поверхности керамической чаши, без образования факела (режим беспламенного сжигания топлива) с коэффициентом избытка воздуха а=1,06. [c.63]

    Испытания работы котла проводились на смешанном газе (смесь природного и сланцевого) с низшей теплотой сгорания Q = 6791 ккал/м и плотностью р = 0,875 кг/м . Паспортная паропроизводительность котла 900 кг/ч была достигнута при расходе газа 111 м /ч. Длина факела при максимальном давлении газа 1500 мм вод. ст. и коэффициенте избытка воздуха = 1,18 составляла 900 мм, что обеспечивало надежную работу кипятильных труб котла. [c.145]

    Для расчета расхода коксового газа на 1 т аммиака содержание водорода в газе условно принимается за 54%. Расход коксового газа оцределяется с учето.м его потерь на трассе, при очистке от СОг, НгЗ и N0 и с учетом уноса водорода с богатым газом (смесь некоторых фракций коксового газа, возвращаемая коксохимическому заводу для обогрева печей). Расходные коэффициенты на 1 г аммиака при разделении коксового газа в агрегате типа Г-7500 составляют  [c.6]


    Если с водой соприкасается смесь газов, то каждый компонент смеси растворяется в количестве, пропорциональном коэффициенту его растворимости и парциальному давлению. Иначе говоря, растворимость Q одного компонента [c.235]

    С целью получения количественных зависимостей для коэффициентов массообмена между газом и жидкостью (в частности, от размера частиц) было предпринято еще одно исследование абсорбции двуокиси углерода. Для опытов использовали колонну внутренним диаметром 102 мм жидкой фазой служила водопроводная вода, газовой — смесь двуокиси углерода и азота, твердой — стеклянные шарики диаметром 1 и 6 мм. Объемные коэффициенты массообмена А / рассчитывали по экспериментальным данным, пренебрегая продольным перемешиванием (из-за отсутствия данных об. этом факторе в газожидкостных псевдоожиженных системах). [c.673]

    В равновесие со сжатым газом. Другими словами, твердое вещество и жидкость как бы растворяются в сжатом газе. Если пары и газ образуют идеальную смесь, то растворимость будет пропорциональна их давлению с небольшой поправкой на внешнее давление (эффект Пойнтинга). Отклонение от идеальности приводит к изменению в растворимости, из которого можно получить сведения по вириальным коэффициентам взаимодействия. Общий обзор этого метода был сделан Роулинсоном и Ричардсоном [189]. Они вывели уравнение для случая увеличения растворимости при условии, что газ не растворяется в жидкости или твердом веществе и что мольная доля паров в газовой фазе мала  [c.116]

    К кристаллическому бихромату калия приливается концентрированная соляная кислота. Смесь легка подогревается. Наблюдается выделение газа бледно-желтого цвета. Напишите уравнение реакции, подберите коэффициенты и объясните возможность прохождения реакции, если стандартные восстановительные потенциалы равны  [c.98]

    При применении горючих газов под давлением горючая смесь в помещении может образоваться при утечке газов из аппаратов, особенно в случае аварии. Для расчетной оценки этой опасности необходимо иметь данные о свободном объеме производственного помещения (за вычетом объема, занимаемого оборудованием), производительности приточно-вытяжной вентиляции, свойствах выделяемых горючих газов (нижний концентрационный предел воспламенения, температура воспламенения, плотность, коэффициент диффузии), условиях утечки или аварийного истечения газа (давление и температура в системе, возможные места утечки и разрыва, площадь отверстия, через которое вытекает газ, и др.), о продолжительности аварийного положения и перекрытия магистрали, по которой поступает газ в помещение. [c.414]

    Все описанные методы можно применять как для чистых газов, так и для смесей. Если известен состав смеси и вириальные коэффициенты отдельных компонентов, то может быть рассчитан вириальный коэффициент взаимодействия (как рассматривалось в разд. 2.8), однако ошибка при этом накапливается. Для примера рассмотрим бинарную газовую смесь. Как уже указывалось выше, 5см определяется следующим образом  [c.114]

