Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектрах специальные измерения

    В практической спектрофотометрии измерения поглощения проводят в спектральной области, которую принято делить на 3 части ультрафиолетовая, видимая и инфракрасная области спектра. Единицей измерения длин волн в ультрафиолетовой части спектра в практической спектрофотометрии обычно служит нанометр (1 нм = 10 см). Ультрафиолетовая область спектра расположена в интервале длин волн 200— 400 нм, видимая область — в интервале длин волн 400—700 нм. Наконец, инфракрасная область спектра начинается примерно с 700 нм. В инфракрасной области спектра единицей измерения длин волн служит микрон (1 мк = 10- см). Очень часто инфракрасное излучение характеризуется волновым числом -V, у= 1Д (где X выражено в см), размерность V соответственно см Например, длина волны 2 лк соответствует волновому числу 5000 слг . Имеются специальные таблицы пересчета волновых чисел в длины волн. Наиболее доступная инфракрасная область расположена в интервале 0,7—20 мк, более длинноволновая область инфракрасного спектра малодоступна и практической спектрофотометрией пока не используется. [c.245]


    Если при определении характеристики распыливания не ставится условий, связанных с исследованием какого-либо физического процесса, то выбор средней величины должен производиться на основании оценки точности ее определения. В ЦНИИ МПС для подсчета погрешностей ряда характеристик проведены специальные измерения тонкости распыливания топлива в одинаковых условиях. По результатам измерения всего спектра капель были подсчитаны средние типа и по кривым распределения вида (3. 28) определены статистические характеристики медиана (3. 60) и мода (3. 61), а также величины d и т. [c.117]

    Следует еще раз отметить, что применение источников сплошного излучения при фотоэлектрических измерениях атомной абсорбции вместо источников линейчатых спектров, за исключением некоторых задач специального характера (качественное исследование спектров поглощения, измерение интегрального поглощения и пр.), нецелесообразно. Ранее ( 6) было показано, что подобная замена влечет за собой значительную потерю чувствительности измерений, а также существенное ослабление концентрационной зависимости абсорбции даже при малых оптических плотностях. Эти теоретические выводы подтверждаются результатами экспериментальных измерений автора (см. 46), а также результатами работы [82]. [c.110]

    Количественные определения основаны на пропорциональности между интенсивностью линии характеристического излучения и концентрацией элемента в пробе. На абсолютную интенсивность линий влияют условия возбуждения и другие факторы, а также химический состав пробы, что приходится учитывать серией специальных измерений и теоретическими расчетами. Зависимость интенсивности линий рентгеновского спектра от концентрации элемента имеет более сложный характер, чем концентрационная зависимость интенсивности линий в эмиссионной спектроскопии. [c.130]

    В пятом издании (4-е изд. вышло в 1976 г.) обновлен и переработан материал, посвященный чувствительности фотометрических определений, аппаратурному оформлению методов и расчетам. Описаны условия фото метрического определения веществ, аппаратура и методы измерения свето-поглощения растворов в видимой и ультрафиолетовой областях спектра. Специальные главы посвящены метрологическим характеристикам и математической обработке экспериментальных данных. [c.2]


    Отмеченная выше связь между параметрами линий комбинационного рассеяния имеет по существу качественный характер. Наличие подобной связи позволяет без специальных измерений, руководствуясь значениями степени деполяризации и интенсивности линий, выделить в спектре интересующего нас соединения узкие линии. Однако о численном значении ширины мы пока еще не можем сделать определенных заключений, так как само разделение линий на узкие и широкие условно, и узкие линии в одном классе углеводородов могут оказаться более широкими, чем многие широкие линии в другом классе. Поэтому для оценок численного значения ширины линий мы встали на другой путь, основанный на соображениях структурного характера. [c.82]

