Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ кристаллической поверхностью

    Вопросы хемосорбции и катализа на кристаллических поверхностях, связанные с физико-химией дефектов, были предметом обширных исследований Ф. Ф. Волькенштейна и его сотрудников.  [c.279]

    Формальное описание кристаллической структуры цеолитов не охватывает структурные гидроксильные группы, как в случае других алюмосиликатов типа природных глин, например каолина (гл. 2). Внутрикристаллическая поверхность цеолитов является не совсем такой определенной и упорядоченной, как это полагали когда-то. Во многих случаях она содержит дефекты, играющие важную роль в адсорбции и катализе. Внутрикристаллическая поверхность может содержать гидроксильные группы, замещающие обычные катионы металлов. Природа таких структурных гидроксильных групп, наличие которых было установлено только в последние несколько лет, изучалась различными методами, включая ИК-спектроскопию, термический анализ и ядерный магнитный резонанс. [c.472]


    Следовательно, в этом случае также близко к двум, и катализ перекиси на кристаллической поверхности черни идет на АКЦ того же одноатомного состава, что и на адсорбционном катализаторе. Этот вывод имеет прин- [c.110]

    Сложность и разнообразие процессов, могущих протекать на поверхности раздела, в значительной степени определяют собой многочисленность теорий катализа, на первый взгляд противоречащих друг другу. Однако эта противоречивость в значительной степени кажущаяся. Каждая из теорий объясняет ту или иную сторону различных процессов, протекающих на поверхности раздела. Для многих реакций, как, например, разложение метанола на окиси цинка, нанесенной на силикагеле, каталитически активной является кристаллическая поверхность. Для ряда других реакций каталитически активной может быть не вся поверхность, а только отдельные ее участки — активные центры. [c.181]

    Отдельные участки кристаллической поверхности. К этому случаю катализа также применима теория Баландина с учетом энергетических поправок на влияние энергетической неоднородности поверхности катализатора, а также (частично) теория пересыщения Рогинского. [c.184]

    Теория катализа всей кристаллической поверхностью твердого тела наиболее полно и последовательно изложена в работах Г. К. Борескова. Согласно Г. К. Борескову, каталитическая реакция идет через три элементарных этапа 1) адсорбция исходных веществ 2) химическое взаимодействие их на катализаторе . [c.217]

    Предполагается, что в процессе катализа на поверхности контакта образуются не фазовые, а поверхностные промежуточные соединения, в которых атомы катализатора сохраняют, связь с кристаллической решеткой например, азот образует с железом [c.94]

    Большая часть этой статьи посвящена методам подготовки поверхности и исследования ее топографии, однако следует отметить, что остается еще много сделать в области определения структуры поверхности катализатора в масштабе атомов. Такую работу следует провести для каждой реакции, механизм которой желательно установить. Первая задача при этом сводится к тому, чтобы показать значение типа кристаллической грани и всех сложных изменений в структуре поверхности, которые происходят в ходе каталитической реакции. В заключение следует отметить, что если экспериментальные данные используются для объяснения наблюдаемых явлений, то наряду с тщательным измерением скорости реакции должно быть проведено не менее тщательное определение топографии поверхности катализатора. Хотя такие определения трудны и кропотливы, они дадут возможность в будущих экспериментах поставить под контроль одну из самых важных переменных в катализе — структуру поверхности. [c.77]


    TOB, специфическое инициирование кристаллизации лишь одного из антиподов на гемиэдрических кристаллических поверхностях, асимметрический катализ на оптически активном правом или левом кварце и, наконец, разделение рацематов путем образования соединений включения с одним из оптических антиподов [347]. Какому из различных толкований отдать предпочтение — сказать нельзя. Однако они делают для нас понятным первичное появление оптической активности на основе экспериментальных фактов, полученных при исследовании этого явления. [c.125]

    Следует заметить, что теория активных ансамблей не отвергает вообще специфического влияния носителя на активность катализатора, но указывает, что именно исследования иа ее основе открывают путь к изучению подобного рода действия. Эта теория включает и катализ кристаллической фазой, чему отвечают большие, полученные на опыте значения п и сдвиг максимальной удельной активности а==А/а, где а — степень заполнения поверхности активной фазой) в область больших степеней заполнения. Подобные случаи были найдены и исследованы школой Н. И. Кобозева, в особенности за последнее время [194—196]. [c.113]

    Дефекты кристаллической решетки и модель активной поверхности в теориях гетерогенного катализа [c.339]

