Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полисахариды полисахаридные цепи

    Первичная структура определяется природой, характером и последовательностью связи моносахаридов в полисахариде, вторичная — ориентацией полисахаридных цепей, формой соединений моноз, третичная — энергетически благоприятными взаимодействиями между цепями, четвертичная — взаимодействиями полисахаридных глобул между собой или с другими полимерами. [c.31]


    Многие полисахариды синтезируются клеткой по такой схеме сначала происходит синтез олигосахарида, а затем его поликонденсация, сшивание в длинные цепи. Такой олигосахарид в биологическом смысле, т. е. с точки зрения путей биосинтеза этого полисахарида, и является истинным мономером полисахаридной цепи. Поэтому такой фрагмент называют биологическим повторяющимся звеном. И оно совсем необязательно совпадает с химическим повторяющимся звеном. [c.30]

    Можно, наконец, рассмотреть и еще один — также биологический — аспект понятия о повторяющемся звене, связанный с взаимодействием готовой полисахаридной цепи с другими макромолекулами в живых системах. Речь в данном случае идет о том, каков минимальный фрагмент цепи, воспринимаемый другими молекулами или системами (назовем их рецепторами) как характерный признак данного полисахарида. Сюда относится широкий круг феноменов, таких, как иммунные реакции организма,. сортировка макромолекул в клетке и в организме, преодоление клеточных барьеров, метаболизм полисахаридов и т. д. [c.30]

    Такая регулярность-нерегулярность была обнаружена английским ученым Рисом и названа им замаскированной регулярностью или замаскированной повторяющейся структурой . В последнее время накапливается ряд данных, указывающих на то, что такая замаскированная регулярность — довольно распространенный принцип построения многих линейных полисахаридных цепей. Суть этого принципа не сводится только к тому, что нерегулярности могут быть (фактически или только в принципе) устранены с помощью той или иной обработки. Дело здесь значительно глубже. Можно полагать, что многие типы полисахаридов имеют достаточно регулярный [c.33]

    Следует сказать что между четырьмя названными крайними типами может существовать бесчисленное множество промежуточных структур, что структуры узлов ветвления и полисахаридных цепей внутри одной полисахаридной молекулы вовсе не обязательно одинаковы и что полисахаридные молекулы могут быть построены не из одного, а из двух, трех, четырех, пяти, шести, семи и даже восьми типов моносахаридов. (Подчеркнем, что мы разбираем не просто теоретические возможности, а структурные особенности, встречающиеся в реальных полисахаридах.) Все [c.37]

    Другой метод частичного расщепления полисахаридных цепей (деградация по Смиту) основан на более избирательной, но и более сложной последовательности реакций. Ключевой стадией здесь служит окисление полисахарида солями йодной кислоты — периодатами. При этой реакции происходит разрыв С—С-связи в гликолях с образованием диальдегида, последующее восстановление которого приводит к образованию диола, как показано на схеме  [c.91]


    Сам по себе природный объект, например полисахарид или смешанный углеводсодержащий биополимер, часто бывает столь сложным, что непосредственно понять его свойства и функцию на молекулярном уровне современной науке оказывается не под силу. И тут неоценимую помощь оказывают упрощенные модели такого полимера, включающие определенные элементы его структуры. Такую роль, например, играют олигосахариды по отношению к полисахариду или полисахаридные цепи гликопротеина по отношению к природному гликопротеину. Источником подобных упрощенных систем может служить, с одной стороны, сад[ исходный биополимер, а с другой — их химический синтез. [c.116]

    Молекулярную основу механической прочности и стенки бактериальной клетки, и стенки растительной клетки, и кутикулы членистоногих составляют неразветвленные полисахариды, молекулы которых имеют конформацию жесткого стержня. Такая конформация характерна для полисахаридных цепей, в которых две связи элементарного звена (моносахаридного остатка) ориентированы в пространстве параллельно. Это возможно для пиранозных звеньев, соединенных 1—>4-связями, если и гликозидный кислород, и кислород при С-4 связаны с циклом экваториально. Одна из наиболее типичных укладок таких звеньев в стержнеобразную макромолекулу, включающая антипараллельную ориентацию соседних остатков, показана ниже  [c.148]

