Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионизация равновесие

    Согласно уравнению (5.2.1), интенсивность непосредственно связана с числом частиц N0 искомых атомов, находящихся в плазме. Интенсивность линий зависит от природы элемента и от типа энергетического перехода. Из уравнения (5.2.1) следует, что с ростом температуры возрастают соотношение заселенностей уровней NJN и интенсивность линий. Однако одновременно становится заметным возрастание ионизации (равновесие которой зависит от температуры). Зависимость степени ионизации а от температуры [c.184]


    Добавляя к раствору щелочь, равновесие ионизации индикатора смещают влево, и раствор приобретает окраску неионизированных молекул 1п(ЗОН. При подкислении (т. е. связывании ОН -ионов) оно смещается вправо, и раствор приобретает окраску катионов 1п(1+. [c.240]

    Следовательно, в растворе п-нитрофенола наряду с равновесием (I) между обоими таутомерами должно также существовать равновесие ионизации (И)  [c.242]

    Эта новая константа К о называется ионным произведением (или константой ионизации) воды. Как и большинство других констант равновесия, изменяется с температурой. В табл. 5-1 приведены экспериментальные значения ионного произведения воды при различных температурах. [c.211]

    В табл. 5-3 указаны константы ионизации ряда кислот в водных растворах там же приведены оценки для сильных кислот, маскируемые растворителем в водном растворе. Диссоциация протонированного растворителя Н3О на гидратированные протоны и HjO представляет собой просто миграцию протонов от одних молекул воды к другим и должна характеризоваться константой равновесия = 1,00. Если в качестве растворителя используется аммиак, все кислоты, сопряженные основания которых слабее, чем NHj, вследствие выравнивающего действия растворителя окажутся полностью ионизованными сильными кислотами. Таким образом, как фтористоводородная, так и уксусная кислоты в жидком аммиаке являются сильными кислотами. [c.217]

    Какие вам нужны данные для расчета константы равновесия процесса ионизации  [c.49]

    Константу равновесия в данном случае называют константой ионизации. [c.249]

    Ниже рассмотрено применение уравнения (2.72) для различных типов ионных равновесий. Во всех случаях, если это не оговорено специально, подразумевается, что коистанта ионизации относится к 25 °С. [c.249]

    Таким образом, на первой, физической , стадии радиационного процесса происходит перераспределение поглощенной энергии первичного излучения между большим числом вторичных заряженных частиц, которые взаимодействуют с электронами атомов и приводят к возбуждению и ионизации молекул вещества. Затем наступает вторая - физико-химическая—стадия процесса. Образовавшиеся под действием излучения осколки молекул (ионы, атомы, радикалы) имеют большую химическую активность и реагируют как между собой, так и с другими молекулами с большой скоростью. Результатом этих вторичных реакций является образование новых активных частиц (свободных радикалов, вторичных ионов), причем в системе достигается тепловое равновесие. [c.108]


    В области высоких температур происходит отделение электронов, слабо связанных с атомом (термическая ионизация атомов), а при дальнейшем повышении температуры ионизируются и другие атомы и молекулы с постепенным отделением второго и третьего электронов от атома. Газ при высоких температурах переходит в состояние плазмы. В нем находятся в равновесии и нейтральные молекулы и атомы и положительно заряженные ионы и свободные [c.118]

    ДО 24 000° К и захватывает область первой и второй ступеней ионизации атомов углерода и кислорода. Рис. 33, б показывает, что при повышении температуры сначала молекулы СОг диссоциируют на СО и О2, далее молекулы О2 разлагаются на свободные атомы. При данном давлении уже к 3 000° К в равновесной системе почти не остается молекул СО2 и О2 и она состоит практически, полностью из молекул СО и атомов кислорода. Примерно с 4 000° К начинается разложение молекул СО. Дальнейшее повышение температуры приводит к отделению от атомов углерода, а затем и от атомов кислорода сначала одного электрона, а при более высоких температурах и другого электрона. Образование плазмы в этой системе при указанном давлении начинается примерно с 5000° К. Процессы термической ионизации атомов, как и процессы термической диссоциации молекул, являются обратимыми термодинамическими процессами. Для них могут быть определены соответст-вуюш,ие тепловой эффект процесса и константа равновесия, а также зависимость их от температуры и пр. [c.120]

