Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гиббса молекул

    Оствальд указал, что теория Гиббса заставляет предположить, что катализаторы ускоряют реакции, не вызывая изменения в соотношении энергий взаимодействующих веществ. Катализатор, утверждал Оствальд, образует с исходным веществом промежуточное соединение, которое распадается на конечные продукты реакции. При распаде промежуточного соединения катализатор высвобождается. В отсутствие катализатора, т. е. в отсутствие образуемого катализатором промежуточного соединения, давшая реакция протекает намного медленнее, возможно даже практически незаметно. Таким образом, катализатор ускоряет реакцию, но сам при этом не расходуется. Кроме того, поскольку молекулы катализатора используются снова и снова, для ускорения реакции большого количества веществ достаточно небольшого количества катализатора. [c.115]


    Кинетическая теория равновесия позволяет достаточно простым способом описать свойства разреженного газа, состоящего из жестких сферических молекул. Однако она становится все более сложной и трудной для приложения как в случае плотных систем, так и в случае систем, в которых имеются силы взаимодействия между частицами. Чтобы рассмотреть такие системы, мы кратко в общих чертах рассмотрим здесь очень эффективный статистический метод Гиббса [1—4]. [c.174]

    Если взять настолько разреженный газ, что можно рассматривать лишь пары молекул, находящихся в данный момент достаточно близко друг к другу, чтобы между ними возникали значительные силы, то можно использовать для Р (г) распределение Гиббса и переписать уравнение [c.182]

    Исследуя адсорбцию на жидких поверхностях, измеряют поверхностное давление —а в зависимости от площади со, приходящейся на молекулу (нерастворимые монослои), или поверхностное натяжение в зависимости от концентрации поверхностноактивного вещества в объемной фазе (монослои растворимых или летучих веществ). В первом случае величину адсорбции на поверхности жидкости можно определить, зная количество нанесенного на поверхность нелетучего и нерастворимого вещества, образующего монослой, и занимаемую монослоем на поверхности жидкости площадь. Во втором случае величина адсорбции на поверхности жидкости непосредственно не измеряется. Она может быть вычислена из зависимости а от Са с помощью уравнения Гиббса (ХУП, 37а). Наоборот, в случае адсорбции на поверхности достаточно высокодисперсных твердых тел измеряется (в зависимости от парциального давления или концентрации адсорбируемого вещества в объемной фазе) именно величина адсорбции. Для определения поверхностного давления ти в этом случае также может быть применено уравнение Гиббса, поскольку оно связывает три величины поверхностное натяжение, адсорбцию и давление адсорбата в газовой фазе. [c.476]

    Оксид азота(1)—термодинамически неустойчивое соединение. Стандартная энергия Гиббса его образования положительна (Д6,1,бр = 104 кДж/моль). Однако вследствие большой прочности свя.-зей в молекуле N20 энергии активации реакций, протекающих с участием этого вещества, высоки. В частности, высока энергня Активации распада N20. Поэтому при комнатной температуре оксид азота(I) устойчив. Однако при повышенных температурах он разлагается на азот и кислород разложение идет тем быстрее, чем выше температура. [c.408]

    Как уже было упомянуто, движущая сила химической реакции определяется энергией Гиббса AG. В выражении (3) АН представляет энтальпийный, а TAS — энтропийный фактор. Первый из них отражает тенденцию системы к образованию связей в результате взаимного притяжения частиц — молекул или атомов, что приводит к их усложнению, а второй — тенденцию к усилению процессов диссоциации сложных частиц на более простые и их менее упорядоченному состоянию. Оба фактора обычно действуют в противоположных направлениях и общее направление реакции определяется влиянием преобладающего фактора. [c.80]


    Область применимости уравнения (13.2) ограничена такими значениями толщины смачивающих пленок, когда их еще можно считать частью утончившейся жидкой фазы. При плохом смачивании (0о 9О°) на твердой поверхности образуется двухмерная адсорбционная фаза толщина, пленок не превышает монослоя. Здесь применимо другое выражение, вытекающее из уравнения Гиббса, связывающего величину адсорбции молекул (Г) с изменением межфазного натяжения (osi/) в зависимости от давления пара адсорбата р [45]  [c.218]

