Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Форма молекул многоатомные молекулы

    Для многоатомных молекул следует различать понятие об электрических моментах диполя отдельных связей и молекулы в целом. При наличии нескольких связей в молекуле, их электрические моменты (векторы) складываются по правилу параллелограмма. В зависимости от формы молекулы, определяемой направленностью связей, результирующий электрический момент диполя отличается от электрических моментов диполя отдельных связей и для высокосимметричных молекул может быть равен нулю, несмотря на значительную полярность отдельных связей. Например, линейная молекула СО2 неполярна (ц, = 0), хотя каждая связь С = 0 имеет значительный электрический момент диполя ( 1 = 8,9-10 Кл-м). Это объясняется тем, что равные по величине электрические моменты диполя связей направлены навстречу друг другу  [c.81]


    Для химии большой интерес представляет колебание в многоатомных молекулах и твердых телах. Существенное значение имеет чисто механическая задача о колебаниях атомов, образующих многоатомную молекулу и твердое тело. Сложность обусловлена наличием большого числа частот колебаний, которое определяется числом входящих в состав молекулы атомов. Однако сложное колебание многоатомной молекулы удается представить как результат наложения отдельных элементарных гармонических колебаний. Эти колебания называются нормальными колебаниями. В каждом нормальном колебании все точки системы колеблются с одной и той же частотой. Число же нормальных колебаний точно равно числу колебательных степеней свободы , т. е. числу независимых колебаний. Каждый из атомов в Л/-атомной молекуле может совершать движение в трех направлениях в пространстве. Всего, таким образом, N атомов могут иметь ЗЛ различных независимых движений или ЗЛ степеней свободы. Но Л/-атомы объединены в молекулу. Сама же молекула, как единое образование, характеризуется 3 степенями свободы поступательного движения и 3 степенями свободы вращательного. Поэтому для независимых перемещений атомов в молекуле по отношению друг к другу остается ЗЛ/—6 степеней свободы. Следовательно, Л -атомная нелинейная молекула имеет ЗЛ —6 нормальных колебаний. Если молекула линейна, ее вращение вокруг оси, проходящей через ядра, не связано с изменением степени свободы. Тогда число нормальных колебаний для Л -атом-ной линейной молекулы равно ЭТУ—5. Так, для трехатомной линейной молекулы число нормальных колебаний составит 3-3—5 = 4. А нелинейная трехатомная молекула имеет 3-3—6 = 3 нормальных колебания. Ниже приведены формы нормальных колебаний и соответствующие волновые числа нелинейной молекулы воды. [c.178]

    ИЗУЧЕНИЕ ФОРМ КОЛЕБАНИИ МНОГОАТОМНЫХ МОЛЕКУЛ НА ЭЛЕКТРОННО-СЧЕТНЫХ МАШИНАХ ДИСКРЕТНОГО И НЕПРЕРЫВНОГО ДЕЙСТВИЯ [c.19]

    Эмпирические направления в методе МО будут детально рассмотрены в последующих главах этой книги. Здесь же только приводится пример использования корреляционных диаграмм, которые оказались очень полезными при обсуждении формы простых многоатомных молекул. [c.261]

    Любое малое колебание многоатомной молекулы может быть выражено в виде линейной комбинации характерных для нее г гармонических независимых колебаний, называемых нормальными колебаниями молекулы. При этом частота произвольного колебания молекулы определяется линейной комбинацией частот нормальных колебаний 05ь Ю2,. .., Mr. у несимметричных многоатомных молекул все нормальные колебания имеют разные частоты, тогда как у симметричных многоатомных молекул могут быть нормальные колебания, различающиеся по форме, но не отличимые по частоте. Такие колебания называются вырожденными, а соответствующее им число -нормальных колебаний с совпадающими частотами называется степенью их вырождения. Число d равно единице, когда колебания невырожденные, и равно двум или трем для вырожденных колебаний. У симметричных молекул, имеющих вырожденные колебания, общее число частот нормальных колебаний г меньше числа колебательных степеней свободы г. Однако во всех случаях [c.226]


