Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нержавеющие продукты

    Можно получать 2,2-динитропропан нитрованием смеси 2-нитропропана и пропана в одинаковых соотношениях при непрерывном выделении целевого продукта, циркуляции 2-нитропропана и добавлении свежего пропана. Эти реакции проводятся в аппаратуре из нержавеющей стали. [c.340]

    Такие продукты перегоняются в специальных высоковакуумных колонках с низким перепадом давления. Вакуумная колонка типа Hyi (рис. 2), построенная по проекту Фенске [7], представляет собой видоизмененную колонку открытого типа. Насадка состоит из пластинок нержавеющей стали, попеременно сплошных и перфорированных, удерживаемых в определенном положении при помощи прута из нержавею- [c.498]


    Опыты по определению регенерационной характеристики катализаторов на установке проводят следующим образом. Анализируемую пробу засыпают в корзинку 6 с перфорированным дном и открытым верхом и подвергают закоксовыванию, подавая углеводородное сырье на катализатор из бюретки 2 через канал в нагревательном блоке. Продукты реакции отводят через холодильник в приемник и газометр. При регенерации катализатора воздух подают по тому же каналу и отводят через боковое отверстие 4. Температуру в корзинке и в нагревательном блоке, изготовленном из массивного бруска нержавеющей стали, контролируют термопарами 7. Изменение массы навески катализатора в ходе опытов фиксируют с помощью весов типа Вестфаля—Мора. [c.172]

    Перфорированные листы и сетки используют для разделения суспензий, содержащих грубодисперсные твердые частицы, а также в качестве опорных перегородок для фильтровальных тканей и бумаги. Так, в процессе разделения суспензий некоторых органических продуктов при давлении- в несколько атмосфер и температуре 90 °С в плиточно-рамных фильтрпрессах применяют алюминиевые листы толщиной около 1 мм с 12—15 отверстиями диаметром 1,4 мм на 1 см , покрытые фильтровальной бумагой. Можно отметить использование сетки из нержавеющей стали в качестве опорной перегородки для вспомогательного вещества (диатомита) в процессе очистки расплавленной серы фильтрованием. [c.364]

    Простой метод коррозионных испытаний металлов в электролитах, например, в кислотах, при высоких температурах и давлениях состоит в выдержке исследуемого образца металла, помещенного в запаянную ампулу из термостойкого стекла с налитым в нее электролитом, при заданной температуре в термостатированном шкафу. Для предупреждения разрыва запаянных ампул вследствие образования в них паров электролита и накопления газообразных продуктов коррозии ампулы помещают в контейнеры, изготовленные из нержавеющей стали, у которых для создания противодавления пространство между стенкой и ампулой заполняют водой. Более совершенным методом коррозионных испытаний в электролитах при высоких температурах и давлениях является проведение их в специальных автоклавах (рис. 329). [c.445]

    Мы не затрагиваем вопроса о влиянии на коррозию химического состава самого металл . Хорошо известно, что различные добавки, вводимые в состав специальных (легированных) сталей, неодинаково влияют на их стойкость против коррозионных процессов в различных условиях. Так, широкое применение в качестве нержавеющей стали получили хромоникелевые и хромистые стали. Характер действия таких добавок может быть различным. Одни из них повышают термодинамическую устойчивость анодной )азы, другие —пассивируемость ее, третьи благоприятно влияют на катодные участки поверхности. Некоторые добавки приводят к лучшему экранированию поверхности металла защитным слоем, образуемым продуктами коррозии. [c.461]


    Применение нержавеющих сталей в установках высокого давления для получения полиэтилена, различных полиэфиров и дивинилового каучука не только дает перечисленные преимущества, но и позволяет избежать нежелательного загрязнения получаемых продуктов. [c.212]

    Пленка образуется на внутренней поверхности калиброванной стеклянной трубы 6 при вращении скребкового ротора 7 с лопастями (для уменьшения коррозии ротор выполняется из тантала или нержавеющей стали марки УА). Регулируемый приводной механизм 3 со ступенчато изменяющейся скоростью вращения соединяется с ротором магнитной муфтой 4, которая лишена всех недостатков сальникового уплотнения. Нижний конец ротора снабжен самоустанавливающимся шарикоподшипником в виде тефлонового шара, размещенного в стеклянной опоре. Смазкой подшипника служит стекающий кубовый продукт. Источником тепла является циркуляционный термостат 14 мощностью электрообогрева 1,5 или 2 кВт. При температурах до 200° С в качестве теплоносителя используют парафиновое масло, а при более высоких температурах — силиконовое масло. Эти масла полностью прозрачны. [c.278]