    Проблема короткопламенного горения газа разрешена в печах беспламенного горения с излучающими стенками топки, в которых достигается полное предварительное смешение газа и воздуха. При этом благодаря применению инжекционных смесителей удается добиться полного сгорания топлива при коэффициенте избытка воздуха 1,05—1,10. Смесь газа и воздуха, тщательно перемешанная и подогретая до температуры воспламенения, сгорает почти мгновенно, поэтому в горелках рассматриваемых печей продолжительность горения зависит от времени, необходимого для нагрева смеси до указанной температуры. [c.223]

    Значение коэффициента диффузии газа Л, который диффундирует через смесь газов В тл С, вычисляют с помощью соотношения  [c.304]

    Коэффициент диффузии для газа А, диффундирующего через смесь газов (В С), вычисляем по формуле [c.130]

    Найти коэффициент массопередачи в насадочном скруббере для поглощения ацетона из воздуха водой, расход которой составляет 4000 кг/ч. Смесь воздуха с парами ацетона содержит 5% (об.) ацетона, причем расход чистого воздуха 2000 м ч. Степень поглощения ацетона при 20 °С достигает 98,2%. Абсорбционная башня заполнена керамическими кольцами размерами 25 X 25 X X 3 мм, слой которых имеет высоту 18 м. Скорость газа в полном сечении башни принять на 20% меньше скорости, соответствующей началу эмульгирования. [c.222]

    Определение эффективных коэффициентов диффузии проводится следующим образом. По одну сторону диафрагмы подается газообразный реагент, скорость диффузии которого нужно измерить. Можно также использовать смесь этого реагента с инертным газом. По другую сторону диафрагмы подается чистый инертный газ. Давление газов по обе стороны диафрагмы должно быть полностью уравнено. Реагент, продиффундировавший из право й части сосуда в левую, захватывается током газа, и концентрация реагента в выходящем из камеры потоке определяется аналитически. Одновременно для контроля измеряется количество реагента, выходящего из правой части сосуда. В отсутствие химической реакции скорость диффузии реагента в установившихся условиях, очевидно, равна количеству реагента, вымываемому из левой части сосуда в единицу времени. В соответствии с этим эффективный коэффициент диффузии может быть вычислен по формуле  [c.366]


    С. Пример расчета по различным моделям. Расчеты по различным моделям выполнены для цилиндрического технологического нагревателя мощностью 3,3 МВт. Проектная температура газа на выходе из конвективного участка равна 600 К. Поглощающие теплоту трубы с наружным диаметром 0,14 м расположены в один ряд с расстоянием между центрами 0,25 м. Коэффициент излучения труб равен 0,85, и установлено, что температура поверхности труб равна 650 К. Топливная смесь (88 % углерода и 12 % водорода по массе) сгорает при 25% -ном избытке воздуха (что соответствует 18,6 кг воздуха на 1 кг топлива), который предварительно подогревается до 480 К. [c.120]

    Теплотворная способность мазута = 9370 ккал/кг. Коэффициент избытка воздуха при сжигании мазута принимаем а = 1,2. Поступающая в барабан газо-воздушная смесь имеет температуру 400° С, а отходящие из барабана газы 200° С. [c.387]

    Если смесь удалена от критической области, то паровая фаза имеет небольшую плотность, т., е. молекулы находятся дальше друг от друга и взаимодействуют реже, чем в жидкой фазе, отличающейся большей плотностью. Поэтому одно из упрощающих предположений заключается в следующем при парожидкостном равновесии все отклонения от идеального поведения относятся к жидкой фазе, а паровая фаза с достаточной точностью может рассматриваться как идеальный газ. Привлекательность этого допущения — в значительном упрощении расчета парожидкостного равновесия действительно, фугитивность /-того компонента в идеальной смеси равна его парциальному давлению, т. е. определяется молярной долей У1 и общим давлением смеси Р. Другое упрощение дает правило Льюиса, согласно которому фугитивность компонента I в паровой смеси пропорциональна его мольной доле, причем коэффициент пропорциональности является фугитивностью паров чистого компонента ( при температуре и давлении смеси. [c.20]

    Провести замедленное коксование гудрона при 470 °С, объемной скорости подачи сырья 0,1 ч , давлении 0,2 МПа (2 кгс/см ). Жидкие продукты коксования разогнать с отбором фракций бензина (до 200 °С), легкого (200—350 °С) и тяжелого 350—450 °С) газойлей. Смесь исходного гудрона и остатка выше 450 °С подвергнуть коксованию при таком же режиме. Сравнить выходы газа, кокса и дистиллята, полученные в первом и втором опытах. Пересчитать полученные в первом опыте выходы продуктов на свежее сырье, считая коэффициент рециркуляции постоянным. [c.142]