    При выполнении качественного спектрального анализа необходимо определить длины волн спектральных линий, наблюдае-мы. в спектре исследуемого вещества. Для этого измеряют относительное положение спектральных линий в спектре, а длины волн находят по дисперсионной кривой спектрального прибора. На стилометре СТ-7 положение линии в спектре фиксируется отсчетом по шкале барабана микрометрического винта, поворачивающего диспергирующую призму и перемещающего весь спектр в поле зрения окуляра. Нулевой (реперной) чертой при этом считается левый край прямоугольной рамки, вырезающий небольшой участок в наблюдаемой области спектра (рис. 1.5). Спектр в рамке имеет несколько большие размеры по высоте и может быть перемещен вправо или влево специальным барабаном стилометра. При этом остается темный вырез в остальном спектре. Однако при определении положения спектральной линии в спектре, т. е. при качественном анализе, рамка должна точно вписываться в вырез, а яркость спектра в ней должна быть несколько уменьшена при помощи одного из фотометрических клиньев 12 (см. рис. 1.4). При измерении выбранную спектральную линию поворотом микрометрического винта призмы точно устанавливают на левой границе рамки и затем берут отсчет по его шкале с точностью до 1—2 десятых долей деления. Измерения повторяют 3—4 раза, записывая среднее значение отсчета. В темно-красной и фиолетовой областях спектра, в которых глаз с трудом различает свечение фона, спектральную линию выводят в отсчетное положение до уменьшения вдвое ее наблюдаемой ширины. [c.15]

    Метод, основан на получении эмиссионных спектров анализируемого вещества на фотографической пластинке, помещенной в фокальной плоскости камерного объектива спектрального прибора (спектрографы различных типов). Спектральные линии элементов (качественный анализ) в полученном спектре идентифицируют относительно спектра известного элемента (обычно железа), фотографируемого рядом со спектром анализируемого вещества. В специальных атласах спектральных линий приведены фотографии спектров л<елеза, где относительно спектральных линий железа указано положение спектральных линий всех элементов с их длинами волн. Для проведения качественного анализа используют спектропроекторы или измерительные микроскопы. Количественный анализ проводят по результатам измерения относительных почернений спектральных линий гомологической пары и их сравнением с соответствующими величинами стандартных образцов. Почернения спектральных линий измеряют при помощи микрофотометров фотоэлектрическим способом. [c.25]

    Методика измерения. Применяемые в качестве фотолитических ламп импульсные лампы имеют широкий спектр излучения. На образец попадает не только свет, который поглощается веществом но также фотохимически неактивный свет. Мощный световой поток, попадающий на образец, рассеивается стенками кюветы и мельчайшими пылинками, присутствующими в растворе. Рассеянный кюветой свет попадает на щель монохроматора и на фотоумножитель. Если не принимать специальных мер, снижающих интенсивность рассеянного света, то фотоумножитель может перегрузиться и сигнал, поступающий на осциллограф, будет сильно искажен. При применении спектрографической установки импульсного фотолиза рассеянный свет создает большой фон на фотографической пластинке при коротких временах регистрации короткоживущих продуктов. Обычно используются следующие приемы для уменьшения рассеянного света, попадающего на фотоумножитель (ФЭУ). Во-первых, применение спектральных ламп с высокой световой интенсивностью позволяет уменьшить щель монохроматора и тем самым снизить интенсивность рассеянного света, попадающего на фотоумножитель. Во-вторых, рассеянный свет не является направленным, и поэтому его интенсивность уменьшается с квадратом расстояния от кюветного отделения до монохроматора. Таким образом, чем [c.183]

    Как правило, использовались данные тех работ, в которых измерение инфракрасных спектров было основной или одной из специальных целей исследования. [c.500]


    Напр мер, для снятия спектров из растворов газ-носитель, содержащий исследуемое вещество, пропускают через растворитель, поглощающий данное вещество. В случае снятия спектров твердых веществ вещество из газа-носителя осаждают на порошок бромида калия и из полученной смеси приготовляют таблетки. Если исследуемое вещество газообразно, то измерения проводят в специальной газовой кювете, в которую вещество поступает в смеси с газом-носителем. Эти методы позволяют работать с меньшими потерями вещества по сравнению с методом улавливания веществ в ловушках. [c.195]