    И каталитические, и термические реакции дегидрирования сильно эндотермичны. Связи углерод—водород и углерод—углерод достаточно прочны, и для дегидрирования нужно подводить большое количество энергии. Более того, реакции дегидрирования часто ограничены термодинамически, и так как они обычно ведутся при высоких температурах, то контакт охладившихся продуктов с активными стенками реактора, например из нержавеющей стали, может привести к обратной реакции гидрирования. В результате образуются исходные или близкие к ним ио строению вещества. Поэтому смесь, выходящую из зоны дегидрирования, быстро охлаждают впрыскиваемой водой или в теплообменнике с каталитически неактивными стенками, чтобы подавить рекомбинацию продуктов. [c.133]

    Эта реакция принадлежит к уникальному классу реакций. Ее проводят в режиме окислительного дегидрирования, но она не является каталитической. Ранее говорилось, что дегидрирование этана в этилен — относительно высокотемпературный процесс. Дегидрирование метана в ацетилен представляет собой чрезвычайно высокотемпературную реакцию и идет при 1300— 1600°С, когда равновесие наиболее сильно сдвинуто в сторону образования этилена. Очевидно, металлические реакторы не могут быть использованы для реакции парциального окисления природного газа (метана) в силу того, что реакция происходит при температуре, превышающей температуру плавления нержавеющей стали или любых других распространенных металлов. Поэтому реакторы футеруют огнеупорным кирпичом, а теплообмен и теплоотвод осуществляют до контакта горячих газов с неметаллическими поверхностями. При более низких температурах контакт газов с металлическими поверхностями допустим, и окончательный отвод тепла производится в металлическом теплообменнике. Сильно нагретые продукты реакции охлаждаются путем впрыскивания воды непосредственно в газовый поток (рис. 4). При этом вода превращается в пар, который вместе с продуктами должен быть охлажден экономично и с пользой. При получении ацетилена его быстрое охлаждение является одной из решающих операций, препятствующей гидрированию ацетилена в этилен или этан. [c.148]

    Хромоникелевые нержавеющие стали обладают высокой коррозионной стойкостью в спиртах и не вызывают изменения цвета продукта при 100—150 С. [c.216]

    Большинство контейнеров (рис. 75) изготовляют из двух- или трехслойного оловянного листа, иногда покрываемого антикоррозионной оболочкой. Можно применять также цельнотянутый алюминий, который по сравнению с оловянным листом значительно дешевле, легче и более коррозионно устойчив пластмассы (в тех случаях, когда требуется дополнительное давление за счет нажатия рукой на баллон, что позволяет регулировать расход таких продуктов, как вязкие пищевые приправы, кремы и т. п.) нержавеющую сталь (удорожание упаковки связано с необходимостью поддержания высшей степени чистоты продукта, например лекарств) стекло (необходимо эстетическое оформление упаковок для одеколонов и духов). [c.352]

    Если кривые катодной поляризации (рис. 5.5) пересекают анодные кривые при более высоких потенциалах в области пере-пассивации, скорость коррозии, например нержавеющей стали, становится выше, чем в пассивной области и продуктами коррозии становятся СггОу и Ее "". Перепассивация наблюдается не только у нержавеющей стали, но также у хрома, для которого потенциал реакции  [c.79]