    По сравнению с монтажом специальных холодильных установок, в промысловых условиях экономически целесообразно охлаждать смесь нефти и газа водой или холодной нефтью. В зтом случае возможно достижение температуры охлаждения смеси, равной 10 °С, то есть температура 10 градусов является минимальной температурой смешения и разделения в промысловых условиях. Поэтому предпочтительным температурным интервалом работы конденсатора-холодильника является 10...30 ос. С понижением температуры охлаждения смеси нефти и газа при абсорбции повышается коэффициент извлечения (рис.2.2) и увеличивается выход товарной нефти. [c.27]

    Ацетилен извлекали из газовой смеси отмывкой водой под давлением (см. раздел 4) выделенный из водного раствора ацетилен содержал 30% углекислоты. Газовую смесь, оставшуюся после выделения ацетилена, подвергали вторичному сожжению в кислороде, чтобы избавиться от метана. В результате получался газ, состоящий только из окиси углерода и водорода его использовали как обычный газ синтеза (гл. 3). Подробное описание установки, конструкции форсунок и данные о расходных коэффициентах приведены в отчете, на который сделана ссылка. [c.279]

    Через дополнительную впускную систему в форкамеру подается обогащенная смесь, обеспечивающая наиболее благоприятные условия воспламенения и развития начального очага горения. После воспламенения смеси в форкамере быстро возрастает давление, и продолжающие догорать газы выбрасываются через отверстия в основную камеру, где после очень небольшого периода задержки обедненная смесь воспламеняется практически одновременно в целом ряде точек на периферии факела. Такое энергичное воспламенение смеси, дополнительно турбу-лизированной факелом, приводит к тому, что в цилиндре оказываются способными гореть с достаточно высокими скоростями сильно обедненные смеси с коэффициентом избытка воздуха а = 1,7 - 1,8 [3]. [c.159]

    Этот же процесс, но при обычных температурах, можно осуществить и с помощью лолимерных мембран [102, 103, 107]. Одаако при разработке и реализации этого способа следует иметь в виду, что так как энергия активации проницаемости Ог выше, чем Нз, то селективные свойства полимерных мембран с ростом температуры ухудшаются. Для каждого полимера существует температура, пр которой коэффициенты газ опроницаемости изотопов равны и их смесь не делится — она азеотропна [107]. Поэтому одна из первых задач при разработке установки с использованием полимерных мембран — выбор оптимальной температурной последовательности ведения процесса в многоступенчатом каскаде. [c.318]

    Когда требуется быстрая передача сжиженного газа, смесь пара и жидкости, имеющая меньшую плотность, чем чистая жидкость, должна передаваться с большой скоростью, чтобы обеспечить заданный массовый расход жидкости. Скорость потока в двухфазной области имеет серьезные ограничения. Максимальная скорость потока жидкости в трубе равна скорости звука в жидкости. Скорость звука в низкокипящих жидкостях весьма велика в жидких азоте, кислороде и водороде — порядка 1000 м1сек, а в жидком гелии — около 200 м1сек. Однако в двухфазной смеси жидкости и пара скорость звука мала вследствие высокого коэффициента сжимаемости смеси, обусловленного присутствием пара. [c.284]

    Смесь газов Средний коэффициент диффузии В ), M I n Средний кинетический диаметр 012, A Средний кинетический диаметр из данных вязкости /2 ((Г1+О2) А [c.169]

    Для оценки скорости диффузии обычно пользуются коэффициентом молекулярной диффузии. В связи с тем, что молекулярная теория жидкостей разработана относительно слабо, то невозможно оценивать коэффициент диффузии в жидкостях с такой же точностью, как, например, для газов. Учитывая то, что остатки являются многокомпонентными смесями высокомолекулярных соединений, диффузионные явления в которых осложнены стерическими факторами и межмолекулярными взаимодействиями, обычно прибегают к различного рода упрощениям, в частности условно относят рассматриваемую смесь к двухкомпонентной. Например, дисперсную фазу относят к компоненту 1, а дисперсионную среду, в которой диффундирует дисперсная фаза, к компоненту 2. Для количественной оценки значений коэффициентов молекулярной диффузии в растворах могут быть использованы эмпирические корреляции, которые достаточно подробно рассмотрены Саттерфилдом [27]. Так, для оценки коэффициента диффузии В молекул соединений с относительно малыми размерами широко используется соотношение Вильке и Чанга  [c.29]

