Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хром, определение в железе

    Примером использования избирательной адсорбции может служить концентрирование микроколичеств катионов металлов, содержащихся в воде (водопроводная вода, вода природных водоемов и т. д.), на активированном угле с последующим определением их содержания. Для этого к достаточно большому объему анализируемой воды (-1 л) прибавляют аммиачный буфер до pH 8—9 и 8-оксихинолин (раствор в ацетоне), который образует относительно прочные оксихинолинатные комплексы с катионами металлов, присутствующих в микроколичествах в анализируемой воде (ионы меди, цинка, кадмия, ртути, алюминия, свинца, хрома, марганца, железа, кобальта, никеля и др.). Затем воду пропускают через активированный уголь, находящийся на фильтре. При фильтровании оксихинолинатные комплексы металлов практически количественно адсорбируются на активированном угле (коэффициент концентрирования равен -Ю ), из которого они могут быть десорбированы обработкой небольшим объемом раствора азотной кислоты НМОз (около 10 мл). В полученном азотнокислом концентрате можно определить содержание указанных металлов различными методами (например, оптическими). [c.236]


    К числу тяжелых металлов относят хром, марганец, железо, кобальт, никель, медь, цинк, галлий, германий, молибден, кадмий, олово, сурьму, теллур, вольфрам, ртуть, таллий, свинец, висмут. Употребляемый иногда термин токсические элементы неудачен, так как любые элементы и их соединения могут стать токсичными для живых организмов при определенной концентрации и условиях окружающей среды. [c.93]

    Используют и раствор арсенита натрия для определения хромата в присутствии ванадатов, так как последние не восстанавливаются. Сильный восстановитель— раствор соли титана(III)—можно применять для определения железа и меди в смеси сначала железо (III) превращается в двухвалентное, а затем восстанавливается медь(II) до одновалентной. Существуют и методы титрования другими сильными восстановителями, например растворами солей хрома (II) или олова, хотя работа с такими растворами сопряжена с необходимостью защиты их от действия кислорода воздуха. Раствор хлорида олова (И) восстанавливает молибден (VI) до молибдена (V) и ва-надий(У) до ванадия(1П) так можно определить оба элемента при их совместном присутствии. [c.459]

    Соответствие коррозионно-электрохимических свойств индивидуальных железа и хрома, с одной стороны, и их сплавов, с другой, проявляется и во влиянии окислительных добавок на кинетику растворения этих металлов. Действительно, в противоположность растворению активного никеля [58], растворение хрома и железа в серной кислоте (при постоянном потенциале) может в определенных условиях тормозиться под действием кислородсодержащих окислителей (перекиси водорода, хромата, нитрата I 48, 59-60]. Аналогичное явление для железа может иметь место и в нейтральных растворах, что было показано, например, для органических хроматов [62] и бихромата калия [63]. [c.13]

    В нефти В очень малых количествах присутствуют и другие элементы, главным образом металлы ванадий, хром, никель, железо, кобальт, магний, титан, натрий, кальций, германий, а также фосфор и кремний. При определении элементарного состава нефти эти элементы концентрируются в остатке, называемом золой. [c.18]

    Указанную реакцию часто применяют при аналитическом определении железа титрованием стандартным раствором бихромата. Для измерения потенциала полуреакции окисления железа или полуреакции восстановления хрома используют напряжение электрохимического элемента, состоящего из каломельного электрода и какого-нибудь инертного электрода (например, Р1). До того как будет достигнута точка нейтрализации раствора, окисление Ре происходит при более низком потенциале, и при таких условиях измеряемый потенциал зависит от относительных концентраций ионов Ре и Ре +.  [c.370]


    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]

    В чем особенность фотометрического определения железа в присутствии никеля, хрома и марганца и двух красителей без предварительного их разделения  [c.129]

    Плутоний извлекается практически полностью. Ошибка определения лежит в пределах точности а-радиометрических измерений ( 2 отн. %). Метод позволяет отделить индикаторные количества плутония от больших количеств хрома, свинца, железа и других элементов, а также от продуктов деления. [c.312]