    Согласно второй точке зрения, металлы, пассивные по определению 1, покрыты хемосорбционной пленкой, например, кислородной. Такой слой вытесняет адсорбированные молекулы НаО и уменьшает скорость анодного растворения, затрудняя гидратацию ионов металла. Другими словами-, адсорбированный кислород снижает плотность тока обмена (повышает анодное перенапряжение), соответствующую суммарной реакции М гё. Даже доли монослоя на поверхности обладают пассивирующим действием [16, 17]. Отсюда следует предположение, что на начальных этапах пассивации пленка не является диффузионно-барьерным слоем. Эту вторую точку зрения называют адсорбционной теорией пассивности. Вне всякого сомнения, образованием диффузионно-барьерной пленки объясняется пассивность многих металлов, пассивных по определению 2. Визуально наблюдаемая пленка сульфата свинца на свинце, погруженном в НаЗО , или пленка фторида железа на стали в растворе НР являются примерами защитных пленок, эффективно изолирующих металл от среды. Но на металлах, подчиняющихся определению 1, основанному на анодной поляризации, пленки обычно невидимы, а иногда настолько тонки (например, на хроме или нержавеющей стали), что не обнаруживаются методом дифракции быстрых электронов . Природа пассивности металлов и сплавов этой группы служит предметом споров и дискуссий вот уже 125 лет. Представление, что причиной пассивности всегда является пленка продуктов реакции, основано на результатах опытов по отделению и исследованию тонких оксидных пленок с пассивного железа путем его обработки в водном растворе К1 + или в ме-танольных растворах иода [18, 19]. Анализ электроно рамм пле- [c.80]


    В табл. 7.3 приведены значения критических потенциалов различных металлов и растворов, выше которых начинается КРН. На нержавеющей стали 18-8 в М С1г при 130 °С трещина глубиной не более 0,013—0,025 см прекращает развитие при потенциале на 5 мВ ниже критического 38]. Для остановки роста более глубоких трещин необходим более отрицательный потенциал —это объясняется экранирующим действием металла в трещине и изменением состава раствора вследствие накопления в трещине продуктов анодного растворения. Другими словами, условия, необходимые для возникновения трещины и для ее роста, одинаковы. [c.142]

    Отмечено [27], что при анодной защите достигается необычно высокая рассеивающая способность (защита на удаленном от катода расстоянии и защита электрически экранированных поверхностей), намного превосходящая рассеивающую способность при катодной защите. Причину этого приписывали высокому электрическому сопротивлению пассивирующей пленки, что, по всей видимости, неверно, так как ее измеренное сопротивление обычно невелико. Другое объяснение может быть связано с антикоррозионными ингибирующими свойствами анодных продуктов коррозии, образующихся в малых количествах на поверхности нержавеющих сталей (например, ЗгОз , СггО , Ре " ), которые и в отсутствие внешнего тока сдвигают потенциал в пассивную область. [c.230]

    Предупреждению или уменьшению щелевой коррозии способствуют те компоненты сплава, которые помогают сохранить пассивность при низкой концентрации в среде растворенного кислорода и наличии кислых продуктов коррозии. К этой категории относятся добавки молибдена к нержавеющей стали 18-8 (марка 316) или добавки палладия к титану. [c.315]

    Эти кислоты можно получить в лаборатории, пропуская сероводород через воду, насыщенную ЗО . Для понимания механизма наблюдаемых разрушений следует учесть, что при протекании коррозионных процессов эти кислоты легко катодно восстанавливаются. В связи с этим политионовые кислоты действуют в качестве катодного деполяризатора, который способствует растворению металла по границам зерен, обедненным хромом. Еще одна форма влияния, возможно, заключается в том, что продукты их катодного восстановления (НгЗ или аналогичные соединения) стимулируют абсорбцию межузельного водорода сплавом, обедненным хромом. Под напряжением этот сплав, если он имеет ферритную структуру, подвергается водородной коррозии вдоль границ зерен. Аустенитный сплав в этих условиях устойчив. Показано, что наличие в морской воде более 2 мг/л серы в виде На З либо продуктов катодного восстановления сульфитов 50з" или тиосульфатов ЗзО вызывает водородное растрескивание высокопрочных сталей о 0,77 % С, а также ферритных и мартенситных нержавеющих сталей [67]. Предполагают, что и политионовые кислоты оказывают аналогичное действие. [c.323]

    Патрубки для вывода из реактора продуктов крекинга, сильно изнашивающиеся под действием газо-парового потока, несущего катализаторную пыль и крошку, облицовывают изнут[ш нержавеющей сталью. [c.134]

    Коррозия, как следствие образования муравьино. кислоты, проявилась также при ректификации формаль дегида в цехе получения формалина. При окислени метанола получается формальдегид с большим содер жанием исходного продукта, являющегося вредно примесью. Удаление метанола йз формальдегида в вод ном растворе производится в ректификационной колон не, изготовленной из нержавеющей стали. Дефлегматор этой колонны были изготовлены из углеродистой стали [c.98]