    В отличие от атомарных уровней в плазме кинетика колебательных уровней молекул разработана значительно полнее. Это напрямую связано с успешной разработкой адекватных аналитических функций распределения. Простая аналитическая форма таких распределений дала возможность установить ряд новых закономерностей в колебательной кинетике, находить скорости диссоциации и рекомбинации атомов в молекулу. Для расчета скоростей реакций здесь, также как и в атомарной кинетике, используется диффузионное приближение /23-26/, в котором осуществляется переход от системы балансных уравнений к уравнению Фоккера-Планка. Аналитические функции распределения нашли широкое применение в теории лазеров /2, 3/. Так, в работе/1/ показано, что вследствие различия между характерным временем обмена колебательными квантами и временем перехода энергии на поступательные степени свободы в системе гармонических осцилляторов устанавливается больцмановская функция распределения с эффективной колебательной температурой. Данное распределение является простейшей квазистационарной функцией распределения колебательных уровней. В /27/ этот подход был обобщен на многоатомные молекулЬ , где для каждого типа колебаний молекулы предполагалось больцмановское распределение с эффективной колебательной температурой. На основе этой модели оказалось возможным объяснить механизм работы СОг лазера /28-31/ и лазеров на ряде других молекул /32/. [c.113]

    ТИП ГИБРИДИЗАЦИИ И ГЕОМЕТРИЧЕСКАЯ ФОРМА ДЛЯ МНОГОАТОМНЫХ МОЛЕКУЛ, РАДИКАЛОВ И ИОНОВ С ОДНИМ ЦЕНТРАЛЬНЫМ АТОМОМ 5р-ЭЛЕМЕНТА [c.138]

    Для многоатомных молекул, атомы которых не располагаются вдоль прямой линии, энергия вращения связана с тремя моментами инерции h, /2 и 1з (в общем случае они не равны между собой). Для подобного рода молекул пространственной формы  [c.184]

    Рассмотрение молекулярных орбиталей и химической связи во втором издании в общем понравилось большинству преподавателей, но показалось им несколько усложненным и трудным для восприятия. Теперь мы разбили этот материал на две части в гл. 12 излагаются основы теории молекулярных орбиталей и ее применения к некоторым двухатомным молекулам, а в гл. 13 рассматриваются многоатомные молекулы и молекулярная спектроскопия. Кроме того, написана новая глава (гл. 11), представляющая собой введение в теорию химической связи в ней используются только представления об электронных парах и отталкивании электронных пар и еще не упоминается о квантовой механике. Рассматриваемая в этой главе теория отталкивания валентных электронных пар (как это ни странно, мало известная в США) дает интуитивно понятный и простой способ качественного объяснения формы молекул. Эти три главы вместе с гл. 14, посвященной химической связи в кристаллах и жидкостях, дают студентам всестороннее представление о принципах химической связи, строения молекул и спектроскопии. [c.10]

    Для простоты мы и в вопросах, относящихся к методу МО, ограничиваемся описанием электронных связей только между двумя рассматриваемыми атомами, т. е. на основе двухцентровых орбит, как это было раньше общепринято в химии и как это принято в методе ВС — валентных схем (локализованных электронных пар). Однако для многоатомных молекул это отнюдь не является единственно возможным. В частных случаях могут рассматриваться орбиты, охватывающие три или большее число атомов. В других же случаях метод МО, по крайней мере в некоторых формах его применения, описывая состояние данного электрона в поле действия всех атомных ядер и электронов, содержащихся в молекуле, использует представления о делокализации электрона, как это принято в аналогичных теориях атома. [c.68]

    Газы с многоатомными молекулами, не обладающими линейной формой, приобретают третью степень свободы вращательного движения это должно привести к увеличению теплоемкостей до [c.106]