    Для определения железа, меди, олова и хрома при содержании их 0,5—45% применяют разработанные для анализа резины иодо-метрические методы определения из отдельных навесок [213, 235, 236]. Соединения вышеперечисленных элементов могут-быть в резинах, изготовленных на основе каучуков общего назначения, и в резинах, изготовленных на основе каучуков специального назначения. Малые количества металлов лучше определять колориметрическим методом после сплавления с содой [234 [c.99]

    Как показали контрольные опыты, анализу не мешает до 20% олова или марганца, 10% алюминия, 5% меди, 1 % ниобия или вольфрама. Допускается содержание в пробе до 10% молибдена, но после растворения пробы раствор окисляют азотной кислотой, а затем упаривают с добавкой серной кислоты. В присутствии более 1 % хрома, 2,5% никеля и 5% ванадия результаты определения железа оказываются завышенными, если не применять компенсирующего раствора. [c.51]

    Спектральным методом в принципе не отличающимся от метода, предназначенного для определения примесей в цирконии, описанного на стр. 172, определяют алюминий, хром, гафний, железо, магний, марганец, молибден, никель, кремний, тантал, титан, вольфрам, ванадий и цирконий. Чувствительность при определении многих примесей достаточно высокая, что позволяет расширить область применения метода, если есть возможность приготовить шкалу эталонов. [c.205]

    Смите также растворял перхлораты в абсолютном спирте, добавлял холодный насыщенный раствор уксуснокислого калия, отфильтровывал выделившийся КСЮ , промывал его абсолютным спиртом и взвешивал. По его данным, этот метод пригоден для определения перхлоратов лития, натрия, никеля, кобальта, цинка, свинца, алюмнния, хрома и железа. Для определения пер- [c.109]

    Хром металлический. Методы определения железа [c.565]

    Бронзы безоловянные. Метод спектрального анализа по окисным стандартным образцам с фотографической регистрацией спектра Бронзы безоловянные. Метод рентгеноспектрального флуоресцентного определения алюминия Бронзы жаропрочные. Метод определения меди Бронзы жаропрочные. Методы определения кремния Бронзы жаропрочные. Методы определения хрома Бронзы жаропрочные. Метод определения фосфора Бронзы жаропрочные. Методы определения железа Бронзы жаропрочные. Метод определения никеля Бронзы жаропрочные. Метод определения свинца Бронзы жаропрочные. Методы определения циркония Бронзы жаропрочные. Метод определения кобальта Бронзы жаропрочные. Методы определения титана Бронзы жаропрочные. Определение хрома, никеля, кобальта, железа, цинка, магния и титана методом атомно-абсорбционной спектрометрии [c.576]

    Вместо титрования избытка пятивалентного ванадия при определении железа (II) описанным методом можно титровать непосредственно ванадий (IV), образовавшийся при окислении железа (II). Однако обычное титрование перманганатом в присутствии зеленовато-фиолетовой окраски ионов хрома (ПГ) затруднительно. Амперометрический же вариант этого титрования дает достаточно точные результаты. Титрование ведут при +0,60 в (МИЭ) по току восстановления избытка перманганата. Преимуществом прямого титрования ванадия (IV) является то, что в та- [c.202]


    При определении железа этим способом двухвалентные ионы окисляются током в трехвалентные. Кулонометрическое определение мышьяка основано на реакции окисления ионов АзО до ионов АзО . Разработаны также методы определения урана, ванадия, церия, хрома, сурьмы, селена и др., основанные на электрохимическом окислении-восстановлении ионов этих элементов в растворе. Метод применим и для определения органических вещ,еств, например аскорбиновой и пикриновой кислот, новокаина, оксихинолина и др. [c.271]

    При определении железа этим способом двухвалентные ионы окисляются током до трехвалентных. Кулонометрическое определение мышьяка основано нз реакции окисления нонов АзО до ионов ЛзОГ Разработаны также методы определения урана, ванадия, церия, хрома, сурьмы, селена и других элементов, основанные на электрохимическом окислении — восстановлении ионов этих элементов в растворе. Метод применим и для определения органических веществ, например аскорбиновой и пикриновой кислот, новокаина, оксихинолина и др. Так, определение пикриновой кислоты основано на ее восстановлении Н 1 ртутном катоде в соответствии с уравнением  [c.513]