    Если принять смесь С2Н2-ЬН2 за состав газов пиро лиза, то верхний предел ее взрываемости при концентрации ацетилена 8% будет соответствовать примерно содержанию 5% кислорода в смеси (см. рис. 25). Практически максимальное содержание кислорода принимают с определенным коэффициентом запаса — не более 0,5 объемн. %. [c.58]

    Исследованиями на установке ДК-2 с 1)ц=120 мм и Оср = 5- 8 м/с со свободно движущимися поршнями, выполненными в Институте газа Академии Наук УССР, установлена зависимость между параметрами конца сжатия (рс и Тс) и пределами самовоспламенения газовоздушной смеси различного состава, оцениваемого коэффициентом избытка воздуха а. При этом установлено, что метано-воздушные смеси с а= l,03-f-l,06 воспламеняются при незначительных рс и Тс- Чем выше начальная температура метано-воздушной смеси, тем при более низком давлении рс происходит ее самовоспламенение. Для предотвращения самовоспламенения и детонационного сгорания предлагается обеднять горючую смесь и снижать температуру заряда в начале сжатия. Этому требованию хорошо удовлетворяет внутреннее охлаждение заряда при подаче в поток продувочного воздуха охладителя. [c.227]

    Принцип форкамерно-факельного зажигания заключается в том, что воспламенение рабочей смеси в цилиндре осуществляется не искрой свечи, а факелом пламени, образующимся при сгорании небольшого количестаа обогащенной смеси в особой форкамере, соединенной с основной камерой сгорания несколькими каналами. Объем форкамеры составляет всего лишь 2 —3% от объема основной камеры сгорания. В форкамере расположены свеча зажигания и небольшой дополнительный впускной клапан, открывающийся одновременно с основным впускным клапаном общим приводом (рис. 15). Через дополнительную впускную систему в форкамеру подается обогащенная смесь, обеспечивающая наиболее благоприятные условия воспламенения и развития начального очага горения. После воспламенения смеси в форкамере быстро возрастает давление, и продолжающие догорать газы выбрасываются через отверстия в основную камеру, где после очень небольшого периода задержки юбедненная смесь воспламеняется практически одновременно в целом ряде точек на периферии факела. Такое энергичное воспламенение смеси, дополнительно турбулизированной факелом, приводит к тому, что в цилиндре оказываются способными гореть с достаточно высокими скоростями сильно обедненные смеси с коэффициентом избытка воздуха а = 1,7—1,8 [181.  [c.59]

    Например, для конического каскада, принципиальная схема которого представлена на рис. 6.5, б, коэффициент деления потока на первой ступени равен 01 = 0,67, на последующих 02 = = 03 = 04 = 0,5. Работа многоступенчатых установок по схеме простых каскадов выгодна только в том случае, когда разделяемая смесь достаточно дещева, например в случае разделения воздуха для получения обогащенного кислородом газа. [c.202]

    Хвангом и Дж. М. Торманом на примере мембранного колонного аппарата на полых волокнах [24, 25] при усло вии противоточного движения потоков в напорных и дренажных каналах в режиме идеального вытеснения. При этом принимали следующие допущения исходная смесь газов подается внутрь полых волокон — в трубное пространство колонны геометрические размеры волокон, вязкость и плотност газовой смеси, коэффициенты проницаемости компонентов являются функцией изменяющегося давления в напорном пространстве аппарата (Р1) температура в колонне и давление в дренажном пространстве (Рг) постоянны. [c.216]

    Увеличение давления приводит к значительному возрастанию коэффициента проницаемости ЗОг в полимере [125, 131, 134]. Это происходит, вероятно, благодаря пластифицирующему эффекту, вызванному растворением ЗОг в полимере. При этом увеличиваются значения фактора разделения зоа/Ыг.ог- Как правило, совместная проницаемость ком понентов газовой смеси не подчиняется правилу аддитивности. Так, проницаемость азота растет в пр исутствии диоксида серы, особенно при высоких концентрациях последнего, причем присутствие N2 ингибирует проницаемость ЗОг [135]. Возможность взаимодействия ЗОг и N2 затрудняет предсказание скоростей проницаемости этих газов в смесях из данных для чистых газов. Исследования по разделению 502-содержащих газовых смесей показали возможность извлечения диоксида серы из топочных газов с помощью мембран ПВТМС и РЭТСАР [124, 136]. Определены оптимальные условия проведения процесса для 70%-го извлечения ЗОг из газов, при этом газовая смесь, содержащая 1,5% (об.) диоксида серы обогащалась до 6% (об.) (при перепаде давлений на мембране 0,1 МПа), что вполне д0стат0Ч Н0 для автотермической переработки в серную кислоту. [c.332]