    Гликозидная связь между отдельными остатками моноз в молекулах полисахаридов характеризуется также а- и р-формой. Соответственно остатки моносахаридов р-формы в полисахаридной цепи образуют Р-связи, а моносахариды а-формы — а-связи. [c.12]

    В процессе роста полисахаридная цепь остается прикрепленной к ферменту. Каждый новый остаток глюкозы встраивается между ферментом и прикрепленным к нему полисахаридом. Механизм такого встраивания легко представить, если сделать допущение, что фермент несет два участка связывания активированных гликозильных группировок к одному участку присоединяется наращиваемая полисахаридная цепочка. [c.536]

    В современных обзорах, посвященных более детальному описанию конформации полисахаридов, приведены расчеты стереохимии полисахаридных цепей в зависимости от типа имеющихся в них химических связей [1], описаны методы предсказания параметров неупорядоченных форм молекул полисахаридов в растворах [2], рассмотрены вторичные и третичные структуры полисахаридов в растворах и гелях [3]. В более ранних обзорных работах рассмотрены основные принципы образования конформаций полисахаридов [4] формам молекул полисахаридов посвящен обзор [5]. [c.282]

    Третий вид биополимеров — углеводы, полисахариды. Полисахаридные цепи построены из моносахаридных звеньев, имеющих в свободном мономерном состоянии брутто-формулу СбН120б. Важнейший для организмов животных и растений моносахарид — глюкоза — содержит, в отличие от рибозы, шестичленный цикл. Ее конфигурация асимметрична — это 0-форма [c.91]

    В молекулах линейных олиго- и полисахаридов два концевых мономерных остатка обладают, как правило, различными свойствами. Один из них называют восстанавливающим (редуцирующим), другой — невосстанавливающим. Концевой моносахаридный остаток с незамещенным аномерным атомом углерода называют восстанавливающим концом. Остаток, аномерный атом углерода которого присоединен к полисахаридной цепи и участвует в образовании гликозидной связи,— невосстанавливающим концом. [c.11]

    Теоретически полисахариды можно получить последовательным соединением молекул моносахаридов таким образом, чтобы полуацетальная гидроксильная группа одной молекулы связывалась со спиртовой гидроксильной группой другой молекулы (с отщеплением молекулы воды). Такой полисахарид называется неразветвленным. Если к его цепи сбоку аналогичным образом присоединены другие полисахаридные цепи, то говорят о разветвленных полисахаридах. Связи между отдельными молекулами моносахаридов имеют (как и в случае олигосахаридов) гликозидный характер. Это означает, что в кислой среде полисахариды можно гидролизовать до олигосахаридов и далее до моносахаридов. Если при гидролизе полисахаридов образуется исключительно о-глюкоза, то они называются о-глюканами. [c.213]

    ГЛИКОГЕНФОСФОРИЛАЗА, фермент класса трансфераз. Содержится в животных и растит, клетках. Катализирует расщепление концевой а-1->4-глюкозндной связп в полисахаридной цепи глюкана с образованием глюкозо-1-фос-фата и укороченного на один глюкозидный остаток полисахарида. В Организме животных катализирует расщепление гликогена. Г. из скелетных мышц кролика существует [c.136]

    Полисахариды, о которых мы говорили выше, относятся к числу простейших полисахаридных структур. Даже неразветвленные полисахариды, построенные из остатков моносахарида одного типа, могут иметь гораздо более сложное строение. Так, например, глюкан овса содержит сопоставимые количества остатков р-В-глюкопиранозы, связанных 1—>3- и 1- 4-связями. При этом, в отличие, например, от агарозы или гиалуроновой кислоты, эти связи не чередуются правильным образом и не образуют сколько-нибудь значительных блоков из однотипных связей. Поэтому чередование двух типов связей в полисахаридной цепи приходится в данном случае характеризовать как хаотическое. Этим утверждением можно было бы и ограничиться. Мы, однако, пока не знаем, является ли хаотичность истинной или кажущейся. В самом деле, здесь может быть (хотя отнюдь не обязательно должна [c.31]