    Соли серной кислоты — сульфаты — находят разнообразное применение. Особенно интересны двойные сульфаты — квасцы (например, K[A1(S04)2]). Кристаллы квасцов построены так, что один из металлов (трехвалентные хром, алюминий, железо) образует вместе с кислотным отстатком комплексный анион [Me(S04)2] , занимающий определенное место в кристаллической решетке. При растворении в воде квасцы диссоциируют на одно- и трехвалентные катионы и суль-фат-анионы, т. е. ведут себя как растворы смеси сульфатов  [c.117]

    В кислой среде бихромат калия количественно окисляет двухвалентное железо до трехвалентного. Эта реакция может быть использована как для амперометричеокого определения железа (II), так и для определения хрома (VI). Оба компонента реакции вступают в электродные реакции двухвалентное железо окисляется, а бихромат восстанавливается на платиновом электроде. Однако проводить титрование по току бихромата нельзя, так как на электроде восстанавливается также продукт реакции — трехвалентпое железо. [c.178]

    Из таблицы видно, что аналитические группы ионов занимают определенные участки в периодической системе элементов. Наибольшее совпадение между группами периодической системы и аналитическими группами отмечается у I и II аналитических групп первая аналитическая группа (без Mg +) соответствует группе IA щелочных металлов, а вторая — подгруппе щелочно-земельных металлов, входящих в группу ИА. Наиболее многочисленная III аналитическая группа включает в себя катионы элементов групп IIIА и IIIB, а также лантаноидов, актиноидов и ряда других переходных металлов, например хрома, марганца, железа, кобальта, никеля, цинка. При этом часть ионов III аналитической группы — Zn +, [c.230]

    Наиболее пригодными для определения плутония являются растворы с pH 5, Потенциал полуволны в этих растворах не зависит от концентрации тартрата от 0,1 до 1,2 М и равен —0,182 в относительно нас.к.э. Диффузионный ток пропорционален концентрации плутония с коэффициентом диффузии в уравнении Ильковича (18), равным 0,17 см /сек. Для определения плутония были использованы концентрации выше 50 мг/л. Мешаю1 большой избыток урана, а также хром и железо. При pH 5 уран образует самостоятельную волну, а при pH 1,25 может быть получена волна урана без волны плутония. [c.250]

    Как показали контрольные опыты, присутствие до 0,4% хрома, меди, железа, свинца, марганца, молибдена, никеля, кремния, олова, титана и вольфрама не мешает определению урана. У леньшение навески пробы дает возможность определять более высокие концентрации урана. [c.161]

    ОПРЕДЕЛЕНИЕ ГРУПП -N 2, -N0, -МНМН-,>-М М ВОССТАНОВЛЕНИЕМ СОЛЯМИ ТИТАНА, ХРОМА И ЖЕЛЕЗА [c.497]

    Самую большую группу соединений с известными структурами образуют соединения типа МО (ОН), где М — алюминий, скандий, иттрий, ванадий, хром, марганец, железо, кобальт, галлий и индий. Ряд соединений МО (ОН), так же как гидроксиды трехвалентных металлов и оксиды М2О3 алюминия и железа, имеют а- и у-модификации. Так называемый p-FeO(OH), строго говоря, не является гидроксид-оксидом он имеет структуру а-МпОг и устойчив только в присутствии определенных ионов, таких, как С1 , внедренных в пустоты каркаса [3J. Темно-коричневый б-FeO (ОН), обладающий ярко выраженными магнитными свойствами, получают быстрым окислением Ре (ОН) 2 в растворе NaOH он имеет очень простую структуру, в основе которой лежит гексагональная плотнейшая упаковка О (ОН), а ионы РеЗ+ заселяют определенные пустоты. Результаты исследования магнитных свойств лучше согласуются со статистическим распределением ионов металла по всем октаэдрическим позициям, чем с частичной заселенностью некоторых тетраэдрических позиций, как предполагали ранее [4]. Структура Е-РеО(ОН) рассматривается ниже. [c.366]

