Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хемосорбция природа

    В широком смысле слова термин сорбция охватывает такие виды поглощения как адсорбция, капиллярная конденсация, абсорбция и хемосорбция, природа которых различна. В дальнейшем изложении речь будет идти о первых двух видах поглощения, причем в большей мере об адсорбции, поэтому употребляемые ниже термины адсорбция и сорбция следует понимать как синонимы. [c.11]

    Физическая адсорбция не обладает значительной специфичностью. Благодаря этой особенности она используется для измерения удельной поверхности твердых катализаторов и твердых тел. В противоположность этому, хемосорбция, вследствие своей химической природы, очень специфична. [c.86]


    При минимальной энергии взаимодействия наблюдается физическая адсорбция. В основе ее лежит диполь-дипольное взаимодействие Ван-дер-Ваальса молекула сорбата и сорбирующая поверхность поляризуют друг друга, и взаимодействие между индуцированными диполями порождает теплоту адсорбции. Ее величина обычно не превышает 0,015—0,03 аДж. При обменном взаимодействии электронов твердого тела с частицей сорбата, когда энергия связи составляет около 0,15 аДж, связь имеет химическую природу, и такая адсорбция именуется хемосорбцией [206]. [c.182]

    Адсорбция обусловлена притяжением между молекулами поверхности твердого тела (адсорбента) и молекулами жидкости или газа (адсорбата). Экспериментально обнаружены два типа адсорбции, у которых интенсивность притяжения отличается приблизительно на порядок. В некоторых случаях притяжение сравнительно невелико и имеет ту же природу, что и притяжение между любыми двумя молекулами, т. е. происходит физическая адсорбция. В других случаях силы притяжения родственны силам, проявляющимся при образовании химических связей такай процесс называют химической адсорбцией, или хемосорбцией. Как будет показано ниже, обоим этим процессам свойственны и другие отличия. [c.204]

    Эти скорости зависят также от природы катализатора. Например, они заметно различаются в присутствии платинового или палладиевого катализаторов. Соотношение между скоростями, установленное для чистых углеводородов, не сохраняется прп гидрировании их смесей. Поэтому, несмотря на то, что скорости гидрирования чистого бутадиена в бутен и чистого бутена в бутан практически являются теми же, в смеси этих соединений гидрирование бутадиена (с образованием бутена) протекает намного быстрее. Возможно, это объясняется большей величиной коэффициента хемосорбции бутадиена. [c.240]

    Во многих аналогичных ситуациях, когда прочность твердых тел различной природы, контактирующих с теми или иными средами, оказывается пониженной, эта объясняется уменьшением поверхностной энергии твердого тела в результате адсорбции, хемосорбции, смачивания и других физико-химических взаимодействий [254]. Такой подход, впервые предложенный П. А. Ребиндером, оказывается весьма плодотворным и при описании геологических процессов. Однако сложность природных систем и недоступность большинства из них. прямому наблюдению требует большой осторожности в выводах и тщательного учета всех взаимосвязанных факторов, от которых зависит возможность эффекта и степень его проявления. К этим факторам относятся химический состав твердого тела и среды, определяющий характер межатомных взаимодействий реальная структура (дефектность) твердого тела условия деформирования. [c.92]


    Далеко не полный перечень упомянутых неоднородностей вносит значительные осложнения в однозначное истолкование механизмов адсорбционных и каталитических процессов. Обычно эти осложнения учитываются введением функций распределения участков поверхности по соответствуюш пм характеристикам (теп-лотам адсорбции, тепловым эффектам химических поверхностных реакций, энергиям активации хемосорбции и катализа). Иногда эффекты, воспринимаемые как следствие неоднородностей в кинетике и статике адсорбции и в кинетике каталитических реакций, объясняются как результат некоторого отталкивательного взаимодействия между адсорбированными молекулами [141. Однако до сих пор не выяснен вопрос о реальности и природе постулируемых сил отталкивания. Возникает проблема идентификации природы неоднородностей, разработки приемов их распознавания, позволяющих отличать географические неоднородности от влияния сил отталкивательного взаимодействия. [c.12]