    В СЛОЖНЫХ молекулах возрастает доля энергии, приходящаяся на колебание атомов в молекулах, что делает невозможным расчет теплоемкости с помощью кинетической теории газов. Для многоатомных молекул теплоемкость может быть представлена в форме суммы составляющих теплоемкости, связанных с поступательным, вращательным и колебательным движением атомов и молекул, а также и с электронной формой энергии  [c.29]

    При поглощении кванта молекулой обычно возбуждается лишь одно какое-нибудь нормальное колебание, например, с частотой Здесь так же, как и в спектрах двухатомных молекул, наиболее вероятен переход с До = 1, в результате чего в спектре должна появиться частота V = Поскольку газ, поглощающий или рассеивающий излучение, содержит множество молекул, в каждой из которых возбуждается то или иное нормальное колебание, вероятно, что все нормальные колебания будут проявляться в спектре с большей или меньшей интенсивностью. Некоторые колебания вообще не проявятся в спектре в соответствии с правилами отбора. Эти правила для многоатомных молекул связаны с симметрией молекулы и симметрией колебаний. В качестве примера рассмотрим две трехатомные молекулы НаО и СОа. На рис. 80 представлены формы нормальных колебаний этих молекул. Стрелки показывают направление скорости при колебаниях атомов и величину соответствующей амплитуды (в приближенном масштабе). Молекула НгО имеет три нормальных колебания (3 3 — 6 = 3). При колебании с частотой VI преимущественно изменяется длина связей О —Н, поэтому его называют валентным колебанием. Колебание с частотой — деформационное, так [c.171]


    Лекция 2. Причины поглощения света молекулами. Физические основы возникновения окраски. Вращательное движение молекул. Вращательные спектры. Колебательное движение молекул. Колебательные спектры. Формы колебательных движений многоатомных молекул. Вращательно-колебательные спектры. Лекция 3. Основной закон фотометрии. Причины отклонения от основного закона фотометрии. Основные узлы спектрофотометрических приборов источники света, светофильтры [c.205]

    Уже говорилось о связи колебательной структуры полос фотоэлектронных спектров со строением молекул и распределением электронной плотности (см. гл. VI 2.3). По форме и колебательной структуре полос можно делать выводы о характере орбитали, с которой удаляется электрон, не только для двухатомных, но и для некоторых многоатомных молекул. Когда электрон удаляется со связывающей орбитали, то из-за ослабления связи частота соответствующего валентного колебания в ионе будет ниже, чем в исход- [c.153]

    Перекрывание атомных орбиталей при формировании двухатомных молекул АВ (А и В - атомы одного или разных элементов) обязательно приводит к линейной геометрической форме молекул (Н—Н, Р—р, Н—С1). Геометрическая форма многоатомных молекул АВ (А и В-атомы разных элементов) неочевидна и не вытекает из факта перекрывания конкретных орбиталей. [c.44]

    Образование химических связей в многоатомных молекулах сопровождается не только сдвигом электронной плотности и изменением формы орбиталей, но и изменением распо- [c.44]

    К Конформация — различные бесконечно многообразные пространственные формы одной и той же многоатомной молекулы, способные самопроизвольно превращаться друг в друга с высокими скоростями в результате свободного вращения атомных группировок вокруг а-связей (С—С, С—Н, С—N и т. п.). [c.178]

    Сложные многоатомные молекулы в результате такого включения изоляторов между системами я-электронов разделяются на отдельные группы внутренне связанных атомов. Молекула оказывается состоящей как бы из ряда узлов , имеющих индивидуальные особенности. Взаимодействие между узлами выражено слабо. Иногда оно усиливается при изменении формы молекулы, когда удаленные друг от друга узлы сближаются. Примером может служить молекула аденозинтрифосфорной кислоты. Эта молекула состоит из аденина, содержащего сопряженную систему я-связей, рибозы и трех остатков фосфорной кислоты. [c.127]