    Процессы диссоциации молекул при высоких температурах (а также и ионизации атомов), описанные в 41, могут служить иллюстрацией к принципу Ле-Шателье применительно к этому кругу явлений. К таким процессам применимы асе термодинамические соотношения, связывающие АН, А8, АО, константу равновесия, а также и другие величины. [c.239]

    На рис. V, 3 показано, как состав продуктов термической диссоциации водяного пара зависит от температуры в пределах до 5000 К прп давлении 1 атм. В этом случае состав системы по данным работы выражен мольными долями частиц различного вида, содержащимися в равновесной системе. В пределах рассматриваемых температур ионизации атомов водорода и кислорода в заметной степени еще не происходит. Интересно, что в области температур выше 3500 К относительное содержание гидроксильных групп при равновесии выше, чем молекул Н2О. [c.172]

    Определение констант равновесия комплексообразования. Спектрофотометрический метод широко применяется не только для определения констант ионизации кислот и оснований, но и может быть использован для нахождения констант равновесия процессов образования различных комплексов. На примере взаимодействия иода с циклогексеном в гексане рассмотрено применение УФ-спектроскопии для определения константы равновесия реакции образования комплексов донорно-акцепторного типа. На рис. 13 приведены УФ-спектры растворов иода и циклогексана в гексане и их смеси. Поглощение в области 300 нм связано с образованием комплекса с переносом заряда  [c.26]

    Константа ионизации веществ в растворе. Распад вещества в растворе ни ионы — процесс обратимый. Поэтому его можно охарактеризовать с помощью константы равновесия. [c.138]

    В этом случае константа равновесия характеризует ионизацию вещества в растворе, поэтому ее называют константой ионизации. Очевидно, чем больше константа ионизации, тем более ионизировано соединение. Поскольку константа равновесия от концентрации не зависит, константа ионизации дает более общую характеристику силы электролита, чем степень ионизации. [c.138]

    Во многих случаях стационарное состояние (скорости ионизации и рекомбинации одинаковые) можно рассматривать как состояние равновесия, подчиняющееся законам термодинамики, и, стало быть, имеется возможность осуществлять соответствующие термодинамические расчеты. Частным случаем энергетического воздействия является соударение частиц при их беспорядочном движении в газообразном состоянии. Соударение, при котором частицы обмениваются кинетической энергией, получили название упругих в отличие от других — неупругих, прн которых происходит возбуждение атомов и /и отрыв электронов. Такая разновидность ионизации называется термической и связана с температурным уровнем среды. [c.227]

    С ЭТОЙ точки зрения каталитические реакции на поверхностях следует понимать так, что поверхность подобна полярному растворителю, на котором молекулы реагентов образуют подвижной двумерный ионный раствор. Адсорбированные ионы двигаются как бы по шахматной доске отрицательные—над положительными ионами поверхности, положительные—над отрицательными ионами поверхности. Заряженные части молекул в некоторых случаях могут отделяться, свободно вращаться одни в поле других, что ведет к образованию новых конечных молекул. Вследствие ионизации молекулы поверхности, состоящей из окислов металлов, адсорбируют ионы реагентов, причем всегда ион металла притягивает анион. Адсорбированные ионы передвигаются по поверхности, благодаря чему устанавливается равновесие между ионизированной и неио-низированной формами. [c.136]