    Уравнения (4.5) и (4.6) выведены для монохроматического света, т. е. света определенной длины волны, который может быть выделен с помощью специального оптического устрой-ства — монохроматора. В фотоколориметре измерение интенсивности световых потоков производят не в монохроматическом, а в полихроматическом свете, т. е. на довольно широком участке спектра — в интервале длин волн 20—100 нм. В этом случае в уравнении (4.6) вместо молярного коэффициента светопоглощения ел можно использовать значения среднего молярного коэффициента светопоглощения (ё), зависящие от ширины полосы пропускания светофильтра (е-<ех). [c.180]

    Спектрофотометры. Спектрофотометр двухлучевой СФ-26 предназначен для измерения коэффициентов пропускания и оптической плотности жидких и твердых веществ в области спектра от 186 до 1100 нм. Оптическая схема и внешний вид спектрофотометра приведены на рис. 15.12 и 15.13. Для обеспечения работы прибора в столь широком диапазоне спектра используют два источника излучения дейтериевую лампу ДДС-30 для работы в области спектра 186-350 нм и лампу накаливания ОП-33-0,3 д1я работы в области 340-1100 нм. Приемниками излучения служат также два фотоэлемента. Сурьмяно-цезиевый с окном из кварцевого стекла применяется для измерений в области спектра от 186 до 650 нм, кислородно-цезиевый - для измерений в диапазоне от 600 до 1100 нм. Длину волны падающего излучения устанавливают поворотом кварцевой призмы. Анализируемый образец может быть как в твердом виде (тогда его помещают в специальный держатель), так и в виде раствора [c.143]

    Существуют два подхода к измерению спектров ЭПР электрохимически генерированных частиц. При внешнем генерировании ион-радикалов (вне резонатора спектрометра) процесс электролиза осуществляется в специальной электрохимической ячейке. В резонатор спектрометра подвергнутый электролизу раствор доставляется либо с помощью проточной системы, либо путем прямого отбора проб из ячейки с последующим замораживанием образца при температуре жидкого азота. Таким способом удается исследовать лишь сравнительно долгоживущие ион-радикалы. При внутреннем генерировании электрохимическая ячейка помещается непосредственно в полость резонатора спектрометра. В таких условиях обычно исследуют ион-радикалы с временем жизни порядка одной секунды и выше. [c.225]

    Выбор оптимальных комбинаций различных методов зависит, конечно, от самого объекта исследования (первичной информации о его природе) и реальных возможностей данной лаборатории. Если одинаково доступны все основные современные методы исследования, то наиболее универсальным следует считать сочетание масс-спектрометрии, инфракрасной спектроскопии и ЯМР. Последовательность их использования не имеет принципиального значения, но обычно оказывается целесообразным начинать с технически более простых и доступных методов (ИК- и УФ- спектры, рефрактометрия), а. затем переходить к более сложным (ЯМР, масс-спектрометрия) и, наконец, привлекать в случае необходимости более специальную технику (измерение моментов диполя и др.). Поскольку обязательных общих рецептов совместной интерпретации физических данных не существует, типичный ход рассуждений [c.214]

    Для увеличения уровня полезного сигнала стараются уменьшить навеску анализируемого вещества, прн этом, однако, понижается и чувствительность измерений, а при регистрации спектров на частотах атмосферных Н2О и СО2 удаляют из прибора воздух. Пониженный же уровень шумов достигается применением однолучевой схемы регистрации спектров, многократным сканированием и специальной математической обработкой спектров. [c.160]