    Для определения термодинамических параметров алкенов разумнее использовать ограниченное число справочных данных, на основе которых по определенным правилам можно было бы рассчитать характеристики алкена заданного строения. С этой целью нами на основе известных термодинамических величин [I—3] определены поправки — изменения теплоемкости ср, энтропии S , теплоты образования Aff и изобарно-изотермического потенциала (энергии Гиббса) при образовании AG для следующих изменений в молекуле олефина  [c.7]

    В работе [77] рекомендовано для определения термодинамических функций алкенов различного строения использовать поправки, учитывающие изменение термодинамических функций при переходе от н-алкена-1 к алкену заданной структуры. Эти поправки учитывают изменения теплоемкости С°р, энтропии 5°, теплоты образования АН°об и стандартной энергии Гиббса образования газообразного алкена А0°об = —ЯТ 1п К°р об для следующих изменений в молекуле  [c.386]

    Третий частный случай связан с образованием атермальных растворов. Этот класс растворов образуется без изменения энтальпии, когда А/ = 0, но за счет разности в размерах молекул растворителя и растворяемого компонента изменение энтропии составляет заметную величину. Таким образом для атермальных растворов энергия Гиббса будет подчиняться закономерности [c.215]

    Термодинамические параметры реакций определяются термодинамическими свойствами веществ, участвующих в реакции. Важнейшими из этих свойств являются внутренняя энергия, энтальпия, энтропия, теплоемкость, энергия Гиббса (изобарно-изотермический потенциал), энергия Гельмгольца (изохорно-изотермический потенциал). Как показывает статистическая термодинамика, каждая из термодинамических функций отражает в совокупности влияние всех особенностей состава, внутреннего строения и условий существования веществ. Использование термодинамических величин для характеристики химических свойств веществ и параметров химических реакций дает возможность количественно отражать влияние этих факторов. Вместо того чтобы определять, как то или иное изменение в строении молекул (характер связи между атомами, расстояние между ними и др.) влияет на положение равновесия в данной реакции (что большей частью и недостижимо), мы, пользуясь термодинамическим методом, оперируем такими функциями, которые дают возможность отразить это влияние суммарно и в более доступной форме. [c.14]

    Методами статистической термодинамики было показано значение энергетических барьеров внутреннего вращения, а также числа симметрии (ст) молекулы для энтропии и энергии Гиббса (но не для энтальпии и теплоемкости). [c.215]

    Такое допущение при правильном вы боре сопоставляемых соединений будет выполняться в той или другой степени для теплоемкости, энтальпии, функции энтальпии. Но энтропия, функция энергии Гиббса и связанные с ними величины включают в себя влияние степени симметрии молекулы, которое по своей природе не может рассчитываться с помощью подобных инкрементов и при расчете указанных функций по уравнениям вида (УП, 1) должно [c.268]

    Прн перемешивании же газов, имеющих даже малейшие различия в свойствах молекул, всегда будут проявляться конечные изменения в значениях энергии Гиббса и энтропии. [c.128]

    Изменения в равновесных химических системах можно изучать с помощью термодинамических функций и, в частности, с помощью энергий Гельмгольца и Гиббса. Для удобства изучения химических процессов вводится понятие химической переменной или пробега реакций. Для этого записываем общее выражение химического превращения веществ, учитывая, что взаимодействие молекул друг с другом в смеси проходит в строго стехиометрических соотнощениях (закон Дальтона) в таком виде  [c.189]

    Адсорбция поверхностно-активных молекул понижает поверхностное натяжение на границе ртуть — раствор. Это явление описывается уравнением Гиббса  [c.306]

    Введем величину удельной энергии межмолекулярных взаимодействий молекул, составляющих сольватный слой, /с. Тогда с учетом Aii=j —/ , = —1с выражение для потенциала Гиббса примет вид [c.112]