    По своей природе ингибиторы коррозии бывают ионными [катионного типа — катапин, ЧМ анионного типа — тиомочевина С5 (ЫН2)2] или молекулярными соединениями (например, антра-ниловая кислота). Ингибиторы адсорбируются на поверхности корродирующего металла или электростатически (адсорбция ионов и полярных молекул за счет кулоновских сил при соответствующем знаке заряда поверхности металла) или специфически (адсорбция поверхностно активных ионов и молекул за счет молекулярных ван-дер-ваальсовских сил), или химически (хемосорбция ионов и молекул за счет валентных сил химического сродства) возможна также адсорбция их вследствие одновременного действия разных сил. [c.345]

    Хемосорбция ингибиторов существенно зависит и от природы металла. Например, гетероциклические амины адсорбируются на железе, являющемся переходным металлом, и образуют прочные хемосорбционные пленки благодаря взаимодействию я-электронов молекулы ингибитора с незавершенными З -уровнями железа. В случае непереходных металлов такого взаимодействия не происходит, хотя положительно заряженная поверхность [c.91]

    По своей природе различают два вида абсорбции физическую, при которой извлечение компонентов из газа происходит благодаря их растворимости в абсорбентах и химическую хемосорбцию), основанную на химическом взаимодействии извлекаемых компонентов с активной частью абсорбента. Скорость физической абсорбции определяется диффузионными процессами, скорость хемосорбции зависит от скорости диффузии и химической реакции. [c.192]

    В процессе адсорбции молекулы газа осаждаются на поверхности твердого тела точно так же, как и при конденсации, а затем удерживаются на ней физическими силами притяжения (силы Лондона— Ван-дер-Ваальса) либо химическими силами (хемосорбция) — в зависимости от химической природы молекулы и поверхности. В некоторых системах могут существовать оба вида адсорбции или промежуточные состояния. [c.156]

    Твердые вещества, наиболее пригодные для адсорбции, отличаются высокой пористостью, имеют хорошо развитую поверхность с большой эффективной площадью. В качестве адсорбентов применяют такие материалы, как уголь, глинозем, силикагель. Некоторые свойства поверхности, например, расположение кристаллов или присутствие на поверхности атомов кислорода со свободной электронной парой, способной создавать водородные связи, обусловливают хемосорбцию определенных видов молекул. Точная природа этих свойств поверхности еще недостаточно ясна, поэтому необходимы дополнительные исследования, позволяющие создать матери- [c.156]

    Из указанного видно, что не только число, но и природа активных центров играют решающую роль в катализе. Вероятно, на пиках процессы протекают через активированную адсорбцию, на линиях имеет место и менее благоприятная хемосорбция. [c.120]

    Поглощение света некоторыми веществами резко изменяется после их адсорбции. Это явление имеет, несомненно, некоторую связь с природой сил взаимодействия молекул этих веществ с поверхностью, и поэтому можно предположить, что оно указывает на процесс хемосорбции, В дальнейшем обсуждении мы приведем некоторые возражения против этой точки зрения. [c.21]

    При адсорбции из растворов наряду с нейтральными частицами поглощаются н ионы такой процесс называется ионной адсорбцией. По своей природе она близка к хемосорбции. Характерная особенность ее — избирательность (селективность), подчиняющаяся правилу Пакета—Фаянса  [c.126]

    Разновидности хроматографии. В зависимости от агрегатного состояния подвижной фазы различают, соответственно, газовую и жидкостную хроматографию. Неподвижные фазы могут отличаться как по агрегатному состоянию (жидкость или твердое тело), так и по природе сорбционного взаимодействия с молекулами разделяемой смеси. Неподвижная фаза может концентрировать вещество на границе раздела фаз за счет адсорбции, удерживать вещество за счет хемосорбции, избирательно растворять компоненты смеси (абсорбция) она может иметь пористую структуру и поэтому задерживать одни растворенные в элюенте вещества и пропускать другие, в зависимости от их размеров и формы. [c.47]


    В такой структуре появляются атомы и ионы металла менее прочно связанные с остальной частью кристаллической решетки. Это значит, что они могут более активно вступать в химическое взаимодействие с присадками к маслам. В силу электронной природы частиц металла на поверхности, металл может реагировать и с окисляющими группами (за счет атомов металла) и с восстанавливающими группами (за счет подвижных ионов металла), входящими в состав присадок. Протекающая при этом в начальной стадии хемосорбция присадок приводит к образованию новых химических связей между металлом и составляющими частями присадок. [c.667]