    Межатомное расстояние является одной из наиболее важных молекулярных констант наряду с энергией связи Е и силовой константой k. Между этими тремя характеристиками химической связи существует тесная взаимозависимость, которая обусловлена тем, что равновесная конфигурация ядер в молекуле возникает в результате баланса сил притяжения и отталкивания. Поскольку не удается получить в общей форме решение уравнения Шредингера для многоатомных молекул, то усилия исследователей концентрируются на поиске различных эмпирических соотношений между Е, г и k. Приведем несколько наиболее простых примеров  [c.141]

    Если молекулы не являются сферическими, потенциал отталкивания зависит не только от расстояния, но и от взаимной ориентации молекул. Симметрия отталкивательных сил должна соответствовать симметрии ядерных остовов. В модельных потенциалах асимметрия отталкивательных сил часто передается тем, что молекулам приписывают форму твердых стержней, эллипсоидов и др. Взаимодействие между двух- и многоатомными молекулами может быть описано и с помощью так называемых атом—атом потенциалов, о которых несколько подробнее см. в 4 настоящей главы. [c.274]

    ЮО ФИГУРАЦИЯ РАВНОВЕСНАЯ, расположение атомных ядер молекулы (нли радикала, иона) в пространстве, соответствующее минимуму ее потенц. энергии. К. р. двухатомной молекулы характеризуется расстоянием между атомными ядрами. Для описания К. р. многоатомных молекул необходимо использовать такие параметры, как длины связей, валентные углы, а также двугранные углы (см. Номенклатура стереохимическая). К. р. молекулы зависит от ее электронного состояния. Так, в осн. состоянии молекула ацетилена имеет линейную конфигурацию, в возбужденном — трансоидную. Параметры молекулы (или ее геометрию) определяют методами рентгеновского структурного анализа, газовой электронографии, микроволновой спектроскопии, нейтронографии и др., а в случае простых молекул также рассчитывают квантовомех. методами. КОНФОРМАЦИИ молекул, различные пространств, формы молекулы, возникающие при изменении относит, ориентации отд. ее частей в результате внутр. вращения атомов или групп атомов вокруг простых связей, изгиба связей и др. При этом стереохим. конфигурация молекулы остается неизменной. Каждой К. соответствует определ. энергия. Так, для молекулы этана можно представить существование двух максимально различающихся по энергии К.— заслоненной (ф-ла 1а), для к-рой диэдральный угол Ф (см. Номенклатура стереохимическая) имеет значения О, 2, 4, и заторможенной, или шахматной (16), с ф = 1, 3, 5. Первой из них соответствует максимум энергии, второй — минимум. Поэтому молекулы этана существуют практически только в заторможенной К. [c.274]

    Формы типичных многоатомных молекул. В этом разделе будут отмечены главные особенности некоторых многоатомных. молекул, чтобы прои,.1люстрировать, каким образо.м гибридизация и энергетические факторы определяют их фор [у. [c.534]

    В рассматриваемых молекулах ковалентные связи С—Н, N—Н, Н—О, Н—Р полярны (различная электроотрицательность элементов). Суммарная полярность многоатомной молекулы определяется не только полярностью отдельных химических связей, но и геометрической формой молекулы, т. е. является векторной величиной. Молекула СгН имеет симметричную плоскую структуру, поэтому в целом молекула СгН неполярна. Геометрическая форма молекул МгН и Н2О2 несимметрична и они полярны. Степерь полярности Н2Р2 зависит от пространственного расположения частиц НР в димере. [c.90]

    Возможные формы адсорбции многоатомных молекул еще бодее разнообразны и в настоящее время изучены недостаточно. В этом случае может осуществляться как одноточечная, так и многоточечная адсорбция — ассоциативная или о частичной и даже полной диссоциацией связей в молекуле. При адсорбции этилена, например на поверхности переходных металлов, идентифицированы С2Н4, С2Н2, Сг, СН2, СН, [c.542]