    Титан губчатый. Метод определения азота Титан губчатый. Метод определения железа Титан губчатый. Методы определения углерода Титан губчатый. Методы определения хлора Титан губчатый. Методы определения кислорода Титан губчатый. Метод определения алюминия Титан губчатый. Метод определения кремния Титан губчатый. Метод определения ниобия и тантала Титан губчатый. Метод определения меди Титан губчатый. Метод определения циркония Титан губчатый. Метод определения олова Титан губчатый. Метод определения магния Титан губчатый. Метод определения молибдена Титан губчатый. Метод определения вольфрама Титан губчатый. Метод определеш1я палладия Титан губчатый. Метод определения марганца Титан губчатый. Метод определения хрома Титан губчатый. Метод определения ванадия Титан губчатый. Методы определения водорода Титан губчатый. Методы определения никеля [c.569]

    Титан губчатый. Технические условия Титан и сплавы титановые деформируемые. Марки Сплавы титановые. Методы определения алюминия Сплавы титановые. Методы определения ванадия Сплавы титановые. Метод определения хрома и ванадия Сплавы титановые. Методы определения вольфрама Сплавы титановые. Методы определения железа Сплавы титановые. Методы определения кремния Сплавы титановые. Методы определения марганца Сплавы титановые. Методы определения молибдена Сплавы титановые. Методы определения ниобия Сплавы титановые. Методы определения олова Сплавы титановые. Метод определения палладия Сплавы титановые. Методы определения хрома Сплавы титановые. Методы определения циркония Сплавы титановые. Методы определения меди Сплав титан-никель. Метод определения титана Сплав титан-никель. Метод определения никеля Титан губчатый. Методы отбора и поготовки проб Титан губчатый. Метод определения фракционного состава Сплавы титановые. Методы спектрального анализа Титан и сплавы титановые. Метод определения водорода Титан и титановые сплавы. Методы определения кислорода Титан губчатый. Метод определения твердости по Бринеллю Свинец, цинк, олово и их сплавы Олово. Технические условия [c.579]

    Определение тантала в сталях [186а]. В качестве второго компонента смешанолигандного соединения рекомендован цитрат, поскольку в его присутствии чувствительность реакции выше, чем в присутствии оксалата, пероксида или фторида. В присутствии маскирующего вещества (ЭДТА) определению не мешают (в мг) Ре, N1, Сг—1 У, Мо —0,5 ЫЬ, Т1 — 0,2 2г — 0,05 Си — 0,02. Мешает уран. Метод применен для определения 9,3—10,3% тан- тала в сталях. В присутствии больших количеств никеля, хрома или железа тантал определяют с использованием стандартного образца. [c.131]

    В других методах Ее восстанавливают гипофосфитом [64], гидроксиламином [65] или хлоридом хрома (И). Избыток Gr la окисляют кислородом воздуха и титруют Ее 0,002 н. раствором NH4VO3 в присутствии N-фенилантраниловой кислоты. Этот метод применяют [66] для определения железа в технических серной кислоте, едком натре, хлориде аммония. [c.143]

    Возможно последовательное хромометрическое определение железа (III), вольфрама (VI) и молибдена (VI) [41] железа (III) и хрома (VI) [38, 63, 74] железа (III), ванадия (V) и хрома (VI) [c.178]

    Титрование солью Мора при потенциале +1,0 s было предложено И. П. Алимариным и Т. К. Кузнецовым и вслед за ними Г. А. Бутенко и Г. Е. Беклешовой для определения ванадия, хрома и марганца в легированных сталях. Одновременно аналогичный метод предложен за рубежом для определения ванадия и хрома также в сталях и нефтяных продуктах. Метод апробирован лабораторией Днепропетровского металлургического завода Затем вышла работа И. П. Алимарина и Б. И. Фрид по приложению этого же метода к микроопределению ванадия и хрома (а также железа) в минералах, рудах и горных породах. На этом же принципе основан предложенный Е. Г. Кондрахиной и др. амперометрический вариант определения железа (II) по А. В. Шейну [c.180]