    Таким образом, мы видим уже два принципа построения полисахаридных цепей правильное чередование (регулярность) и хаотическое расположение фрагментов (снова подчеркнем хаотическое с точки зрения сегодняшних знаний). Возможен, кроме того, и блочный принцип. 1ак, например, устроена альгиновая кислота — полисахарид бурых водорослей (кстати, имеющий большое практическое значение как гелеобразователь). В ее линейную цепь в годят остатки Р-В-маннуроновой кислоты (38) иа-Ь-гулуроновой кислоты (39), соединенные 4-связями, [c.32]

    Боковые полисахаридные цепи, в свою очередь, мог быть разветвлены, а полисахариды, присоединенные этим боковым цепям, также могут нести разветвления т. д. Так строятся древовидные структуры высокоразвет вленных полисахаридов. [c.36]

    После гидролиза можно выделить образовавшиеся моносахариды, установить их строение и таким образом узнать, каков моносахаридный состав полисахарида. Конечно, знание моносахаридного состава не позволяет сделать никаких заключений о последовательности моносахаридных остатков в цепи, о регулярности или нерегулярности ее структуры , о наличии или отсутствии разветвлений — словом, ни об одной характеристике макромолекулы как целого. В этом смысле его можно уподобить данным элементного анализа низкомолекулярного веш,ест-ва. Более tojo, моносахаридный состав полисахарида умалчивает даже о многих особенностях строения самих моносахаридных остатков в полисахаридной цепи. [c.51]

    Спиртовые гидроксилы полисахарида можно превратить в простые эфиры, как и всякие спирты. Простейшая возможность — метиловые эфиры. Для этого полисахарид надо обработать теми или иными метилируюш,ими агентами (например, иодистым метилом) — прометилировать. Идея метода заключается в том, что метиловые эфиры сахаров устойчивы в условиях кислотного гидролиза гликозидных связей. Поэтому после гидролиза метилового эфира полисахарида можно получить метиловые эфиры входяш,их в его состав моносахаридов, причем метиль-ные группы в них окажутся в тех же самых положениях, в которых они были в соответствуюш,их моносахаридных остатках полисахаридной цепи. Напротив, неметилирован-ными в них будут те гидроксилы, которые были использованы для образования гликозидных связей и освободились при гидролизе. Таким образом, установив строение метилированных моносахаридов и, следовательно, положение в них метильных групп, можно выяснить, какими своими положениями эти моносахариды были связаны в исходной полисахаридной цепи. Все это можно проследить на примере метилирования растворимого ламинарина, фрагмент которого представлен на схеме (с. 53). [c.52]

    Два разобранных примера частичного расщепления полисахаридных цепей по информативности характерны Для всего цикла методов фрагментации такого типа. С их помощью можно узнать мнох ое или почти все о ближнем порядке в структуре и кое-что или почти ничего о дальнем порядке. Тем не менее применение к одному полисахариду разных методов фрагментации, в особенности таких, которые обеспечивают расщепление разных связей, весьма существенно обогащает информацию, получаемую каждым из зтих методов порознь. Например, если из последовательности. ..—А—А—Б—В—Г—Д—А—А—Д—Г—Г— —Б—... одним методом были получены фрагменты А—А—Б—В—Г, В—Г—Д и Д—Г—Г—Б, а другим — фрагмент Г—Д—А—А—Д—Г, то в совокупности эти данные определяют всю додекасахаридную последовательность, т. 8. дают сведения о точной структуре уже довольно значительного сегмента цепи. [c.94]