    Тем не менее в большинстве случаев природу явления можно тан ить, исследовав величину теплового эффекта процесса. При уменьшении свободной поверхностной энергии в процессе адсорбции выделяется теплота адсорбции . Очевидно, что в процессе хемосорбции выделяется значительно большее количество тепла, чем в процессе физической адсорбции. В первом случае теплота адсорбции по порядку величины близка к теплоте химических реакций, во втором — к теплоте конденсации. Существуют и другие, менее общие признаки различия, например характер изотерм, кинетика процесса, его обратимость и др. [c.106]

    Катализ начинается с хемосорбции молекул, отличающейся относительно большими энергиями адсорбции, причем, как правило, чем выше теплота адсорбции Qa, тем меньше ее энергия активации Еа. Следовательно, быстрая адсорбция происходит на местах с большими Qa По-видимому, и энергии активации химических реакций хемосорбированной молекулы минимальны при таких Qa. В то же время, время жизни молекулы на поверхности т = То exp QJRT) растет с увеличением Qa. Самый трудный процесс — обратная десорбция. Это приводит к сочетанию длительности пребывания на поверхности с высокой реакционной способностью, что благоприятно для повторения реакций с одним и тем же экземпляром молекулы. Легче, но тоже трудно, перемещение по поверхности. Приведенные выше данные показывают, что химические превращения без отрыва, который в обычных условиях возможен только в виде устойчивых молекул, значительно вероятнее отрыва, а обычно также и ползания. Все эти соображения применимы к любой форме хемосорбции. Природа активных реакционноспособных форм может быть различной в различных случаях. [c.379]

    В соответствии с существующими предложениями процесс окисления кокса протекает через ряд стадий. Первая стадия - хемосорбция кислорода с образованием устойчивого поверхностного углерод-кислородного комплекса. Вторая стадия - разложение комплекса с образованием окиси и двуокиси углерода. Этот процесс может протекать с большой скоростью, при этом необходимо учитывать неравномерность горения кокса во времени. В первый момент времени температура катализатора резко возрастает вследствие быстрого окисления находящихся на поверхности кокса активных веществ, богатых водородом. Подскок температуры может достигать при этом 70-80°С. Перегревы отдельных зон гранулы катализатора зависят от характера распределения кокса по объёму частицы. При невысоком содержании кокса переферия гранулы закоксована гораздо сильнее ядра. При увеличении содержания кокса эта разница быстро уменьшается. Кроме такого, диффузного по своей природе, распределения кокса, имеет место и зональное его распределение - на металле и на носителе катализатора. [c.54]

    Как показала М. М. Глейзер, повышенной восприимчивостью к действию ингибиторов коррозии обладают металлы, относящиеся по природе водородного перенапряжения к группе, характеризующейся либо замедленной рекомбинацией водородных атомов, либо соизмеримым торможением рекомбинации и разряда водородных ионов (Ре, N1, Т ). Адсорбция ингибиторов коррозии на поверхности металлов этой группы происходит за счет как электростатических, так и специфических сил. Металлы этой группы, обладая неукомплектованными электронами внутренними Зй -подоболочками, склонны также к повышенной хемосорбции ингибиторов на своей поверхности. [c.348]

    Подобные отклонения можно объяснить двояко. Отказавшись от постулата 3, приходим к представлению о хемосорбции на однородной поверхности, сопровождающейся взаимодействием сорбированных частиц. Если это взаимодействие заключается во взаимном отталкивании, теплота адсорбции должна уменьшаться с увеличением степени заполнения в согласии с опытными данными. Выбрав некоторую зависимость коэффициента адсорбции Ь [связанного с теплотой адсорбции соотношением (1.6) ] от степени заполнения поверхности и подставив ее в уравнение (1.5), можем аппроксимировать таким образом любую экспериментальную изотерму адсорбции. Отталкивание хемосорбированных молекул может являться следствием квантово-механического обменного взаимодействия [9]. Силы кулоновского или диполь-динольного взаимодействия играют малую роль, так как они долнщы сказываться лишь при значительной плотности сорбированных молекул, между тем отклонения от изотермы Лангмюра (или изотермы Генри) часто становятся заметными уже при очень малых степенях заполнения поверхности. Весьма правдоподобно объяснение природы сил взаимодействия сорбированных частиц через посредство электронного газа кристаллической решетки катализатора (см. постулат 3, а также работы [9, 10]) сила такого взаимодействия незначительно уменьшается [c.17]