    Принцип метода заключается в следующем раствор распыляют с помощью сжатого воздуха в пламя горелки, где происходит ряд сложных процессов, в результате которых образуются атомы или молекулы. Их излучение направляют в спектральный прибор, где излучение определяемого элемента выделяют светофильтрами или другим монохроматором. Попадая на детектор, излучение вызывает фототок, который после усиления измеряют регистрирующим прибором. Градуировочные графики строят в координатах величина фототока (мкА) — концентрация элемента в раство ре с (мкг/мл). Зависимость между интенсивностью излучения / и концентрацией элемента в растворе аппроксимируется прямой линией в определенной для каждого элемента области концентраций и зависит от спектральной линии, аппаратуры и условий работы. Отклонение от линейности наблюдается в области больщих (например, более 100 мкг/мл для калия) и малых концентраций. В первом случае происходит самопоглощение света невозбужденными атомами, во втором — уменьщается доля свободных атомов за счет смещения равновесия реакции ионизации атомов. [c.11]

    К ионизации комплексов можно применить закон действующих масс, а состояние равновесия выразить с помощью константы ионизации  [c.231]

    Если в реакции нейтрализации участвует слабая кислота или слабое основание, то процесс оказывается более сложным. Рассмотрим случай взаимодействия слабой кислоты с сильным основанием. Исходный раствор кислоты в результате частичной ионизации кислоты содержит два вида кислот молекулы слабой кислоты и ионы Н3О+. В случае уксусной кислоты равновесие имеет вид [c.94]

    При потенциометрическом титровании кислоты HsIOe основанием отчетливо обнаруживаются две конечные точки очень четкая точка при рНж5 и менее четкая при pH =10,0 [33]. Спектрофотометрические исследования указывают на протекание третьей стадии ионизации. Равновесие ионизации усложняется дегидратацией получены следующие термодинамические константы равновесия [33, 34] [c.406]

    Согласно учению об активности, во все уравнения равновесия, например в уравнения константы ионизации и произведения растворимости, должны входить не значения концентрации ионов, а величины их активности. Коэффициенты активности были перио-начально введены в науку как эмпирически находимые множители, позволяющие распространить закон действующих масс и на те случаи, когда он в обычной своей форме неприменим. Физический смысл их был неясен. Впоследствии он был разъяснен тео-11ией сильных электролитов, на основании которой оказалось возможным вычислять величины Вычисления эти довольно сложны, так как соответствующая формула содержит три константы. Достаточно простой вид она приобретает лишь при вычислениях для очень разбавленных растворов (для значений ц 0,1)  [c.78]

    Из формулы О — 5)/5 следует, что чем выше будет растворимость образующегося осадка и чем ниже концентрация осаждаемого веш ества, тем меньше будет относительное пересыщение, тем ченьшее число первичных кристаллов будет возникать и тем круптее они будут. Таким образом, для получения крупнокристаллических осадков необходимо в процессе осаждения повышать растворимость осадка и понижать концентрации осаждаемого и осаждающего ионов. Существует ряд способов понижения концентрации реагирующих ионов при формировании осадков. Самым простым из них является разбавление растворов перед осаждением и медленное (по каплям) при постоянном перемешивании прибавление раствора осадителя к исследуемому раствору (перемешивание нужно для того, чтобы в отдельных местах раствора не повышалась концентрация осадителя, т. е. не возникало так называемое местное пересыщение). Очень эффективным способом понижения концентрации осаждаемого иона является связывание его в комплексное соединение средней прочности. В этом случае достаточно низкая концентрация осаждаемого иона в растворе создается за счет частичной ионизации комплексного соединения. При добавлении иона-осадителя из-за образования малорастворимого соединения равновесие ионизации комплекса будет сдвигаться, но концентрация осаждаемого иона все время будет оставаться низкой. Например, если связать Со2+ в комплексное [c.101]