    Гликопиранозильный остаток, гидроксилы которого защищены от окисления ацетилированием, при обработке хромовым ангидридом в уксусной кислоте претерпевает окисление, при котором гликозидная связь превращается в сложнозфирную. Остаток моносахарида превращается при этом в остаток кетоальдоновой кислоты, В эту реакцию вступают только гликозильные остатки, у которых водород при гликозидном центре аксиален (см. схему на с. 97). Поэтому из двух возможных аномеров моносахаридного остатка внутри полисахаридной цепи окислению подвергается только один. Если далее такой окисленный полисахарид подвергнуть мономерному анализу, то по исчезновению тех или иных моносахаридов из гидролизата (по сравнению с исходным полисахаридом) можно судить о том, что именно эти остатки в полисахаридной цепи имели окисляемую конфигурацию (с аксиальным водородом при С-1), а сохранившиеся — неокисляемую (с экваториальным водородом при С-1). [c.96]

    При этом особенно важно, что присоединение гликозильного остатка к одному из атомов кислорода приводит к резкому (до 10 м. д.) изменению химического сдвига соответствующего ядра С, что позволяет непосредственно определять положение межмономерных связей в полисахаридных цепях. Понятно, что основанный на такой спектроскопии метод обладает колоссальными возможностями для изучения полисахаридных структур. Разберем в качестве примера спектр агароподобного полисахарида одной из красных водорослей .  [c.98]

    Ферменты, расщепляющие полисахариды, бывают двух типов — эндоферлтенты и зкзоферменты. Первые катализируют гидролиз некоторых гликозидных связей внутри полисахаридной цепи, т. е. расположенных достаточно далеко от обоих ее концов. Вторые способны вызывать гидролитическое отш,епление только концевых моносахаридных остатков (в некоторых случаях концевых дисахаридных фрагментов). Не нужно думать, что процесс на этом останавливается в полученном укороченном полисахариде есть свое концевое звено, которое в свою очередь подвергается атаке ферментом, если обладает нужной структурой и конфигурацией. [c.102]

    Как же можно использовать полисахариды в структурных исследованиях Эндоферменты — это прежде всего реагенты для высоко избирательной фрагментации полисахаридных цепей причем в отличие от кислотного гидро- [c.102]

    Если не считать отдельных случаев гидролиза экзо-полисахаридазами, у нас пока нет возможностей перебрать полисахаридную цепь звено за звеном, выяснив тем самым полную и точную последовательность всех остатков. А деструктивные методы типа частичного гидролиза оставляют возможность для существования каких-то минорных невыявленных сегментов (как мы видели на примере агарозы). Поэтому структуры цепей, выведенные на основании даже очень подробного исследования, как правило, характеризуются некоторой неопределенностью, по крайней мере в отношении наличия (или отсутствия) какого-то числа отклонений, аномальных звеньев, а также в отношении ограниченной точности определения количественных параметров структуры (таких, например, как число разветвлений на макромолекулу). Расширение арсенала методов, примененных к данному полисахариду, и повышение их точности может, конечно, снизить верхнюю оценку для содержания миноров и для ошибки [c.108]

    Другое обстоятельство, еще более фундаментального характера, позволяет поставить под сомнение целесообразность особо точного определения полисахаридных структур. Вспомним то, что говорилось о микрогетерогенности полисахаридных цепей. Благодаря этому явлению в образце полисахарида, подвергающемуся структурному анализу, обычно содержится множество близко родственных структур. Поэтому локализация отдельных моносахаридных звеньев в цепях может быть достигнута с точностью, по крайней мере не большей, чем вариации структур молеку.11 внутри образца, связанные с микрогетерогенностью. Принципиально можно, конечно, свести к минимуму структурные вариации такого типа, например, при помощи тех или иных химических или ферментативных обработок (вспомним, как был превращен нерегулярный полисахарид порфиран в производное регулярного полисахарида агарозы) и путем особо прецизионного фракционирования. Для таких полисахаридов со сведенным к минимуму разбросом структурных параметров можно, по крайней мере в принципе, установить строение гораздо более точно. [c.109]