    Несмотря на различную физико-химическую природу рассмотренных выше процессов, разработка математических моделей каждого из них и методология определения параметров во многих аспектах имеет много общего. Прежде всего для каждого из процессов характерны такие этапы, как исследование условий химического и фазового равновесия, причем для большинства из пих по единой методологии и одним и тем же моделям оценка гидродинамической структуры систем с двумя (и более) фазами применительно к выбранному типу оборудования оценка параметров кинетических закономерностей (коэффициентов массопередачи, площади поверхности раздела фаз, коэффициентов диффузии и т. д.) для учета реальных условий массоиереноса установление механизма химических реакций и оценка параметров (для процессов химического превращения, хеморектификации, хемосорбции), выбор разделяющего агента (для комплексов с разделяющими агентами). [c.94]

    Процесс адсорбции сопровождается выделением тепла. В случае чисто физической адсорбции выделяемое тепло равно теплоте конденсации. При химической адсорбции количество выделяющегося тепла больше. Удаление молекул с поверхности требует подвода тепла к поверхности для выбивания (испарения) молекул. В случае хемосорбции это может означать, что вместе с десорбирующимися молекулами могут быть удалены некоторые атомы твердого тела, что ведет к изменению природы поверхности. Это может привести к уменьшению или увеличению адсорбционной способности. [c.158]

    Структура пассивной пленки на сплавах, как и пассивной пленки вообще, была описана и теорией оксидной пленки и адсорбционной теорией. В соответствии с оксидно-пленочной теорией, защитные оксидные пленки формируются на сплавах с содержанием легирующего компонента выше критического, а незащитные — на сплавах ниже критического состава. В случае преимущественного окисления пассивной составляющей сплава, например хрома, защитные оксиды (такие как СГаОз) формируются, только если содержание хрома в сплаве превышает определенный уровень. Эта точка зрения не позволяет делать никаких количественных прогнозов, а тот факт, что пассивная пленка на нержавеющих сталях может быть катодно восстановлена и не соответствовать стехиометрическому составу, остается необъясненным. Согласно адсорбционной теории, в водной среде кислород хемо-сорбируется на Сг—Ре-сплавах выше критического состава, обеспечивая пассивность, но на сплавах ниже критического состава он реагирует с образованием непассивирующей оксидной пленки. Насколько данный сплав благоприятствует образованию хемосорбционной пленки или пленки продуктов реакции, зависит от электронной конфигурации поверхности сплава, особенно от взаимодействия -электронов. Так называемая теория электронной конфигурации ставит в связь критические составы с благоприятной конфигурацией -электронов, обеспечивающей хемосорбцию и пассивность. Теория объясняет природу взаимодействия электронов, определяющую, какой из компонентов придает сплаву данные химические свойства, например, почему свойства никеля преобладают над свойствами меди в медно-никелевых сплавах, содержащих более 30—40 % N1. [c.91]