    Аналогичный метод (но не в микроварианте) применяется также для определения небольших количеств общего железа в хромитах и хромомагнезитовых материалахТак как метод рекомендован для определения железа и хрома из одной навески, то описание его приводится в разделе Хром . [c.201]

    Второй метод — титрование индия комплексоном HI оказался весьма удобным благодаря высокой устойчивости комплексоната индия в кислой среде. Таким образом, индий можно титровать почти без предварительного отделения от других элементов. Трейндл применял для этого титрования ртутный капельный электрод и среду с pH 2, охлаждая раствор до 4° С, однако дальнейшие исследования показали, что титровать можно при обычной комнатной температуре. В. М. Владимирова установила, что титрование на ртутном капельном электроде по току восстановления индия лучше всего проводить при —0,7 в (Нас. КЭ) и при pH 1. В этих условиях метод обладает наилучшей избирательностью и индий можно титровать в присутствии очень многих элементов — магния, кальция, стронция, бария, цинка, кадмия, кобальта, марганца, хрома, алюминия. Железо (HI), также образующее весьма прочный комплексонат, надо восстанавливать до железа (II) аскорбиновой кислотой. Медь, свинец, мышьяк восстанавливаются на ртутном электроде при потенциале титрования индия и поэтому могут мешать, если будут присутствовать в относительно больших количествах. Однако при обычном разложении проб и подготовке раствора к анализу мышьяк и свинец удаляются при обработке соляной и серной кислотами, а медь переходит в комплексный аммиакат При осаждении полуторных окислов (вместе с которыми осаждается и индий). Этот метод был затем применен для определения индия в продуктах металлургического производства и в сфалери-товых концентратах с малым содержанием индия. В последнем случае индий приходится отделять экстракцией, при анализе же более богатых индием материалов отделять его обычно не требуется. [c.214]

    Для определения хрома, элемента с переменной валентностью, используются реакции окисления — восстановления. Большая часть методов основана на титровании хрома (VI) железом (If)—солвю Моракоторое выполняется с платиновым электродом по току окисления железа (II). [c.339]

    Описанное определение хрома и общего железа можно провести также в пробах, в которых определяется железо (И). В этом случае от раствора, переведенного в мерную колбу после разложения пробы смесью серной и фосфорной кислот, отбирают отдельные аликвотные чггсти для определения железа (II), хрома и железа (III). Для определения хрома отбирают 50 мл и окисляют его персульфатом аммония с добавкой 1%-ного раствора нитрата серебра (особенно если присутствует марганец). После разрушения избытка окислителя кипячением раствор переносят в мерную колбу емкостью 200—250 мл, доводят до метки водой. Если присутствует марганец, то предварительно кипятят раствор с небольшим количеством соляной кислоты или хлорида натрия. Титруют аликвотную часть (20 мл) 0,1 н. раствором соли Мора. Титр раствора соли Мора устанавливают по стандартному раствору бихромата, добавив в него несколько капель смеси серкой и фосфорной кислот, применяемой для разложения пробы (см. Железо ). Общее железо определяют в 25 м.л первоначального раствора, восстанавливая и титруя его, как описано выше, раствором бихромата калия. ] 1ожно применять другие окислители — перман- [c.340]

    Имеются и другие органические реагенты, содержащие оксим-ную группу, которые применяются в экстракционно-фотометрическом анализе. Так, разработан экстракционно-фотометричес-кий метод определения никеля с помощью 4-изопропил-1,2-ци1 -логександиоксима. Метод применен для определения следовых количеств никеля в воде, соляной кислоте, сплаве натрия с литием, мета.члическом литии и других материалах [211]. Аналогичный способ, основанный на извлечении никеля в виде его соединения с 4-метилциклогексан-1,2-диондиоксимом, использован для определения никеля в присутствии ванадия, тория, меди, хрома и железа [212]. Комплекс никеля с а-фурилдиоксимом применен для экстракционно-фотометрического оиределения пн- [c.244]