    Чтобы получить высокое разрешение, необходимо сделать магнитное поле как можно более однородным. Для этого используют полюсные наконечники большого диаметра и применяют узкий межполюсный зазор, но этого оказывается недостаточно для получения поля такой однородности, которая нужна для измерения спектров высокого разрешения. Дальнейшее улучшение однородности поля осуществляется двумя путями. Во-первых, с помощью специальных токовых катушек, называемых шиммами. Они расположены на стенках датчика и имеют специальную форму. Шиммы позволяют скомпенсировать градиенты магнитного поля электромагнита вдоль трех координатных осей, а также дают возможность создавать квадратные градиенты. Технически возможно произвести автоматическую подстройку разрешающей способности, но почти во всех спектрометрах эта регулировка выполняется вручную. Второй путь улучшения разрешения состоит в том, что во время измерения спектра трубку с исследуемым образцом вращают вокруг оси. Для этого подают сжатый воздух по касательной к втулке, надетой на трубку. Втулка служит турбинкой, вра- [c.170]

    Показатели преломления и дисперсия измеряются при освещении нефтепродукта монохроматическим светом, а именно для линии 13 натрия (желтая часть спектра) и линий С, Р и С водорода (соответственно красная, голубая и фиолетовая части спектра). При измерении показателя преломления для линий С, Р и О водорода л качестве источника света пользуются гей-слеровскими трубками, паполнен-ными водородом. Устройство приборов и методика измерения показателей преломления и дисперсии нефтепродуктов описаны в специальной литературе .  [c.100]

    В приборе используют водородп5гю лампу низкого давления для работы в области 220—350 нм и лампу накаливания — в области 350—2500 нм. Приемниками излучения служат сурьмяно-цезиевый фотоумножитель и фотосопротивление PbS для работы в ближней инфракрасной области спектра. Результаты измерения регистрируются на специальном бланке. [c.154]

    С0СТ0Я1ЦИЙ в том, что с помощью генератора переменной звуковой частоты накладывают модуляцию на развертку или генераторные катушки. При этой модуляции по обе стороны от абсорбционных сигналов появляются боковые сигналы, расстояние которых от основного сигнала эквивалентно применяемой звуковой частоте [4]. Таким образом, нри изменении частоты модуляции боковой звуковой сигнал может перемещаться вдоль спектра, и измерения проводят при совмещении этого сигнала с другими сигналами спектра. Этим методом расстояния определяют в единицах частоты (в гц). Чтобы свести к минимуму появление новых сигналов, в качестве источника боковых сигналов можно выбрать самую большую линию в спектре. Поскольку применение этого метода очень трудоемко и в случае сложных спектров затруднено, при текущих анализах получают один боковой сигнал, с которым совмещают все линии спектра. Затем, предполагая линейность развертки, можно путем интерполяции измерить расстояния между всеми полосами в спектре. В наиболее точных работах вводят специальные усовершенствования для проверки линейности развертки и точности звукового генератора. Метод боковых сигналов позволяет определить положение линий с точностью до 1 гц. [c.215]

    Вещества, разделенные с помощью препаративной ГЖХ, обычно собирают в стеклянные и тефлоновые трубочки или при помощи специальных устройств. Можно направить эти вещества из колонки прямо в ячейку счетчика радиоактивности или на пластинку для ТСХ. Как правило, дальнейший анализ хроматографически разделенных веществ, включающий в себя регистрацию спектров или измерение радиоактивности, можно проводить в любой момент после завершения их улавливания. То же самое относится и к веществам, которые необходимо испытать на биологическую активность или подвергнуть превращениям, требующимся для химика-органика препаративная ГЖХ и последующий анализ разделенных веществ — следующие друг за другом процедуры. Однако этот метод отличается от других комбикированных методов, в которых ГЖХ, по-видимому, тоже можно рассматривать как препаративную в том смысле, что получаемые с ее помощью вещества предназначены для анализа другим методом. Мы имеем в виду два метода, популярность которых все больше растет. Первый из них — комбинированный метод ГЖХ — масс-спектрометрия, в котором вещества, выходящие из хроматографической колонки в паровой фазе, направляют в масс-спектрометр через молекулярный сепаратор, в котором происходит отделение от них газа-носителя [19]. [c.284]