    Технологическое оформление процесса сополимеризации бутадиена со стиролом подробно описано в литературе [19, 21, 22]. Водные растворы компонентов рецептуры готовят в нержавеющих или гуммированных аппаратах, снабженных перемещивающим устройством и змеевиками для обогрева. Раствор эмульгатора концентрацией около 10% получают путем омыления карбоновых кислот щелочью. Растворы других исходных продуктов имеют, как правило, меньшую концентрацию трилонового комплекса железа— 1—2%, ронгалита — около 2%, диметилдитиокарбамата натрия — около 1%-. Гидроперекись можно подавать в реакционную смесь непосредственно или в виде 3—5%-ной водной эмульсии. Растворы регуляторов — дипроксида или трег-додецилмеркап-тана готовят в стироле или а-метилстироле с концентрацией, определяемой условиями производства. При приготовлении смеси мономеров (часто называемой шихтой ) бутадиен и стирол предварительно освобождают от ингибиторов. Водную фазу получают при перемешивании и последовательной подаче в аппарат деминерализованной воды, растворов эмульгатора, диспергатора и электролита. Водная фаза имеет pH около 10—11. Для лучшей воспроизводимости кинетики сополимеризации и свойств каучука растворы всех исходных продуктов и смесь мономеров готовят и хранят под азотом, так как кислород воздуха, как указано выше, является ингибитором полимеризации. [c.251]

    Процесс полимеризации осуществляется в полимеризаторе ленточного типа, представляющем собой бесконечно движущуюся ленту из нержавеющей стали, натянутую на два валка, из которых передний приводится в движение электромотором. После того как лента проходит задний валок, она сжимается щеками в виде лотка, чтобы предотвратить стекание с нее жидких продуктов. Лента несколько наклонена вперед, чтобы жидкость стекала в направлении ее движения. Лента вмонтирована в цилиндрический корпус, который снабжен окнами из органического стекла с тем, чтобы можно было наблюдать за процессом. К цилиндрической части корпуса присоединен компенсатор для компенсации колебаний расширения ленты за счет перепада температур. Под головной частью корпуса находится входное отверстие двухвалкового смесителя-мастикатора 7, куда поступает недегазированный полимер. [c.335]

    Наука и основанные на ней технологические навыки быстро развивались. По современным оценкам объем научного знания удваивается каждые 9 — Ш лет. Разработка новых технологий происходит еще быстрее. Научные и технологические достижения дали нам нержавеющую сталь и полиэфирные волокна, портативные радиоприемники и компьютеры, аэробусы и медицинские томографы, кокаин и отравляющие вещества, пищев1.1е полуфабрикаты и продукты лечебного питания. [c.100]

    Концентрированная ННОз — сильный окислитель. Из металлов в ней устойчивы лишь Аи, Р1, КН 1г, И, Та металлы А1. Ре, Со, N II Сг (а также нержавеющие стали) она пассивирует (по-види мому,- в результате образоваиня малорастворимой оксидной плен ки). При окислении веществ азотной кислотой как правило полу чается смесь продуктов ее восстановления. Оии зависят от приро ды восстановителя, температуры и концентрации кислоты (рис. 3.51). Обы-чио среди продуктов восстановления преобладают 1ЧЮ и N02. Активные металлы (М , 2п и др.) восстанавливают разбавленную HN0з до NH4N0з. Запись уравнений окислительно-восстановительных реакций с участием НГ Оз обычно условна — указывают только один продукт восстановления, который образуется в большем количестве. [c.410]

    Конструкционный материал химического реактора в миого-продуктовых системах выбирают иа осиоис его коррозионных свойств, реакционных сред д, 1я всех процессов, которые предполагается осуществлять в реакторе. В качестве коиструкцпоп-ных материалов наиболее часто применяют углеродистую сталь нержавеющую сталь Х18Н10Т сталь с эмалевым кислотостойким покрытием сталь, футерованную керамической плиткой титан иногда пластические массы, кислого- и щелочестойкую керамику. В производствах продуктов, в которых лимитируется срдерн апие примесей и требуется высокая чистота продукта (высокочистые вещества, синтетические лекарственные средства), распространены также аппараты пз химически и термически стойкого стекла. [c.22]