    Для укрупненных расчетов рекомендуются следующие коэффициенты теплопередачи К 1в Вт/(м--К)1 газопродуктовая смесь в блоке предварительной гидроочисткн — 175—200 газо-продуктовая смесь в блоке риформинга — 150—200 растворы ДЭГ, стабильный катализат, экстракт, рафннат, индивидуальные ароматические углеводороды — 150—175 высшая ароматика — 175—230 углеводородный газ — 100—175 водородсодержащий газ — 230—300. [c.149]

    Реакционный узел и регенерация катализатора. Гидроформили-рование проводят в гетерофазной среде, барботируя смесь СО и На через жидкую реакционную массу. Эти газы плохо растворимы в opranFi4e KHX жидкостях, и для преодоления диффузионных сопротивлений очень важно достаточное перемешивание смеси. Оно достигается применением избытка смеси СО+На коэффициент цир-кулящи (отношение рециркулята к свежему синтез-газу) составляет 2ч-3) 1. Смесь O-fHa обычно берут в стехиометрическом отношении (1 1), требуемом для оксосинтеза. [c.537]

    Температуру внутри трубки измерить трудно, поэтому в случае однорядного расположения катализатора приходится удовлетвориться измерением температуры в конце слоя. Для этого термопару можно ввести снизу. Карман термопары может также служить как опора слоя катализатора. Температуру в рубашке, окружающей трубку с катализатором, можно поддерживать постоянной, регулируя давление инертного газа вверху обратного холодильника. Нисходящая труба (правая на рис. 2) заполнена жидкостью, а в рубашке реактора жидкость перемешивается поднимающимися пузырьками п ара. Пар частично образуется в исиарителе, но основное его количество получается при испарении жидкости, поглощающей тепло экзотермической реакции в рубашке. Смесь жидкости и пара поднимается вверх под действием разности пшотностей, обеспечивая циркуляцию. Перенос тепла в рубашке происходит в режиме кипения и поэтому очень интенсивен, а лимитирует его коэффициент теплопередачи пограничного слоя у внутренней поверхности трубки с катализатором. Скорость циркуляции в термосифоне может быть в 10—15 раз выше скорости испарения заполняющей его жидкости. Это исключает значительную разницу температур и поддерживает температуру рубашки постоянной. В данном случае допущение о постоянной температуре стенки трубки с ка-тал 1затором достаточно обоснованно. При включении нагревания термосифона температура его нижней части может быть на 20—30°С выше, и о начале циркуляции можно судить по исчезновению разности температур между низом и верхом рубашки. [c.68]

    Осуществимость газового реактора можно исследовать на основе сравнительно простой модели. Задача состоит в определении особенностей и размеров такой системы, исходя из некоторых приемлемых характеристик. Для этого исследуем следующие простейшие модели 1) реактор — газовая сфера радиусом Яд без отран ателя 2) критический реактор в стационарном состоянии 3) источником энергии является только реакция деления 4) внешняя граница сферы имеет абсолютную температуру Т=Т Яд = Тд, 5) газовая смесь — инертная система при некотором фиксированном давлении р 6) потери эпергии из газа существуют только благодаря проводимости, поэтому пренебречь радиацией, конвекцией н силами гравитации 7) односкоростное уравнение диффузии дает достаточно правильное представление о нейтронной физике 8) экстраполированное граничное условие применимо 9) коэффициент диффузии пространственно инвариантен (предполагается некоторое среднее значение для смеси) 10) коэффициент теплонроводностн может быть представлен некоторым средним значением f. [c.184]