    Светопропускание образца записывается регистрирующими спектрофотометрами на диаграммной ленте с разверткой пропускания (в %) или оптической плотности по длинам волн. На однолучевых спектрофотометрах запись спектра осуществляется по точкам с визуальным отсчетом показаний прибора. Полученный спектр пропу-скания характеризует количество света, прошедшего через образец, и позволяет оценить потери света (в %) за счет поглощения (провалы в интенсивности), а также отражения и рассеяния. Интегральное V светопропускание (в %) определяют по полученному спектру путем измерения площади, ограниченной кривой пропускания и заданным интервалом длин волн, и отнесения ее к площади, соответствующей 100%-ному пропусканию в том же диапазоне длин волн. При наличии специального интегрирующего устройства можно получить интегральное светопропускание одновременно с записью спектра. [c.17]

    Результаты. В табл. 2 приведены спектры ЭПР иона Мп2+ в полностью гидратированных цеолитах. В 3-см диапазоне во всех образцах при температурах регистрации от комнатной до —40° С наблюдается широкая линия (АЯ=500 э) с плохо разрешенной СТС из шести компонент (по оценкам с помошью Атласа спектров [17] ширина отдельной компоненты достигает 60— 70 э) (рис. 1, а). В интервале температур —40ч—60°С происходит резкое изменение формы спектра, сопро-. вождаюшееся уменьшением ширины компонент СТС и появлением хорошо разрешенного спектра ЭПР из шести компонент СТС с более слабыми дублетными компонентами между ними, обусловленными переходами с Лт= 1, так называемые запрещенные переходы [13], (рис. 1, б). Константа СТС в этом спектре равняется 95 э, а компоненты СТС монотонно уширяются внутри спектра в сторону больших полей. Специальными измерениями было установлено, что точно такие же изменения вида спектра с изменением температуры наблюдаются и в спектрах ЭПР иона Мп +в гидратированном цеолите типа У натриевой формы. Аналогичные данные по температурной зависимости вида спектров были получены в работе [30]. [c.119]

    Соли четырехвалентного урана приготовлялись электролитическим восстановлением на ртутном катоде. Мы определяли и спектрофотометрически, пользуясь максимумами поглощения при X = 650 для л X = 290 т[х для В опытах в вакууме мы определяли количество образовавшихся газов и О2 обычно употребляемым в нашей лаборатории методом определение общего давления газов манометром МакЛеода и измерение давления одного водорода после его диффузии через палладиевый капилляр. В опытах с рентгеновскими лучами специальная аппаратура из стекла и кварца давала возможность выполнять спектро- фотометрические измерения для разных доз, поглощенных одним и тем же раствором без переливания из одного сосуда в другой и доступа воздл ха. [c.122]

    Техника эксперимента получения спектров ДОВ и КД аналогична снятию спектров поглощения, но есть существенный ряд особенностей. При выборе кювет, кроме подбора длины ее оптического пути, объема и материала, прозрачного в области измерения, необходимо выбрать кювету, не вращающую плоскость поляризации. Для изготовления таких кювет применяется обработанный специальным термическим способом кварц. Особенно об этом необходимо помнить при работе со сборными кюветами малейщие механические напряжения на кварцевые стекла сборных кювет могут привести к значительным неконтролируемым вращениям плоскости поляризации. Установление кюветодержателя и кювет должно быть во всех измерениях строго фиксировано и одинаково, так как даже поворот кюветы противоположной стороной к лучу света приводит к некоторым изменениям параметров спектров ДОВ и КД. Обязательно строго следить за чистотой и целостностью оптических стекол кювет. [c.43]