    Для описания термодинамики поверхностных явлений применяют два метода метод избыточных вeл [чин Гиббса и метод слоя конечной толщины . За толщину поверхностного слоя принимают расстояние по обе стороны от границы раздела фаз, за пределами которого свойства слоя перестают отличаться от свойств объемных фаз. Практически вся поверхностная энергия сосредоточена в поверхностном слое толщиной в несколько молекул, поэтому все связанные с нею соотношения можно относить только к поверхностному слою. Однако, как следует из определения толщины поверхностного слоя, установление его границ со стороны объемных фаз [c.25]


    Таким образом, поверхностная энергия Гиббса, или работа создания единицы поверхности, включает в себя не только работу образования поверхности а, но и уплотнение вещества в слое цГ, так как молекулы на поверхности сильнее взаимодействуют с молекулами, находящимися внутри фазы, чем последние между собой. [c.37]

    По такому же уравнению рассчитывается стандартная энергия Гиббса адсорбции, соответствующая взаимодействию первого слоя молекул адсорбата с поверхностью адсорбента для полимолекулярной адсорбции. [c.122]

    Для расчета энтальпии и энергии Гиббса ионизации галогеноводородных кислот МОЖНО воспользоваться термохимическим циклом (рис. 145. табл. 33), который включает следующие процессы 1) дегидратация молекулы HHal, 2) распад молекул HHal на атомы, 3) превращение атомов Н и Hal соответственно в ионы Н" и НаГ, 4) гидратация ио-н<1В Н и НаГ. [c.302]

    Свободная энергия образования Гиббса. Методы, использующие принцип аддитивности, дают возможность рассчитать термодинамические функции (энтальпию, энтропию и свободную энергию образования Гиббса), если известна структурная формула молекулы. Существует много способов вычисления значений этих величин от простых и наименее точных, основанных на суммировании долей атомов, до сложных и очень точных, в которых учитываются конститутивные факторы (соседство групп и т. д.). В качестве примера рассмотрим аддитивный метод расчета свободной энергии образования Гиббса, разработанный Ван Кревеленом и Чермином  [c.82]

    ИЗ которого следует, что стандартная энтальпия образования озона положительна и равна 142,5 кДж/моль. Кроме того, как показывают коэффициенты уравнения, в ходе этой реакции из трех молекул газа получаются две молекулы, т. е. энтропия системы уменьшается. В итоге, стандартное изменение энергии Гиббса в рассматриваемой реакции также положительно (163 кДж/моль). Таким образом, реакция превращения кислорода в озон самопро-изЕюльно протекать не может для ее осуществления необходима затрата энергии. Обратная же реакция — распад озона — протекает самопроизвольно, так как в ходе этого процесса энергия Гиббса системы уменьшается. Иначе говоря, озон — неустойчивое вещество. [c.378]

    Подобно ЫгО оксид азота(П) термодинамически неустойчив — стандартная энергия Гиббса его образования положительна (ДСобр = 86,6 кДж/моль). Но, опять-таки подобно N2 , при комнатной температуре N0 не разлагается, потому что его молекулы [c.408]

    В участках раствора, содержащих молекулы неполярного вещества, межмолекулярные силы компенсируются не полностью, и энергия Гиббса в таких участках раствора в среднем выше, чем в местах, не содержащих этих молекул. Из-за такой неполной насыщенности межмоле-куляриых сил некоторый слой жидкости около неполярных молекул находится в термодинамически менее выгодном состоянии, образуя так называемую модифицированную сферу. [c.220]

    В случае полярных растворителей методики расчета перераспределения компонентов между фазами дансе для отдельных конкретных систем пока не разработаны. Менсду тем использование энергии Гиббса в уравнении параметра растворимости удобно в том отношении, что в изобарно-изотермический потенциал входят лишь две функции— тепловая и энтропийная. Не требуется отдельно искать математическую зависимость степени ассоциации молекул растворителя при разных температурах процесса, так как этот эффект учитывается изменением теплоты смешения. [c.247]

    Заключение (допущение), согласно которому каждый отдельный фрагмент обладает самостоятельным и аддитивным вкладом в общую стандартную энергию Гиббса. Принцип аддитивности 1Юзноляет приближенно рассчитывать свойства рассматриваемого соединения как сумму вкладов этих свойств структурных фрагментов молекулы. [c.88]