    Мы уже неоднократно упоминали о том, что олигосахариды могут служить удобными, в некоторых случаях идеальными моделями иолисахаридов, с иомощью которых удается относительно легко выяснить многие вопросы химии и биохимии их более сложных прототипов — самих полисахаридов. Действительно, типичный олигосахарид — это в полном смысле слова маленький полисахарид и все те особенности структуры и свойств полисахаридов, которые не связаны специфическим образом с их высоко-молекулярностью, в полной мере обнаруживаются и для олиго сахаридов. Более того, в большом классе биологических явлений, включающих взаимодействие биополимеров один с другим и даже клеток друг с другом, нередко определяющим фактором ока.зываются контакты поверхностных участков, представляющих собой невосстанавливающие концы полисахаридных цепей. [c.132]

    По мере углубления наших знаний о природе жизненных процессов вырисовывается картина сложной и многогранной роди углеводов в живых организмах. Среди известных сейчас функций углеводов мы находим и роль энергетического резерва, и роль главных структурирующих веществ, и роль эластиков, и роль смазки, и разнообразные информационные функции, и многое другое. Такую поразительную полифункционадьность этого класса соединений можно, по-иидимому, понять из общих соображений. Действительно, такие биологически монофункциональные биополимеры, как нуклеиновые кислоты, имеют один тип ковалентной структуры это линейные одномерные цепи. Напротив, структуры высокомолекулярных углеводов представлены по крайней мере двумя молекулярными типами линейными и разветвленными, не говоря уже о том, что среди разветвленных полисахаридов можно также выделить несколько крупных классов структур и что организация последовательностей мономеров в полисахаридных цепях может принадлежать к нескольким принципиально различным типам. Из такого разнообразия структур, естественно, следует и разнообразие функций. [c.135]

    БИОПОЛИМЕРЫ (от греч bios-жизнь и polymeres-состоящий из многих частей, многообразный), прир высокомол соединения, являющиеся структурной основой всех живых организмов Обеспечивают их нормальную жизнедеятельность, выполняя разнообразные биол. функции К Б относятся белки, нуклеиновые кислоты, полисахариды Известны также смешанные Б, напр липопротеины (комплексы, содержащие белки и липиды), гликопротеины (соед, в молекулах к-рых олиго- или полисахаридные цепи ковалентно связаны с пептидными цепями), липополисахариды (соед., молекулы к-рых построены из липидов, олиго-и полисахаридов) [c.289]

    Л. могут быть выделены из клеток экстракцией, напр, р-ром фенола в воде. В водных р-рах молекулы Л. проявляют сильную тенденцию к ассоциации. Образуемые ими агрегаты с мол. массой св. 1 млн. м. б. разрушены путем добавления ПАВ (напр., додецилсульфата Na). Препараты Л. неоднородны, что связано с одновременным присутствием молекул, содержащих и не содержащих полисахаридную цепь, а также в связи с разл. длиной этой цепи. Др. причина неоднородности - присутствие неодинаковых кол-в фосфатных и 2-аминоэтилфосфатных групп в коре, О-аце-тильных групп и боковых моносахаридных фрагментов в О-специфическом полисахариде, О-ацильных остатков и необязательных заместителей в липиде А. [c.603]

    Скорость гидролиза полисахаридов неодинакова и в значительной степени зависит от структуры их молекул [16]. Установлено, что связь 1 6 более устойчива к гидролизу, чем связь 1 4, а-гликозидные связи легче гидролизуются, чем р-связи. Например, остатки -арабофуранозы, соединенные а, 1 3 — связями с О-ксилопиранозами полисахаридной цепи, легко отщепляются при гидролизе [17]. Однако а-гликозидная связь, образованная альдегидной группой 4-0-метил- )-глюкуроновой кислоты в глюкуроноксиланах, весьма устойчива к гидролизу по этой причине в гидролизатах глюкуроноксилана присутствуют альдоуроновые кислоты. Исследование структуры этих соединений также позволяет получить ряд сведений о строении молекул кислых полисахаридов. 5 [c.62]

    Метилированные производные, содержащие две или более свободные гидроксильные группы, образуются из моносахаридных остатков, у которых имеются точки разветвления полисахаридной цепи. Количественное определение этих метилированных продуктов позволяет установить степень разветвленности полисахарида и определить места ответвлений. В качестве примера ниже приводятся схематические формулы природного и метилированного глюкоман-нана кедра, а также продукты его гидролиза см. стр. 89). [c.88]