    Мешаюш ие определению железо, хром и другие элементы предварительно отделяют окисью цинка. Полученный осадок нитрозонафтол-кобальтиата сжигают и переводят в сульфат кобальта, который прокаливают и взвешивают. По массе Со504 находят содержание кобальта. Метод применим для определения кобальта в легированных сталях, содержащих 0,5—35% кобальта. [c.315]


Смотреть страницы где упоминается термин Хром, определение в железе: [c.152]    [c.331]    [c.122]    [c.366]    [c.339]    [c.66]    [c.55]    [c.351]    [c.339]    [c.140]   
Химико-технические методы исследования (0) -- [ c.139 ]




ПОИСК





Смотрите так же термины и статьи:

Активационное определение хрома железе

Вайнштейн, Г. В. Михайлова, М. В. Ахманова, Ю. И. Куценко. Метод спектрального определения железа, кальция, магния, хрома, никеля, кремния и бора в цирконии

Железо металлическое, определение хрома

Комплексометрическое определение железом и хромом

Окисление иодид-иона перекисью водорода (определение титана, циркония, гафния, тория, ниобия, тантала, молибдена, вольфрама, железа, хрома и фосфора)

Окисление некоторых органических красителей перекисью водорода (определение железа, меди и хрома)

Определение алюминия, железа, меди, кадмия, цинка, кобальта, никеля, титана, хрома, марганца в сточных водах из одной пробы методом полярографии и фотоэлектроколориметрии . Определение натрия в природных водах методом полярографии

Определение железа, алюминия, кальция, магния, меди, марганца, J кобальта, кадмия, хрома, свинца, никеля, молибдена, ванадия в я активных углях и цинк-ацетатных катализаторах на их основе

Определение железа, меди, кобальта, никеля, кадмия, хрома и ва- Ж надия в почвах

Определение закиси железа (FeO) хрома (Сг

Определение закиси железа (ГеО) и хрома (СггОз) из одной навески

Определение кобальта в присутствии больших количеств железа, хрома и малых количеств меди, марганца и никеля

Определение никеля, кобальта, хрома (Сгв и Сг3), железа, марганца, титана, молибдена, меди и вольфрама

Определение примесей железа и хрома в сернокислом марганце Певцов, Т. Г. Манова

Определение хрома, никеля, кобальта, железа, марганца, алюминия, молибдена, меди, титана и вольфрама

Полярографическое определение хромовой ванне хрома как основного элемента и меди, железа и свинца как примесей

Прямое определение железа, кадмия, кальция, кобальта, магния, марганца, меди, никеля, свинца, серебра, хрома и цинка

Раздельное определение марганца, хрома и железа в воздухе методом полярографии

Спектральное и химико-спектральное определение алюминия, висмута, железа, индия, кадмия, кобальта, магния, марганца, меди, никеля, свинца и хрома в галлии и хлориде галлия

Спектральное определение алюминия, бора, железа, магния, марганца, меди, никеля, олова, свинца, сурьмы, титана и хрома в карбиде кремния

Спектральное определение алюминия, кальция, кобальта, хрома, меди, железа, магния, марганца, никеля, титана и ванадия в двуокиси кремния и кварце

Спектральное определение железа, кальция, магния, хрома, никеля, кремния и бора в цирконии

Химико-спектральное определение алюминия, висмута, галлия, железа, золота, индия, кальция, магния, марганца, меди, никеля, свинца, сурьмы, олова, серебра, таллия, тантала, титана, хрома и цинка в германии, двуокиси германия и тетрахлориде германия

Химико-спектральное определение алюминия, висмута, железа, магния, марганца, меди, никеля, свинца, сурьмы и хрома в мышьяке

Химико-спектральное определение серебра, алюминия, магния, индия, молибдена, циркония, железа, титана, меди, марганца, никеля, свинца, хрома, олова, висмута, галлия, кальция, цинка и сурьмы в трихлорсилане без применения гидролиза



© 2025 chem21.info Реклама на сайте