    Применение органических осадителей требует создания определенных услови1[ и прежде всего надлежащей величины pH раствора. Причину этого понять нетрудно. Выше указывалось, что при образовании внутрикомплексных солей происходит замещение водорода кислотной группы реагента ионами металла при этом в раствор переходят ионы водорода, как это следует, например, из приведенного выше уравнения реакции между N1 + и диметилглиоксимом. Ясно, что положение равновесия должно зависеть от концентрации Н" , т. е. от величины pH раствора. Диметил-глиоксим (и другие подобные ему органические реагенты) ведет себя как слабая кислота. Поэтому к рассматриваемой реакции применимо все то, что говорилось ранее о значении величины pH при осаждении малорастворимых солей слабых кислот. И здесь, если известна величина ПР осадка и константа кислотной ионизации реагента, можно вычислить величину pH, при которой достигается полное осаждение. [c.125]

    Следует иметь в виду, что в то время как равновесие ионизации индикатора устанавливается практически мгнов нно, процесс таутомерного превращения протекает во времени. Поэтому перемена окраски индикаторов происходит не всегда достаточно быстро. Это обстоятельство является одним из наибол(е убедительных доказательств наличия таутомерного превращения при перемене окраски индикаторов оно было бы совершенно непонятно с точки зрения ионной теории индикаторов. Очевидно, что в титриметрическом анализе могут применяться только те индикаторы, перемена окраски которых происходит с достаточной скоростью. [c.243]

    В этом случае константа равновесия характеризует ионизацию вещества в растворе, поэтому ее называют константой ионизации. Очеви/.но, чем больше константа ионизации, тем более ионизировано [c.181]

    Влияние давления на константы равновесия исследовалось на ряде примеров, и уравнение Вант-Гоффа (ХУ.5.8) было проверено из независимого определения частичных мольных объемов (более полное изложение см. в [22]). Это было сделано для случая изомеризации 1 ис-дихлорэтилена с достаточной точностью и качественно для диссоциации N564 и ионизации слабых электролитов [25] .  [c.440]

    Эта реакция характерна для водородного электрода. Равновесию между ионами НзО (при а+=1) и мoлeкyляpны газообразным водородом (р=1 атм) соответствует вполне определенный потенциал, условно принимаемый равным нулю. При этом потенциале имеется равновесие динамического характера, т. е. на границе электрод — раствор одновременно протекают как процесс разряда ионов гидроксония, так и процесс ионизации адсорбированного водорода, а на границе электрод газ — процессы адсорбции и десорбции водорода. При этом скорссти про-тизоположных процессов равны. Если поляризовать водородный электрод катодно, т. е. подводить к нему з ектроны, то равновесие нарушится и преимущественно будет происходить разряд ионов гидроксония. Отсюда ясно, что разряд ионов гид )оксония и выделение молекулярного водорода будут наблюдаться лишь по достижении равновесного потенциала водородного электрода, соответствующего активности иока гидроксония в растворе и давлению выделяющегося Нг, (при отсутствии перенапряжения). Этим и определяется предельное значение пол5 ризации катода при электролизе с выделением водорода. [c.613]

    В качестве стандартного электрода, потенциал которого при любых температурах условно принимают равным нулю, служит натриевый электрод, находящийся в равновесии с хорошо проводящей расплавленной солью натрия, для которой допускается полная ионизация (например, Na l или NaBr). [c.173]

    Согласно Р. Цдатцману и А.Купперману, процесс взаимодействия ионизирующего излучения с водой можно разделить на три стадии 1) физическую, 2) физико-химическую и 3) химическую. Продолжительность первой стадии составляет < 10 13 с. За это время вдоль трека частицы образуются ионы (главным образом, Н2О+) и возбужденные молекулы воды Н2О -> Н2О + е . Эти продукты на второй стадии, длительность которой составляет около 10 и с, претерпевают ряд превращений, приводя систему в тепловое равновесие. Вторичные электроны обладают энергией, достаточной для ионизации нескольких других молекул воды. Группы ионов, возникающих таким путем, называют шпорами (от английского spurs). Так возникают атомы Н, гидратированные электроны и радикалы ОН и, по-видимому, Н2 и [c.192]