    Одним из главных вопросов любой теории гетерогенного катализа является вопрос о модели активного центра на поверхности катализатора. Впервые представление об активном центре было развито Тейлором. По Тейлору, поверхность катализатора не является идеальной, ровной поверхностью. На ней могут быть трещины, ребра, дефекты кристаллической решетки. Энергетические свойства разных участков поверхности могут сильно различаться. Каталитически активными центрами может быть небольшая часть дефектов поверхности. Причиной каталитической активности Тейлор считал ненасыщенность связей в атомах, находящихся в активном центре. По Тейлору, активными центрами являются пики , вершины на поверхности катализатора. [c.655]

    В течение многих лет катализаторы риформинга совершенствовались вместе с самим процессом. Наиболее широко применяемые сегодня катализаторы риформинга представляют собой один или несколько драгоценных металлов, нанесенных на оксид алюминия. Оксид алюминия в качестве носителя, используется в одной из двух кристаллических форм т) или у. г]-Форма содержит больше кислотных центров, чем -у-форма, и служит носителем для большинства монометаллических платиновых катализаторов. Она имеет более развитую начальную поверхность. При катализе и регенерациях илощадь поверхности этого носителя снижается. Уменьшение площади поверхности ограничивает срок службы катализаторов лишь несколькими циклами. [c.148]

    Распределение различных кристаллических фаз в невосстановленных и восстановленных катализаторах может быть установлено с помощью электронного микроскопа (рис. 41). Поверхности железа и промоторов могут быть измерены отдельно методами адсорбции газов. Эти исследования показали, что промоторы, особенно окись калия, хорошо перемешаны с железом и что более 90% поверхности железа покрывается ими, оставляя для осуществления катализа менее 10%. Однако имеющаяся свободная поверхность железа и активность промотированного катализатора значительно более высоки, чем для непромотированного железа, и они уменьшаются намного медленнее. [c.162]

    Для явлений хемосорбции и катализа интерес представляет не вся поверхность, а лишь ее полезная часть , на которой и протекает активированная адсорбция, причем интенсивность последней топографически и энергетически неравноценна. Степень ненасыщенности атома в поверхностном слое зависит от его положения в кристаллической решетке. Если атом находится в ее плоской части, он ненасыщен только в направлении, перпендикулярном к поверхности. Если же атом находится на ребре, в углу кристалла или иа участке с малым радиусом кривизны, он значительно менее связан с поверхностью и, наоборот, будет обладать большей ненасыщенностью, а отсюда большей способностью к адсорбции. Г. Тейлор (1926 г.) дает следующую условную схему строения поверхности восстановленного никеля  [c.109]

    По мнению Н. Д. Зелинского, активные центры являются сложными образованиями, состоящими из нескольких атомов, которые и осуществляют деформации связей в реагирующей молекуле. Он считает, что ...раздвижение—деформация—может быть осуществлено кристаллической решеткой катализатора и в том случае, если каждый соседний атом поверхности этой решетки притягивает по одному атому углерода в молекуле, хотя бы и через посредство присоединенного к последнему атома водорода иными словами, адсорбция определенными местами молекул есть непременная предварительная стадия гетерогенного катализа . [c.125]

    Гетерогенными называют процессы, в которых реагирующие вещества находятся в различных фазах или образуют новые фазы. Примеры гетерогенных процессов превращение кристаллических модификаций разложение твердых веществ конденсация испарение возгонка кристаллизация из растворов экстрагирование адсорбция на твердых и жидких поверхностях катализ на твердых поверхностях десорбция растворение (абсорбция) газов в жидкостях растворение твердых тел в жидкостях электрохимические процессы и др. [c.276]


    Дж/моль. 2.6. 26,9 с . 3.1. 3.2. Общим кислотным и основным катализом называется катализ, который вызывается не водородными и гидроксильными ионами, а другими веществами — донорами и акцепторами протонов. 3.3. Принцип структурного (геометрического) соответствия предусматривает такое пространственное расположение атомов в реагирующих молекулах и атомов катализатора на его поверхности, которое обеспечивает соразмерное наложение реагирующих атомов молекулы (индексной группы) с сохранением валентных углов на определенную группу атомов катализатора (мультиплет). Этот принцип дает возможность подбора оптимального катализатора, исходя из соответствия геометрических параметров реагирующих молекул параметрам кристаллической решетки катализатора. 3.4. Для осуществления стационарного состояния на границе диффузионного потока необходимо каким-либо способом поддерживать постоянную во времени концентрацию  [c.114]