    При выводе уравнения NRTL соотношение для избыточной свободной энергии Гиббса записывается на основе двухжидкостной модели раствора Скотта [83]. В соответствии с этой моделью раствор рассматривается состоящим из молекул двух сортов и избыточная свободная энергия такого раствора представляется состоящей из суммы энергии, переносимой молекулами обоих [c.281]

    Теперь допустим, что идеальный газ, состоящий из N молекул, находится в состоянии термодинамического равновесия. Будем считать газ достаточно разреженным, т. е. исключим области очень низких температур и малых объемов. Это ограничение позволит почти не учитывать требования симметрии. Если не учитывать требования симметрии, как и для локализованных частиц, можно каждую молекулу рассматривать как систему , а остальные молекулы как термостат. Применение распределения Гиббса к молекуле газа опять даст распределение (96.1) или (96.3), которое и называется квантовым распределением Больцмана, Имеется существенное различие в применении распределения Больцмана к локализованным слабо взаимодействующим частицам и молекулам идеального газа для сла-бовзаимодействующих частиц распределение Больцмана выполняется строго, а для молекул идеального газа это распределение выполняется с известной точностью. Поэтому для идеального газа достаточно высокой плотности распределение (96.1) или (96.3) уже не будет [c.305]

    Устойчивость молекул циклоалканов можно рассмотреть исходя из принципа сохранения системой минимума свободной энергии Гиббса их образования. С изменением длины цепи циклоалкана на одну СНо-группу происходит ис1менение свободной энергии молекулы на 8,60 кДж при 300 К- [c.141]

    Равновесие в гетерогенных системах возможно только ири условии положительной энергии Гиббса образования поверхности. Так как атомы или молекулы жидкости или твердого тела, находящиеся на поверхности, обладают большей энергией, чем внутри конденсированных фаз, поверхностную энергию, как уже отмечалось, рассматривают как избьпок энергии, приходящийся па единицу поверхности. Атомы и молекулы поверхностного слоя как бы находятся на полпути перехода в иар. Они появляются на поверхности в результате разрыва определенных связей, благодаря чему и обладают большей потенциальной энергией. Увеличение поверхности приводит к возрастанию числа молекул или атомов на поверхности, т. е. числа частиц, не имеющих связей с внешней стороны. Таким образом, увеличение иоверхности сопровождается [c.30]

    Термин поверхностно-активные вещества (ПАВ) обычно применяют к специфическим веществам, обладающим очень большой поверхностной активностью по отношению к воде, что является следствием их особого строения. Молекулы ПАВ имеют иеиоляр-иую (углеводородную) часть и полярную, представленную функциональными группами —СООН, —NH2, —ОН, —О—, —SO2OH и др. Углеводородные радикалы выталкиваются пз воды на поверхность, и их адсорбция Г > 0. ПАВ типа обычных мыл (олеаг натрия) в концентрации 10 моль/см (1 моль/л) понижают сг воды ири 298 К с 72,5-10-3 до ЗО-Ю- Дж/м что даег g = A-W гиббсов. Это значит, что в определенной толщине поверхностного слоя концентрация ПАВ в S-IO раз (т. е. в десятки тысяч раз) превышает концентрацию ПАВ в объеме раствора. [c.41]

    Адсорбцию можио рассматривать как взаимодействие молекул адсорбата с активными центрами поверхности адсорбента. Такое рассмотрение этого явления оказалось достаточно общим и удобным, особенно для адсорбции на твердых адсорбентах, когда возникают трудности в экспериментальном определении межфазного натяжения. Кроме того, такая интерпретация адсорбции открывает возможность нсслелвдвания природы адсорбционного взаимодействия. Если отсутствует химическое взаимодействие адсорбата с адсорбентом, то адсорбция, как правило, является результатом самопроизвольного уменьшения поверхностной энергии системы, выражающегося в компенсировании поля поверхностных сил. При наличии специфического сродства адсорбата к адсорбенту, адсорбция возможна вследствие самопроизвольного уменьшения энергии Гиббса всей системы, что может привести даже к увеличению поверхностной энергии. Это возможно в том случае, если изменение химической составляющей энергии Гиббса системы больше изменения поверхностной энергии. При химической адсорбции между адсорбентом и адсорбатом образуется химическая связь, и их индивидуальность исчезает. [c.108]