    Для правильного использования литературных данных об инфракрасных спектрах поглощения, в частности приводимых в настоящей главе, существенно важно достаточно полное представление об относительной и абсолютной точности результатов и специфических инструментальных эффектах при измерениях интенсивности поглощения. В связи с этим ниже рассмотрены такие инструментальные эффекты при этом считаются известными основы техники и методы измерений инфракрасных спектров (см. руководства [6, 45, 88, 355], а также [3, 21, 117, 184, 329, 342, 444, 445, 461, 500, 518]). Нет необходимости специально рассматривать ошибки измерения частот. Достаточно отмстить, что в связи с обычной нрахиикой градуировки спектрометров но нормалям абсолютная точность и воспроизводимость измерений близки друг к другу, а данные различных работ согласуются в пределах их предполагаемой точности. Точность серийных приборов составляет обычно 0,5—0,1% точность приборов высокой разрешающей способности соответственно выше вплоть до полученной в последнее время (см. [424, 425, 427а]) абсолютной точности порядка 5 X 10 %. Обсуждение методов градуировки и точности серийных приборов и ссылки на соответствующую литературу имеются в обзоре А. Н. Александрова и В. А. Никитина [21. [c.493]

    Изучение спектров поглощения различных парафинов (от пропана до гептана) в ходе их медленного окисления Эгертон начал еще в 1933 г. совместно с Пидженом [14]. В этой ранней работе было найдено, что хотя сами углеводороды прозрачны во всей кварцевой ультрафиолетовой области, но по ходу медленного их окисления в спектрах наблюдается поглощение. При этом для такого углеводорода, как, нанример, пропан, поглощение отсутствует на протяжении всего периода индукции. Впервые возникает оно сразу после окончания периода индукции в виде сплошного интенсивного поглощения в далеком ультрафиолете. Лишь после этого, т. е. на дальнейшей стадии окисления, в спектре появляются полосы поглощения в области от 3200 до 2800 А. Эти последние вполне совпадают с хорошо известным спектром поглощения формальдегида. Сложнее обстоит вопрос с установлением природы вещества, обусловливающего сплошное поглощение в далеком ультрафиолете. Такое поглощение дают как пе-рекиспые соединения, так и органические кислоты. Поэтому авторы провели специальные опыты по сопоставлению интенсивностей сплошного поглощения, измеренного, во-нервых, при медленном окислении парафинов, и, во-вторых, при исследовании спектра кислот, взятых в концентрациях, в которых они возникают при этом окислении. Оказалось, что сплошное поглощение в далеком ультрафиолете в основном связано с образованием кислот. Только нри окислении бутана было найдено, что оно сильнее, чем то поглощение, которое вызывается получающимися в этом случае кислотами. [c.148]

    Используют спектральный метод, что требует применения специальной аппаратуры — дефектоскопа-спектроскопа, способного осуществлять измерения амплитуд эхосигналов при изменении частоты колебаний в 3...5 раз. Генератор зондирующих импульсов такого прибора немного изменяет частоту (около 10%) от одного цикла возбуждения до другого. Для их излучения и приема применяют широкополосный преобразователь с переменной толщиной пьезопластины. Эхосигналы от дефектов стробируют по времени прихода и подают на спектральный анализатор. Линия развертки ЭЛТ этого прибора соответствует изменению частоты, поэтому на его экране огибающая импульсов различной частоты формирует спектр эхосигналов. [c.199]

    При работе фотометодом информация об интенсивности дифракционного спектра содержится в почернении фотопленки, на которой зарегистрирована соответотвуюп1 ая дифракционная картина. Для проведения измерений почернения рентгенограмм используются специальные приборы — микрофотометры — и разработаны различные методики таких измерений [3]. При ионизационном способе регистрации дифракционного спектра его интенсивность может быть измерена непосредственно но числу квантов, рассеянных в данном направлении в единицу времени. Регистрация в этом случае осуществляется с помощью счетчиков квантов и позволяет избежать фотографической обработки пленки и измерений ее почернения. Все это сокращает время проведения рентгеновских измерений. Развитие и совершенствование электронной техники, в частности, создание новых счетчиков квантов, значительно повышает чувствительность ионизационных способов регистрации дифракционной картины. [c.119]