    Как и в случае гомогенного катализа, при гетерогенном катализе реакция протекает через переходные состояния. Но здесь эти состояния представляют собой поверхностные соединения катализатора с реагирующими веществами. Проходя через ряд стадий, в которых участвуют эти переходные состояния, реакция заканчивается образованием конечных продуктов, а катализатор в результате не расходуется. Кроме того при гетерогенном катализе следует иметь в виду следующие его стадии адсорбцию взаимодействующих веществ на катализаторе изменение электронного строения адсорбированных молекул из-за их взаимодействия с атомами кристаллической решетки катализатора накопление реагируюш,их молекул на поверхности катализатора. [c.200]

    При гетерогенном катализе скорость химической реакции ускоряется кристаллическим веществом — катализатором, на поверхности которого происходит промежуточное химическое взаимодействие его с реагирующими веществами. Гетерогенный катализ — яркий пример объекта системного научного исследования, объединяющего основные учения химии — термодинамики, кинетики, теории строения вещества и периодичности свойств элементов. [c.235]

    В 1926 г. X. С. Тейлор предложил гипотезу активных центров, согласно которой степень ненасыщенности связей атома в поверхностном слое зависит от его положения в кристаллической решетке. По Тейлору, атомы поверхности обладают тем более повышенной способностью к адсорбции и катализу, чем менее связаны с другими атомами катализатора (на ребре, углу кристалла, на участке с большой кривизной и т. п.). Из этого следует, что поверхностная энергия твердого тела может меняться от точки к точке. Однако такое объяснение сложной структуры поверхности катализатора и специфичности его каталитического действия далеко от истины. [c.182]

    В обоих случаях, когда найдена структурная чувствительность центров катализа, кристаллическая платина оказалась более активной. Изучение хемосорбции кислорода на платинированных силикагелях, использованных для разложения Н Ог и окисления опиртов, показывает, что эти различия не связаны с удельным количеством поглощенного кислорода оно оказалось одинаковым для образцов с различной дисперсностью платины. Поэтому можно думать, что в приведенных выше опытах изменение активности действительно связано с изменением размера частиц платины, причем правильно упакованные грани больших кристаллов платины (в реакциях разложения Н2О2 и окисления спиртов) оказываются значительно более активными, чем реберные элементы и дефекты поверхности. [c.172]

    Поэтому никто не проводил катализ на кристаллах, со вершенно свободных от атомной фазы, и не измерял каталитическую активность однородных кристаллических поверхностей. [c.193]

    Теория ансамблей была предложена Н. И. Кобозевым в 1939 г.. По этой теории носителем каталитических свойств является только аморфная фаза — небольшая группа атомов, не вошедшая в кристаллическую решетку. Такая группа атомов — ансамбль атомов— только и может быть активным центром катализа. Кристаллическая фаза каталитически неактивна и выполняет только роль носителя каталитических центров (докри-сталлических образований из нескольких атомов) п-атомных ансамблей, закрепленных на поверхности адсорбционными силами. [c.236]

    Большое значение имело 61.1 усиление расчетно-теоретических работ. Если по теории хемосорбции и отдельных простейших каталитических реакций на полупроводниках и на типичных кислотных окисных системах сделано немало, то для хемосорбции и катализа 1ш металлах работы с прямым использованием современной дпшроскопической теории металлов практически отсутствуют. В теоретическом анализе этой большой группы процессов либо ограничиваются грубыми макроскопическими электростатическими моделями, либо хемосорбцию и катализ на поверхности трактуют как результат строго локального взаимодействия М( лекул с единичными атомами (ионами) поверхности с крайне упрощенным использованием эффектов кристаллического поля и псигя лигандов. [c.9]

    Эти исследования — наглядный пример использования стереохимических представлений в катализе. Они свидетельствуют о возможности существования на поверхности катализаторов наборов активных центров, оптимальных для катализа определенных молекул благодаря соответствию межатомных расстояний и углов кристаллической решетки катализатора и аналогичных параметров молекул субстрата. Естественно, что увеличение или уменьшение параметров решетки приведет к изменению геометрии активных центров, а следовательно, к росту или уменьшению скорости реакции в зависимости от улучшения или ухудшения соответствия между реакционным индексом молекулы субстрата и активным центром. Позднее различие каталитической активности гладкой поверхности металлических катализаторов, ступенчатых структур, выступов и пиков на ней наглядно продемонстрировал Соморджай (см. разд. У.5). Приведенные данные являются также серьезными доводами против представлений о гидрировании вдали от поверхности катализатора [15]. Следует также специально подчеркнуть, что представления о существовании на поверхности катализатора оптимальных активных центров получили подтверждение при изучении гидрогенолиза оптически активных соединений [16—20]. [c.13]