    Ксиланы, выделенные из ячменной, ржаной, овсяной и пшеничной соломы [230], имели различную степень полимеризации 55 для соломы овса и 185 для соломы ржи. При нагревании ксиланов из ячменной, ржаной и пшеничной соломы с водой при 120° С в автоклаве были получены эти полисахариды в кристаллической форме. Основная структура молекул сохранялась и в кристаллическом ксилане, который давал идентичные дифракционные рентгенограммы и имел такую же структуру с открытой цепью. В процессе кристаллизации полисахаридная цепь частично разрушается с отщеплением D-ксилозы, L-арабинозы и D-глюкуроновой кислоты и в результате образуется чистый ксилан с длиной цепи от одной шестой до одной трети длины цепи исходного полисахарида. В зависимости от содержания глюкуроновой кислоты, растворы глюкуроноарабоксиланов в воде имеют различный pH — от 2 до 5. [c.271]

    Приведенные наблюдения позволяют высказать предположение, касающееся одной из загадок синтеза крахмала. Суть ее в следующем. Разветвленный компонент крахмала амилопектин, по-видимому, синтезируется в основном так же, как гликоген. Единственная разница состоит в том, что внешние цепи амилопектина удлиняются до того, как образуются новые ветви. Особый ветвящий фермент (Q-фермент), подобный соответствующему ферменту синтеза гликогена, переносит часть цепи на ОН-группу остатка глюкозы, включенного в прилегающую и параллельно расположенную полисахаридную цепь. В гранулах крахмала амилоза и амилопектин тесно переплетены друг с другом как же случается, что ветвящий фермент никогда не присоединяет боковых ветвей к неразветвленным цепям амилозы Одна из причин может состоять в том, что линейные цепочки амилозы ориентированы в противоположном направлении по сравнению с цепями амилопектина. Невосстанавливающие концы молекул амилозы могут оказаться направленными к центру гранул крахмала, а удлинение по механизму встраивания может идти с восстанавливающих концов. Понятно, что по мере роста гранулы эти концы должны постоянно отодвигаться к периферии [12]. Мы приводим это сугубо умозрительное рассуждение исключительно с целью показать, что в проблеме синтеза полисахаридов имеется множество нерешенных вопросов. [c.537]

    В щелочной среде происходит окисление полисахаридов по свободнорадикальному механизму. Целлюлоза, полученная при кислородно-щелочной варке, отличается повышенным содержанием карбонильных и карбоксильных групп. Образование карбонильных групп в положениях С(2), С(з) и С(й) инициирует статистическую деструкцию полисахаридных цепей по механизму реакции р-алкоксиэлимнннрования. Ионизация гидроксильной группы у С(2) (см. 16.3) благоприятствует появлению свободно-радикального центра у этого атома углерода и образованию затем карбонильной группы (схема 11.32). При расщепление гликозидной связи 1- 4 по реакции р-алкокси-элиминирования образуются редуцирующее и кередуцирующее концевые звенья. Появление редуцирующего концевого звена инициирует деполимеризацию, а нередуцирующее звено в форме дикетона либо перегруппировывается в концевое звено карбок-сифуранозида, либо окисляется далее с расщеплением связи С(2)-С(3) и образованием двух карбоксильных групп (см. 21.1). [c.352]