    В этой главе будет рассмотрена форма простейших многоатомных молекул. Сначала будут изложены основные, полученные к настоящему времени экспериментальные результаты, затем—эмпирические обобщения, которые могут быть сделаны на основании этих результатов, и, наконец, попытки теоретического объясне-"ния этих обобщений. Желательно, однако, начать с краткого перечня основных методов, посредством которых может быть определена форма молекулы. [c.9]

    Возможные формы адсорбции многоатомных молекул еще более разнообразны и в настоящее время изучены недостаточно. В этом случае может осуществляться как одноточечная, так и многоточечная адсорбция — ассоциативная или с частичной и даже полной диссоциацией связей в молекуле. При адсорбции этилена, например на поверхности переходных металлов, идентифицированы частицы С2Н4, С2Н2, С2, СНг, СН, С. Для относительно сложной молекулы бензола перечень возможных форм адсорбции только на никеле и платине значительно обширнее [114]. [c.20]

    Следует отметить, что при настоящем состоянии наших знаний молекулярные спектры в видимой и ультрафиолетовой области, связанные с наличием электронных переходов, исследованы сравнительно мало. Имеющийся материал относится главным образом к двухатомным молекулам, для которых эта область спектроскопии представляет вполне определенную ценность. Что же касается многоатомных молекул, в частности органических, то главные сведения об их структуре мы получаем из колебательных спектров, спектров комбинационного рассеяния и инфракрасного поглощения. Здесь молекулярная спектроскопия дает в наши руки многочисленные возможности делать заключения об особенностях молекулярной структуры. Число собственных колебаний молекулы, т. е. число ее внутренних (колебательных) степеней свободы, связано с числом N атомов в молекуле и определяется выражением ЗУУ — 6 (для линейных молекул Ш—5). Но вследствие симметрии молекулы частоты некоторых колебаний могут совпадать между собой, так что число определяемых на опыте различных собственных колебаний данной молекулы определяет характер ее симметрии. В этих изысканиях типа симметрии молекулы важную роль, наряду с числом различных колебаний, играют данные об пнтенсивности и особенно о поляризации линий комбинационного рассеяния. Частоты собственных колебаний служат для определения силовых постоянных, характеризующих молекулу установление тех или иных характеристических частот может иногда служить для решения вопроса о существовании в составе молекулы определенных молекулярных группировок. Немаловажные данные о некоторых структурных особенностях молекулы могут дать наблюдения аномально больших интенсивностей некоторых линий молекулярного спектра. Наконец данные о форме и ширине линий могут оказаться параметрами, связанными с определенными структурными элементами молекулы и поэтому пригодными для использования в качестве характеристических параметров, в совокупности с интенсивностью, поляризацией и частотой [c.3]

    В г.т. 12 мы обсуждали электронное строение НС1 п отмечали, что гетероядерные двухатомные молекулы полярны, тогда как гомоядерные дву.чатомные молекулы неполярны. Неполярная молекула имеет нулевой (или близкий к нулю) дипольный момент. Среди многоатомных молекул имеется немало таки.х, в которых отдельные связи полярны, хотя молекула в целом неполярная. В качестве примера приведем ССЦ. Строение молекулы lj. показано на рис. 13-28, а. Поскольку хлор-более электроотрицательный элемент, чем углерод, связывающие электронные пары смещаются в направлении к атомам хлора. В результате каждая связь С—С приобретает небольшой дипольный %юмент. Попарное векторное сложение диполей связей дает два равных по величине и обратных по направлению диполя фрагментов СС1,, как показано на рис, 13-28, б. Симметричная тетраэдрическая форма молекул ССЦ обусловливает ее нулевой дипольный момент таким образом, I4-неполярная молекула. [c.579]