    Большой вклад в развитие представлений о механизме каталитического действия внесли подходы, развитые рядом авторов теория активных ансамблей Кобозева [5], химическая теория активной поверхности Рогинского [6], теория Борескова промежуточного химического взаимодействия в гетерогенном катализе и зависимости удельной каталитической активности от химического состава и строения катализатора [7], теория Писаржев-ского о связи электронных свойств твердого тела с его каталитической способностью [8], электронные теории кристаллического поля и поля лигандов [91, теория поверхностных соединений координационного и кластерного типов [9] и др. [c.11]

    Весьма примечательно, что наилучшего понимания каталитических реакций удалось добиться в тех случаях, когда промежуточные стадии или соединения были идентифицированы химическими методами такова, например, большая область реакций карбониевого типа, протекающих на кислотных катализаторах, а также гомогенные реакции, катализируемые комплексами, число которых непрерывно возрастает. Механизм гомогенных реакций можно экстраполировать на гетерогенные реакции, и успехи, достигнутые в области химии неорганических комплексов и в теории кристаллического поля, создали теоретические предпосылки, доказывающие правильность такой экстраполяции. И все же такой чисто химический подход неудовлетворителен, в особенности в области гетерогенного катализа, в котором физические явления (обусловленные влиянием поверхности) иногда накладываются на химическое явление (эффекты, связанные с переносом вещества или [c.7]

    Первые две стадии реакций контактного окисления, наряду с изложенными выше механизмами, могут протекать по механизму комплексообразования в тех случаях, когда катионы решетки сохраняют свою индивидуальность. Вервей [241 для обратных шпинелей , а затем Морин [25] — для окислов металлов с незапол- ненными З -уровнями электронов указали на такую возможность, объяснив возникновение в таких соединениях электропроводности присутствием в них ионов одного и того же металла в различных валентных состояниях и в эквивалентных позициях кристаллической решетки. Можно предполагать, что подобного рода механизм электропроводности возможен не только для окислов (в том числе и тройных систем окислов [26]), но и для многих полупроводниковых соединений переходных металлов. Базируясь на этих представлениях, Дауден [27 ] рассматривает хемосорбцию на поверхности и явления замещения одного сорбента другим как реакции образования и превращения комплексов по механизму и 8)у2-замещения. Киселев, [28] также рассматривает адсорбцию как процесс поверхностного комплексообразования, когда при возникновении донорно-акцеп-торных связей неподеленная пара электронов лиганда оказывается затянутой на внутренние орбитали атома решетки, являющегос центром адсорбции. При таком механизме адсорбированные молекулы всегда будут в той или иной мере реакционноспособны. Действительно, затягивание неподеленной пары лиганда на внутренние орбитали центрального атома приведет к деформации адсорбированной молекулы и ослаблению внутримолекулярных связей. Отметим попутно, что трактовка Киселева справедливо распространяет электронные представления и на механизм кислотно-основного гетерогенного катализа. Развивая представления теории поля лигандов, Руней и Уэбб [29 ] показали, что механизм реакций дейтеро- бмена, гидрирования и дегидрирования углеводородов на переходных [c.27]

    В теории активных ансамблей гетерогенного катализа (Кобозев) предполагается, что активными центрами служат атомы, беспорядочно расположе[[ные на поверхности кристаллического тела (аморфная, докристаллическая фаза). [c.449]

    Проблема нахождения и подбора катализаторов для отдельных процессов является и сейчас наиболее трудной и наименее разработанной. С. 3. Рогинский [1] считает, что ...подбор катализаторов неотделим от представлений о глубоком механизме процессов, который нам недостаточно известен, но несомненно не один и тот же в отдельных случаях . Г. К. Боресков [2] приписывает каталитическую активность вообще всей поверхности кристаллических твердых веществ (без выделения повышенно активных участков поверхности или активных центров, что вряд ли правильно). Критерием активности катализаторов, по Г. К. Борескову, является их удельная каталитическая активность, т. е. активность единицы поверхности,— в случае катализаторов примерно одинакового состава. По А. А. Ба- чандину 13] необходимо учитывать геометрическое и энергетическое соответствие между решеткой катализатора и строением реагирующих молекул. Эти примеры показывают, что ученые еще далеки от понимания существа катализа. [c.29]