    Важную группу полисахаридов составляют гликозаминогликаны, к которым относятся гиалуроновая кислота, хондроитинсульфаты и кератансульфат. Было показано, что в ориентированных пленках молекулы этих соединений в зависимости от типа присутствующих катионов могут принимать целый ряд взаимо-превращаемых конформаций [12]. Эти конформации представляют собой группу левых спиралей, упакованных антипараллельно и отличающихся в основном степенью растянутости. Наиболее сжатой является одна из конформаций гиалуроновой кислоты, в которой одна молекула закручена вокруг другой с образованием двойной спирали [13] во всех остальных случаях молекулы упакованы бок о бок . В некоторых случаях удалось детально выяснить строение молекул, что для волокнистых веществ, в отличие от кристаллических, очень трудно сделать удалось даже выявить положение молекул воды и геометрию участков молекул, координированных вокруг катионов [14]. Важными вехами на пути понимания конформационных принципов строения полисахаридных цепей стали а) первый пример установления с помощью, рентгеноструктурного анализа упорядоченной конформации разветвленного полисахарида (внеклеточного полисахарида Е. oli) это позволило предположить, что наличие ветвлений играет важную роль при ориентации боковых цепей антипараллельно основной цепи и стабилизации таким образом конформации молекул полисахарида посредством нековалентных взаимодействий [15] б) первое изучение этим же методом структуры кристаллического гликопротеина, которое показало упорядоченность конформации его углеводной части [16]. Ко времени опубликования работы [16] определение строения (F -фрагмента иммуноглобулина G) не было доведено до конца, однако уже можно было сделать ряд важных выводов, которые будут рассмотрены ниже. [c.283]

    Изучение пространственных моделей и построение математических моделей позволяют предположить существование таких свойств упорядоченных конформаций углеводных цепей, по которым они отличаются от конформаций других важных биополимеров— белков и нуклеиновых кислот. Во-первых, углеводные цепи значительно жестче и, следовательно, число форм, которые может принимать полисахаридная цепь, более ограничено из-за пространственных запретов. Расчет по методу твердых сфер для цепей, в которых последовательно соединенные остатки разделены двумя связями, показывает, что обычно реализуется лишь 5 % возможных конформаций цепи [18]. Во-вторых, изменение последовательности углеводных остатков в полисахаридной цепи может приводить к гораздо более начительному изменению стереохимии молекулы, чем изменени порядка расположения аминокислотных или нуклеотидных остатков, поскольку в случае полипептидов или полинуклеотидов происходит перестройка лишь боковых цепей при сохранении структуры основной цепи, тогда как в полисахаридах изменение конфигурации или положения гликозидной связи ведет к существенным изменениям именно в основной цепи. В-третьих, углеводные цепи часто имеют разветвленную структуру с различным типом связей в точках ветвления, и взаимодействие [c.285]

    Если установлено, что молекулы данного полисахарида в растворе имеют частично или полностью упорядоченную конформацию, то следующим шагом является возможно более детальное определение их геометрии. Все имеющиеся в настоящее время подходы к решению этой проблемы основаны на сравнении с базисными конформациями, определенными рентгеноструктурным анализом в твердом состоянии. Сравнение некоторых основных особенностей конформаций молекул может быть сделано на основании анализа стехиометрии при переходе порядок — беспорядок так, можно выяснить, из скольких тяжей составлена упорядоченная коиформа-Ция молекулы. Так, изучение концентрационной зависимости указанного перехода показало, что ксантан упорядочен внутримолекулярно [19], тогда как 1-каррагинан образует упорядоченный димер [29], что и ожидалось для обоих случаев по аналогии с твердым состоянием. Для полиглюкуроната стехиометрия связывания ионов кальция, как было показано, может соответствовать только двухтяжевой укладке его молекулы [30]. Такая двухтяжевая ассоциация полисахаридных цепей в нескольких независимых областях связывания может приводить к возникновению незавершенной трехмерной сетчатой структуры, т. е. к гелеобразованию введение в Молекулу полисахарида короткоцепных сегментов, имеющих только одну область связывания, может подавить процесс образования сетчатой структуры за счет конкурентного ингибирования ассоциа-Дии цепей. Такое явление может быть использовано для получения Данных, подтверждающих двухтяжевый характер ассоциата, как о было сделано для 1-каррагинана и полигулуроната [31]. [c.295]


Смотреть страницы где упоминается термин Полисахариды полисахаридные цепи : [c.36]    [c.54]    [c.95]    [c.97]    [c.111]    [c.602]    [c.603]    [c.75]    [c.310]    [c.349]    [c.293]   
Молекулярная биология клетки Том5 (1987) -- [ c.69 , c.71 ]




ПОИСК





Смотрите так же термины и статьи:

Полисахариды



© 2024 chem21.info Реклама на сайте