    В пользу физической точки зрения говорит прежде всего доказанное рентгенографическими исследованиями размещение внутри кристаллической решетки карбамида молекулы углеводорода, тем более что возможность такого размещения определяется не химической природой взаимодействующих веществ, а размерами молекул и каналов. Высвобождение из комплекса некоторой части входящих в его состав молекул при дроблении комплекса [45] является также подтверждением физического представления о структуре комплекса и о процессе комплексообразования. Циммершид [20] и Бейли [21] считают, что комплексообразование есть одна из форм адсорбции, в основе которой лежит проникновение молекул одних веществ вглубь кристаллической решетки других веществ и которая определяется формой молекул адсорбируемого компонента. При этом проводится аналогия между взаимодействием нормальных парафинов с карбамидом и взаимодействием их с минералами шабазптом и анальцитом, входящими в группу цеолитов, поскольку эти минералы также соединяются только с парафинами нормального строения и не взаимодействуют ни с изопарафиновыми, ни с нафтеновыми, ни с ароматическими углеводородами. Как известно, при физической адсорбции (в отличие от хемосорбции) молекулы адсорбируемого вещества сохраняют свою индивидуальность с увеличением давления и с понижением температуры количество адсорбируемых молекул увеличивается физическая адсорбция обратима. Эти же закономерности имеют место и при комплексообразованпи — молекулы нормальных парафинов, вступая в комплекс, не претерпевают никаких изменений. Увеличение давления позволяет вовлечь в комплекс нормальные парафины с относительно короткими цепями, Которые при нормальном давлений комплекса Не образуют. Понижение температуры в определенных пределах ведет к усилению комплексообразования обратимость комплексообразования доказана многочисленными экспериментами. [c.25]

    Химическая адсорбция, или хемосорбция, отличается от физической адсорбции тем, что первая обусловлена силами химической природы между адсорбентолт и адсорбатом. Прп химической адсорбции может теряться индивидуальность исходных компоиеитов. Энергия взаимодействия при хемосорбции составляет 40— 400 кДж/моль, т. е. иа 1—2 порядка больше этой величины для физической адсорбции (10—40 кДж/моль). [c.125]

    Изложенные представления об активных центрах базируются на следующих положениях считается, что число активных центров постоянно, они фиксированы на поверхности, и адсорбция не изменяет ни их природы, ни числа. В последнее время в связи с развитием электронных и цепных представлений такой статический взгляд на природу и судьбу активных центров меняется. Н. Тон и Г. Тейлор [23] допускают возникновение и исчезновение активных центров. Последние образуются при контакте атомов катализатора с центрообразующими реагентами. Центрообразующим реагентом может быть один из участников реакции, активирующийся при хемосорбции. При каталитических реакциях такими реагентами чаще всего являются Наде, Оадс, С1адс. Активные центры при взаимодействии со вторым, не адсорбированным компонентом реакции образуют конечный продукт. [c.113]

    Различают физическую, или ван-дер-ваальсову, адсорбцию и химическую адсорбцию, или хемосорбцию. В первом случае адсорбционные силы имеют ту же природу, что и межмолекулярные, или ван-дер-ваальсовы, силы. Физическая адсорбция всегда обратима. При химической адсорбции адсорбционные силы имеют химическую природу. Хемосорбция обычно необратима. В нашем курсе мы будем рассматривать, главным образом, физическую адсорбцию и лишь в соответствующем месте укажем на принципиальное различие между обоими видами адсорбции. [c.81]

    Второй принцип классификации исходит из природы сил взаимодействия. Процесс изменения концентрации в поверхностном слое, обусловленный Молекулярными вандерваальсовыми силами, называется физической адсорбцией. В том же случае, когда происходит образование поверхностного соединения в результате действия химических сил, процесс носит название хемосОрбции. [c.106]

    Знание величины Пе11 позволяет высказать более определенные предположения о природе продукта хемосорбции. [c.100]

    О, адсорбированные анионы, адатомы металлов и др.) а/ и ttj/i — соответствующие значения адсорбционных коэффициентов. Уравнение отвечает аддитивному влиянию различных адсорбированных частиц на энергию активации процесса хемосорбции органического вещества. В случае собственной неоднородности поверхности уравнение (3.57) выполняется при условии, что адсорбция различных компонентов происходит на одних и тех же адсорбционных центрах и энергии адсорбции на i-x местах компонентов А, В, С... связаны между собой простой связью (ЛО°а) =а (ДО°в) = a"( AG° ). .., т. е. вид функции распределения для различных компоненто.в сохраняется неизменным. Одновременное выполнение названных условий при адсорбции веществ, сильно отличающихся по своей химической природе, представляется маловероятным. Возможна некоррелируемость или сложная связь свободных энергий и энергий активации процессов хемосорбции различных частиц. Соответственно уравнения, выражающие зависимость Уа от 0i, могут отличаться от уравнения (3.57) и быть значительно более сложными. Аддитивность в большей мере соответствует модели наведенной неоднородности, когда частицы различных сортов одновременно участвуют в соз-.дапии общего дипольного потенциала на поверхности или определенной плотности электронного газа. [c.111]