    При большой длине углеводородных радикалов, когда заметно проявляется взаимодействие между молекулами ПАВ на поверхности, поверхностная активность увеличивается медленнее, чем это следует из правила Траубе. И все же с увеличением длины углеводородного радикала поверхностная активность ПАВ повышается. Так, константа распределения Генри для коллоидных ПАВ может достигать значения 10 000 и более. Примерно такого порядка константа Генри для мыл. Мыла понижают поверхностное натяжение воды на границе с воздухом (сгн20 = 72,5 10 Дж/мО до 27 30-10 Дж/м при концентрациях с яй 10 моль/л, что соответствует значению поверхностной активности g г 10 гиббсов. [c.291]

    На процесс м1щеллообразования в водных растворах существенно влияет структура воды, которая способствует выталкиванию углеводородных радикалов из раствора одновременно частично разрущается структура воды. Благодаря дифильному строению молекул ПАВ углеводородные радикалы, взаимодействующие между собой в мицеллах, экранируются полярными гидрофильными группами. Поэтому происходит самопроизвольное мицеллообразование с минимальным поверхностным натяжением на границе раздела мицелла—вода, сопровождающееся умень-и]ением энергии Гиббса системы. Эффектом экранирования объясняется уменьщение энтальпии в процессе мицеллообразования. Взаимодействие отдельных частей молекулы ПАВ в молекулярном растворе с растворителем характеризуется различным изменением энтальпии лиофильная часть взаимодействует с выделением теплоты, лиофобная — с поглощением теплоты. Именно поэтому энтальпия растворения ПАВ имеет небольшие положительные илн отрицательные значения (чаще всего для водных растворов она положительна). В мицеллярном растворе экранирование лнофоб-ных групп приводит к уменьшению поглощения теплоты, т. е. н снижению энтальпии системы по отношению к энтальпии образования истинного раствора. Так как мицеллообразование является процессом возникновения новой фазы, то его можно сравнить с расслоением системы, т. е. с процессом ее упорядочения. Для таких процессов характерно уменьшение энтропии. Таким образом, самопроизвольное мицеллообразование по сравнению с образованием молекулярного раствора обусловлено уменьшением энтальпии [см. уравнение (УГ25)]. [c.297]

    Длина углеводородного радикала оказывает решающее влияние иа мицеллообразование в водных средах. В процессе мицеллообразования ионии<ение энергии Гиббса системы тем больше, чем длиннее углеводородная цепь. Исследования показывают, что образование предмицеллярных ассоциатов наблюдается в поверхностно-активных электролитах с длиной углеводородной цепи более четырех атомов углерода. Однако в таких соединениях недостаточно выражено различие между гидрофильной и гидрофобной частями (высокое значение ГЛБ). В связи с этим энергия агрегирования недостаточна, чтобы удержать молекулы от беспорядочного теплового движения. Как правило, способность к мицеллооб-разовапию свойственна молекулам ПАВ с длиной углеводородного радикала более 8—10 атомов углерода. [c.300]


Смотреть страницы где упоминается термин Гиббса молекул: [c.229]    [c.385]    [c.470]    [c.443]    [c.221]    [c.252]    [c.580]    [c.43]    [c.638]    [c.237]    [c.70]    [c.110]    [c.110]    [c.147]   
Краткий курс физической химии Изд5 (1978) -- [ c.84 , c.86 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция на подвижных границах раздела. Уравнение Гиббса Поверхностно-активные и инактивные вещества. Адсорбция полярно-аполярных молекул

Гиббс

Гиббса молекул и ради

Гиббса образования молекул и радикалов

Гиббса торможения внутреннего вращения молекулы

Гиббсит



© 2024 chem21.info Реклама на сайте