    Для полноты рассмотрения следует упомянуть эффект внут-реннчх колебательных степеней свободы. Если потенциальная энергия не зависит от колебательных степеней свободы молекулы, то колебательная составляющая функции распределения сокращается для и 2 и не влияет на вириальные коэффициенты. Это обычная ситуация для газов при умеренных температурах, где необходимо учитывать только первые колебательные уровни. Однако при очень высоких температурах многие молекулы будут находиться на высших колебательных уровнях вблизи предела диссоциации и некоторые могут диссоциировать на атомы. Для решения такой задачи существует один путь — рассматривать газ как смесь химических компонентов (атомов и молекул). При этом возникает серьезная трудность введения [c.46]

    Условие инвариантности комбинаций удля упругих столкновений выполняется автоматически при любых максвелловских функциях fi. fj с произвольными нормировками. Формально можно считать, что смесь нереагирующих компонент является "химически равновесной", если функции распределения имеют максвелловский вид. Хотелось бы отметить, что такой подход имеет физический смысл, поскольку частицы с разной поступательной энергией вносят различный вклад в процессы установления равновесия. Кстати, именно на этом основана модель Ван-Чанга—Уленбека—де Бура, где вводится множественная система квантовых уровней, при которой фактически отсутствуют упругие столкновения и каждое столкновение приводит к изменению уровня. Частицы с неодинаковой кинетической энергией при этом обладают как бы различной химической активностью в процессах неупругого рассеяния. После расчета коэффициентов переноса в такой системе частицы на различных уровнях вновь считаются одинаковыми, и их концентрация находится простым суммированием. Такое объединение упругих и неупругих процессов позволило рассчитать характеристики переноса (сдвиговую и объемную вязкость, время релаксации) многоатомнь1х газов. В этой трактовке условие детального баланса представляет собой частный, вырожденный случай закона действующих масс (с условием,ДЕ= 0). [c.31]

    Когда в твердой фазе пылегазовой смеси преобладают частицы крзшностью более 20 мкм и не требуется слишком высокий коэффициент извлечения, или очищенный газ снова идет на запыление (например, в размольных установках), или когда имеется вторая ступень извлечения, то применяют циклоны больших диаметров с малым гидравлическим сопротивлением, которые могут пропускать смесь с содержанием твердой фазы до 800—1000 /г/м . В этом случае целесообразно установить циклоны ЦККБ или НИИОгаз. [c.336]

    В реальной системе приближение режима работы к захлебыванию сопровождается брызгоуносом, т. е. с жидкой пленкой взаимодействует не чистый газ, а газожидкостная смесь с плотностью Рс [см. уравнение (VI 1.42)]. Кроме того, при изменении скорости газа происходит перестройка профиля скоростей в пленке, что не учитывается уравнением (VII.46). Эти обстоятельства не позволяют вычислить точные значения коэффицинтов при критериях Ргр и Рг, в уравнении (VII.51). Сопоставление выражения (VII.51) с уравнением подобного вида [86] и экспериментальной зависимостью, приведенной в [29], позволило уточнить коэффициенты при критериях РГр и Рг в уравнении (VI 1.51) и записать его в виде [c.145]

    Напрммер, найдем массовую плотность потока водяного пара в смеси (50 об. %) с природным газом, содержащим 43,5 мол. %. азота. 44,5 мол. % мета на, 6,2 мол. % этана, 3,9 мол. % пропана и 1,9 мол. % бутана. Смесь находится в цилиндрическом элементе пласта радиусом /-=0,01 м и длиной /=1 м, пористостью т = 0,3. Пластовая температура 7 = 333 К. Коэффициент взаимной диффузии 0 = 0,25-10 м /с. [c.144]


Смотреть страницы где упоминается термин Коэффициент газов и их смесей: [c.197]    [c.71]    [c.84]    [c.373]    [c.35]    [c.350]    [c.289]   
Свойства газов и жидкостей (1966) -- [ c.227 , c.233 , c.234 , c.236 , c.238 , c.244 ]




ПОИСК





Смотрите так же термины и статьи:

Активности и коэффициенты активности и смеси реальных газов

Вязкости второй коэффициент смеси газов

Динамический коэффициент вязкости газов и их смесей

Дытнерский, В. И. Андреев. К расчету высоты газо-жидкостной смеси (пены) на барботажных тарелках и коэффициента газонаполнения пены

Кинематический коэффициент газов и их смесей

Теплопроводности коэффициент смеси газов

Термодиффузии коэффициент смеси газов



© 2024 chem21.info Реклама на сайте