    Газы при высоких температурах. Повышение температуры прежде всего вызывает усиление всех форм теплового движения частиц. При высоких температурах энергия теплового движения частиц становится соизмеримой с энергией химической связи в молекулах, с энергией возбуждения новых электронных уровней и с энергией связи электронов в атомах и в молекулах. Поэтому при высоких температурах в газе образуются возбужденные частицы и продукты диссоциации молекул в виде свободных атомов или валентно ненасыщенных групп (радикалов), которые могут находиться в равновесии с исходными молекулами. Являясь вместе с тем очень реакционно способными, эти частицы могут вступать во взаимодействие между собой или с другими частицами, образуя новые сочетания. То же относится к продуктам ионизации. Наряду с этим при высоких температурах в газах могут содержаться пары веп1еств, практически не испаряющихся при обычных температурах, а также частицы, образующиеся при термическом разложении этих веществ. В результате при высоких температурах в газах содержатся (при равновесном состоянии системы) новые, часто совершенно непривычные виды частиц, отвечающие валентным состояниям элементов, нехарактерным или неизвестным для них при обычных температурах. Эти частицы могут быть или более простыми, чем отвечающие им. частицы при обычных температурах (например, ОН, 510, 50), или, наоборот, более сложными (Сз, Сд, Ыаг, Сев, Мда, Ыа(0Н)С1, ВагОз, М05О15 и др.). [c.117]

    К равнокеслю в растворе потенциального электролита между молекулами и ионами применимы законы химического равновесия, и для него может быть онределена константа равновесия. Так, для ионизации какой-либо кислоты [c.173]

    Различают три возможных механизма образования двойного электрического слоя. Согласно одному из ннх двойной электрический слон образуется в результате перехода нонов или электронов из одной фазы в другую (поверхностная ионизация). Например, с поверхности металла в газовую фазу переходят электроны, образуя со стороны газовой фазы электронное облако. Количественной характеристикой такого перехода может слуя ить работа выхода электрона. Интенсивность электронного потока увеличивается с повышением температуры (термоэлектронная эмиссия). В результате поверхность металла приобретает положительный заряд, а газовая фаза — отрицательный. Возникший электрический потен-инал на границе раздела фаз препятствует дальнейшему переходу электронов — наступает равновесие, при котором положительный заряд поверхности металла скомпенсирован отрицательным зарядом, созданным электронами в газовой фазе, т. е. формируется двойной электрический слой. [c.45]

    Различие окраски зависит от способности молекулярной и ионной форм индикатора поглощать лучи различной длины волн. Та форма индикатора, которая преобладает в растворе при данных условиях, определяет окраску раствора. При равенстве концентраций обеих форм индикатор принимает промежуточную окраску. Поскольку состав и строение нона и молекулы одного и того же вещества отличаются, то неодинаковы и их спектры поглощения. Здесь нам нужно понять механизм изменения окраски, а не причину ее появления. Если индикатор является слабой кислотой, то равновесие его ионизации кратко можно записать следующим образом Hind z И -+Ind- (23) [c.99]

    В тех случаях, когда три ионизации метаялов в электролите в результате потери валентных электронов образуются ионы с октетной структурой электронн ыж оболочек, аналогичной структуре атомов благородных газов, мы наблюдаем сдвиг равновесия (3, II) влево. [c.124]


Смотреть страницы где упоминается термин Ионизация равновесие: [c.19]    [c.182]    [c.183]    [c.402]    [c.622]    [c.15]    [c.619]    [c.584]    [c.171]    [c.183]    [c.10]    [c.300]   
Современная общая химия Том 3 (1975) -- [ c.2 , c.77 ]

Современная общая химия (1975) -- [ c.2 , c.77 ]




ПОИСК







© 2025 chem21.info Реклама на сайте