    Влияние нейтральных адсорбированных частиц (как Наде и Оадс) на процесс хемосорбции органических веществ часто в первом приближении находится в согласии с уравнением (3.57). О зависимости скорости процесса хемосорбции от степени заполнения поверхности адсорбированными ионами единого мнения нет. Торможение процесса хемосорбцин органических веществ адсорбированными анионами согласно одним данным в первом приближении удовлетворительно описывается уравнением (3.57), согласно другим — лэнгмюровским соотношением, отвечающим блокировке части поверхности анионами, Уа = аС(1—9а ). Однако в обоих случаях установлено значительное изменение константы скорости адсорбции в зависимости от природы аниона, причем ингибирующее действие анионов возрастает в ряду 042 <Н2Р04 <С1 <Вг , что совпадает с рядом роста специфической адсорбируемости анионов. [c.112]

    Природа адсорбционных центров и адсорбционных связей в области высоких анодных потенциалов существенно отличается от таковых в области низких потенциалов, поскольку важную роль в формировании этих центров, очевидно, играют оксиды платины. Разные формы хемосорбированного кислорода ведут себя различно по отношению к процессу хемосорбции органических веществ, показывая неодинаковые способности к вытеснению органическими частицами и окислительную активность. По-видимому, имеет место включение хемосорбированных органических частиц в окисную пленку. Свидетельством иной природы связей хемосорбированных органических частиц с поверхностью электрода в области высоких анодных потенциалов по сравненик> с областью г 1,0В является, например, близость адсорбируемости на окисленной платине третичных алифатических спиртов и их гомологов с неразветвленной цепью. Слабая адсорбируемость третичных спиртов в области низких потенциалов объясняется отсутствием в их молекуле наиболее легко отщепляемых атомов водорода у а- С-атома. [c.120]

    Кратко остановимся на попытках истолкования природы явления хемосорбции органических соединений в области высоких анодных цотенциалов. В ранних работах, относящихся к периоду открытия этого явления, считали, что оно связано с наличием в молекуле органического соединения валентно-ненасыщенных групп. Большая роль придавалась л-электронному взаимодействию органических молекул с поверхностью (образование поверхностных соединений типа я- комплексов). Хотя эти представления хорошо объясняли, например, высокую адсорбируемость диенов с легко поляризуемой системой сопряженных п-связей, при трактовке причин адсорбируемости при высоких анодных потенциалах таких соединений, как алифатические спирты, встретились трудности. Явление хемосорбцни при высоких анодных потенциалах пытались истолковать на основе лигандной теории хемосорбции. Полагали, что хемосорбированные органические частицы, как и другие адсорбирующиеся компоненты раствора, включаются в полусферу комплекса, в котором центральной электронно-акцеп-торной частицей является ион Р1" +. Это объясняло конкурентный характер адсорбции, но нередко вступало в противоречие с ожидаемыми корреляциями между склонностью органических веществ к ком плексообразованию с платиновыми ионами и их адсорбируемостью в области высоких анодных шотенциалов. [c.122]

    Для более полного истолкования особенностей адсорбции органических веществ в области анодных потенциалов необходимо дальнейшее накопление экспериментального материала с использованием комплекса физико-химических и физических методов. Исследования должны быть направлены на более глубокое выяснение кинетики хемосорбции и электроокнсления хемосорбированных частиц, природы неоднородности поверхности, установление структуры хемосорбционного комплекса и ее зависимости от по-тенциалл и адсорбции атомов и ионов на поверхности. [c.123]


Смотреть страницы где упоминается термин Хемосорбция природа: [c.185]    [c.34]    [c.111]    [c.29]    [c.15]    [c.293]    [c.19]    [c.117]    [c.221]    [c.112]    [c.118]    [c.119]    [c.120]   
Двойной слой и кинетика электродных процессов (1967) -- [ c.265 ]




ПОИСК





Смотрите так же термины и статьи:

Хемосорбция



© 2025 chem21.info Реклама на сайте