    Вокруг липни простых ковалентных связей в многоатомных молекулах может происходить вращение одной части молекулы относительно другой (рнс. 15), вызываемое тепловым движением молекул. Это вращение большей частью не бывает свободным, а испытывает те или другие стеснения вследствие взаимодействия частей молекулы, несущих заряды, нли по другим причинам, частью еще невыясненным. Принято говорить, что в этих случаях происходит торможение вращения и что суи ествует некоторый энергетический барьер, тормозящий его. Так, для 1,2-дихлорэтана вели- чина энергетического барьера составляет около 5 ккал. Можно представить себе два характерных промежуточных состояния молекулы дихлорэтана при вращении одной части ее относительно другой первое положение (рис. 16, а), когда атомы хлора находятся в наиболее близком друг к другу положении (цис-форма), и второе, про-гивоположное положение (рис. 16,6), когда спи наиболее удалены друг от друга (транс-форма). [c.74]

    Яо1г). При этом вероятность поглощения и связанная с ней интенсивность поглощения пропорциональны величине 01р. В многоатомных молекулах разрешены переходы между электронными уровнями, соответствующими электронным состояниям с различной симметрией распределения заряда, и переходы без изменения суммарного спина системы (синглет-синглетные переходы). Им в спектре чаще всего соответствуют полосы интенсивного поглощения. В отличие от них электронные переходы с изменением спина (например, синглет-триплетные) запрещены. В фотометрическом анализе за поглощение аналитических форм ответственны именно переходы без изменения спина. Теоретическое рассмотрение спектров поглощения сложно и не всегда осуществимо, поэтому при химико-аналитическом использования электронных спектров, как правило, исходят из эмпирически полученного материала. [c.54]

    Все перечисленные выше и ряд других сведений о строении молекул получаются из спектральных данных при помощи разработанной за последние десятилетия теории колебательных и вращательных спектров. Теория относится в равной мере к инфракрасным спектрам и спектрам комбинационного рассеяния и, конечно, не может быть изложена в настоящей главо. Она подробно изложена в монографиях, к которым и отсылаем читателя. Теория вращательных и колебательно-вращательных спектров многоатомных молекул систематически изложена в прекрасной монографии Герцберга [7]. Ряд вопросов теории, особенно методы расчета колебательных частот молекул и упругих электрооптических постоянных межатомных связей, в ьаиболсе полной и совершенной форме развиты в монографии Волькенштейпа, Ельяшевича и Степанова [5] см. также [4, 12, 549а, 559] и обширную библиографию в [7]. [c.483]

    При электронном возбуждении могут изменяться межъядерные расстояния и даже форма равновесной конфигурации. Обычно в возбужденном состоянии химическая связь в модекуле менее прочная — межъядерные расстояния возрастают, энергия диссоциации уменьшается. В дальнейшем, где особо не оговаривается, речь будет идти о равновесной конфигурации многоатомных молекул в основном электронном состоянии. Для равновесной конфигурации характерна в классическом (не квантовом) описании жесткая фиксация всех межъядерных расстоя- [c.171]

    Все расчеты многоатомных молекул основаны на приближенных решениях уравнення Шрёдингера (4.3). Практика предъявляет два главных требования к уровню приближения и выбору расчетной схемы. Это, во-первых, достаточное соответствие результатов расчета результатам эксперимента и, во-вторых, достаточная экономичность расчетов, т. е. разумные затраты времени при выполнении их на быстродействующих ЭВМ. Из двух основных теорий химической связи — метода валентных связей и метода молекулярных орбиталей — последний имеет значительные преимущества при реализации на ЭВМ. Поэтому все основные расчетные методы современной квантовой химии используют приближение МО в форме схемы ЛКАО МО Хартрн—Фока—Рутаана (см. разд. 4.3.3). В рамках этой схемы возможны как дополнительные усовершенствования расчетной модели (учет эффектов электронной кор- [c.203]


Смотреть страницы где упоминается термин Форма молекул многоатомные молекулы: [c.252]    [c.80]    [c.90]    [c.582]    [c.65]    [c.657]    [c.86]    [c.204]    [c.272]   
Успехи стереохимии (1961) -- [ c.28 , c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулы многоатомные

Форма молекул



© 2024 chem21.info Реклама на сайте