    Установлено, что в случае гетерогенного катализа твердые контакты участвуют в реакции не всей своей поверхностью, а лишь очень небольшой долей каких-то особо активных поверхностных образований (активные центры, или активные места), которые действуют на огромном фоне неактивной кристаллической массы катализатора. Н. И. Кобозев отмечает, что для некоторых катализаторов активная поверхность составляет лишь 0,05% от всей поверхности. Такие активные центры не являются, как это принято считать, кристаллическими образованиями, а состоят из очень небольшого числа отдельных атомов (I—4), образую1дих активный ансамбль. [c.145]

    В тех случаях, когда было необходимо увеличить выход иро-дук1 ов химической реакции за единицу времени в гетерогенных системах, изменяли температуру, размер и форму зерен, а также величи[1у контактируюи1ей поверхности. Применительно к каталитическим реакциям использовался также метод введения в кристаллическую решетку примесей или создания мея фа-зовых границ путем чисто механического смешения со специальными добавками (смешанные катализаторы). Как в случае катализа, так и при обычных химических реакциях, за исключением фотохимических, в строгом понимании этого слова, никто, по-видимому, не предполагал, что существует возможность изменения других форм энергии твердого тела, кроме теиловог энергии. [c.10]

    При гетерогенном катализе в качестве катализаторов чаще всего исполь-.зуются смеси твердых веществ, каждое из которых играет определенную роль в стадиях каталитического процесса. Нескомпенсироваиное потенциальное поле и большое число дефектов кристаллической структуры приводят к тому, что на поверхности возникают особые активные центры адсорбции, а также донорные и акцепторные участки (центры), на которых происходит присоеди-ление или отщепление нуклеофильных и электрофильных частиц, протонов и -электронов. Чаще всего используемый в настоящее время катализатор синтеза аммиака имеет состав Ре/КаО/АЬОз. Первой стадией реакции синтеза -аммиака является адсорбция N3 на (1,1,1)-поверхности кубической объемно-центрированной решетки железа. На поверхности катализатора происходит также расщепление Нг на атомы. Адсорбированная и активированная молеку--ла N2 постепенно гидрируется атомарным водородом до промежуточного образования ЫаНб. При последующем присоединении атома водорода связь разрывается и образуется молекула аммиака ЫНз. Другие компоненты катализатора оказывают активирующее и стабилизирующее воздействие на отдельные стадии этого химического процесса. [c.436]

    Теория активных ансамблей (Н. И. Кобозев, 1939). В соответствии с данной теорией каталитический процесс происходит на группе атомов, называемых активным ансамблем. В отличие от мультиплетной теории атомы активного ансамбля не являются элементами кристаллической решетки катализатора и могут свободно мигрировать в пределах определенной области поверхности катализатора, называемых блоками миграции. Блоки миграции ограничены потенциальными барьерами, возникающими за счет микроскопических трещин, наличия примесей, неоднородности твердой поверхности. Избирательность катализа объясняется миграцией атома и изменением геометрических параметров ансамбля. [c.300]

    Мультиплетная теория ставит геометрическое строение активного центра в прямое соответствие со строением претерпевающей превращение молекулы. Главной основной предпосылкой гетерогенного катализа является интенсивная адсорбция реагирующего вещества на поверхности катализатора. Особенно энергично адсорбируется вещество, когда между расположением атомов в адсорбируемой молекуле и атомов в кристаллической рещетке катализатора существует определенное соответствие. Например, при адсорбции циклогексана на октаэдрических гранях металлов молекула располагается на кристалле (рис. 189). Каталитическое действие происходит тогда, когда соответствующие связи в реагирующей молекуле ослабляются. Для такого ослабления связей необходимо удаление друг от друга соседних атомов в молекуле. Когда размеры постоянной решетки кристалла превышают расстояние между атомами в реагирующей молекуле, связи ослабляются и происходит каталитическое ускорение реакции. Поверхностное соединение образуется из одной или нескольких молекул вещества и из нескольких атомов катализатора. Группа атомов катализатора, вступающих в поверхностное соединение, называется мультиплетом. Обычно эта группа состоит из двух-трех атомов. [c.444]


Смотреть страницы где упоминается термин Катализ кристаллической поверхностью: [c.185]    [c.182]    [c.184]    [c.182]    [c.335]    [c.400]    [c.127]    [c.293]    [c.297]    [c.300]   
Кинетика и катализ (1963) -- [ c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Гетерогенный катализ катализа кристаллической поверхностью

Дефекты кристаллической решетки и модель активной поверхности в теориях гетерогенного катализа

Катализ активной кристаллической поверхности



© 2024 chem21.info Реклама на сайте