    Высокотемпературная приставка к отечественным дифрактометрам общего назначения типа ДРОН, позволяющая проводить рентгеновские исследования графита и других аналогичных веществ при высоких температурах до 3000 °С, описана в работе [9]. Приставка обеспечивает возможность проведения высокотемпературных рентгеновских исследований дифрактометрическим методом как в вакууме, так и в атмосфере инертного газа при нормальном и избыточном (до 4 атм) давлениях. Измерение температуры до 1200 °С производится термопарой, выше 1200 °С — оптическим пирометром через специальное окно в корпусе приставки. Регистрация дифракционного спектра осуществляется в пределах углов, обеспечиваемых конструкцией дифрактометра. Нагрев образца до заданной температуры достигается пропусканием тока непос-редственно через него. Следует отметить, что область применения данной высокотемпературной приставки ограничена материалом [c.139]

    Физические методы определения структуры молекул занимают теперь центральное место в арсенале средств, испол ьзуемых хими ками -органи ками. Элементарное знакомство с важнейшими из них осуществляется уже в общем курсе и практикуме по органической химии. Современные учебники по органической химии содержат основные сведений о физических методах структурного анализа, а иногда — примеры и задачи по интерпретации простейших спектров протонного магнитного резонанса, иноракрасных и электронных спектров. Для более глубокого изучения физических методов и систематического развития необходимых практиче-ск 1Х навыков служат специальные циклы лекций, лабораторные и семинарские занятия для студентов старших курсов и аспирантов. Литература на эту тему весьма многочисленна и разнообразна по содержанию и уровню изложения. Однако учебных пособий, которые служили бы для выработки и закрепления элементарных навыков истолкования спектральных данных и результатов измерений важнейших физических параметров молекул, явно недостаточно, особенно сборников примеров и упражнений с иллюстрациями, точно воспроизводящими в достаточно крупном масштабе подлинные спектры, полученные на современной аппаратуре. Такие пособия необходимы для тренировки визуального восприятия и интерпретации спектрограмм, оценки их качества, развития элементов зрительной памяти, очень облегчающих и ускоряющих расшифровку молекулярных спектров. Данная книга [c.3]

    Оптимальные условия при регистрации ИК-спектров отражения-поглощения на стандартных спектрофотометрах достигаются с помощью специальных приставок, которые позволяют выполнять измерения без изменения оптической схемы прибора. Приставки представляют собой систему зеркал, располагаемую на специальном плато и служащую для фокусировки пучка излучения спектрофотометра на входную апертуру системы исследуемых образцов и далее, после ero многократного отражения между образцами, для перефокусировки в соответствии с оптической схемой спектрофотометра. Различают в основном два типа приставок для спектрофотометров, -имеющих пучок излучения, сфокусированный на входном окне корпуса монохроматора, и для спектрофотометров с пучком, сфокусироваипым в центре кюветного отделения. В первом случае схема приставки (рис. 7.9) включает два или три плоских зеркала, направляющих пучок на входную 7.9. Оптическая схема ириставки апертуру образцов, и ис- многократного отражения, следуемые зеркала, рас- 2 - плоские направляющие зеркала . 4 -полагаемые параллельно обпа.ць, - фото етрнчес.нй [c.151]

    После выходной щели лучи проходят через кювету 7 с растворителем или кювету 8, содержащую исследуемый раствор, и падают на фотоэлемент 9. Кюветы имеют кварцевые окошки. Перед фотоэлементом расположена шторка, которая дает возможность перекрывать поток света, падающий на фотоэлемент. Прибор снабжен двумя вакуумными фотоэлементами кислородноцезиевым — для измерений в области спектра от 650—1100 нм и сурьмяноцезиевым — для измерений в области спектра 220—650 нм. Соответствующий фотоэлемент устанавливают специальной рукояткой. При освещении фотоэлемента в нем возникает фототок, величина которого пропорциональна световому потоку, падающему на [c.255]


Смотреть страницы где упоминается термин спектрах специальные измерения: [c.167]    [c.17]    [c.51]    [c.215]    [c.100]    [c.154]    [c.34]    [c.229]    [c.206]    [c.132]    [c.4]    [c.97]    [c.154]    [c.4]   
Инфракрасные спектры адсорбированных молекул (1969) -- [ c.487 , c.489 ]




ПОИСК







© 2025 chem21.info Реклама на сайте