    Если границы максимального интервала варьирования параметра не заданы априори, то их можно фиксировать, руководствуясь (ризико-химическими закономерностями или технологическими условиями проведения конкретной группы технологических процессов. Например, известно, что аппарат емкостного типа пз нержавеющей стали рассчитан на диапазон температур —20 +200] °С, а все процессы производства органических красителей и промежуточных продуктов укладываются в температурный диапазон Аг м=[—Ю +500] °С, тогда [c.62]

    Фирма Сгапе Pa king Со. выпустила ленту из термически необработанного политетрафторэтилена для герметизации резьбовых соединений труб из нержавеющей стали. Перед сборкой труб лента накатывается па резьбу, обеспечивая герметичность соединения и одновременно изолируя резьбу от воздействия продукта, протекающего по трубе, предотвращая коррозию трубы и загрязнение продукта. [c.224]

    Неионогенные деэмульгаторы получают, в основном, периодическим способом непрерывно действующие установки всгреча10тся крайне редко. Специфические свойства сырья, высокий тепловой эффект реакций, широкий и часто изменяющийся ассортимент продуктов обусловливают специфические аппаратурные решения для процессов такого типа. При периодическом процессе использ т реакторы с мешалками или с циркуляцией реакционной массы. Мешалки могут быть лопастными, пропеллерными или турбинными реакторы вьшолняют из нержавеющей стали или из обычной, покрытой эмалью. Обычно используют реакторы объемом 2-4 м применение аппаратов большего объема не рекрмендутеся, так как снижается его удельная нагрузка и возникают конструктивные затруднения. [c.140]

    Устройство отпарной части этой колонны в принципе аналогично описанному выше и отличается только конструктивно, поскольку выполнено в металле. Для бопее равномерного распределения флегмы на насадку отпарной колонны по краям тарелки 9 укреплены 10-12 фитилей - полосок из нержавеющей сетки. Промежуточная часть колонны 17 в этом саучае несет активную нагрузку, так как заполнена насадкой, на которой протекает основной процесс ректификации паров колонны. Колонна в этом случае заполнена насадкой с перераспредепитепями флегмы. Куб колонны по принципу работы аналогичен показанному на рис. 5.22. Поскольку мазут, уходящий из куба - вязкий продукт, застывающий при высокой температуре, трубка для перетока из куба в приемник обвита змеевиком, сверху которого нанесен электрообогрев и изоляция, змеевик может служить для обогрева и пи охлаждения. [c.129]

    На заводе существовало пять различных производств установки по получению МИЦ, фосгена, севина (из МИЦ), а-нафтола (один из реагентов при получении севина) и окончательного получения пестицида. Предпоследняя установка находилась в нерабочем состоянии в момент аварии. Четыре участка в аварии никак не участвовали и в дальнейшем обсуждаться не будут. Как отмечалось ранее, производство МИЦ является двухстадийным процессом, блок-схема технологического процесса представлена на рис. 15.13. Согласно [иСС,1985], доставка монометиламина на завод осуществлялась в автоцистернах. Монометиламин на первой стадии реагировал с фосгеном в паровой фазе, образуя метилкарбамоилхлорид (МКХ) и хлороводород. После обработки МКХ хлороформом продукт очищали от непрореагировавшего фосгена, который вспоследствии возвращался обратно в технологический процесс. Очищенный МКХ на второй стадии подвергался пиролизу, в результате чего образовывался неочищенный МИЦ. После этого проводилась перегонка, и чистый МИЦ поступал в один из трех резервуаров, выполненных из нержавеющей стали. В одном из этих резервуаров, а именно в резервуаре N 610, и началась неконтролируемая [c.430]

    Образующийся роданид относительно легко перегруппировывается в этиленмочевину, которая выделяется из раствора в виде товарного продукта. Наиболее существенным недостатком нолиаминов как хемосорбентов является их крайне высокая коррозионная активность, что требует применения специального оборудования из нержавеющей стали или высокоэффективных ингибиторов коррозии. [c.24]

    Железо, титан, цирконий и многие сплавы на их основе способны пассивироваться в концентрированной азотной кислоте, но при концеитрации кислоты >95% нержавеющие стали иногда склонны к иереиассивации, ирн которой разрушается за-п итпая пленка и окисление сталей ускоряется. Коррозионная активность кислоты возрастает ири наличии в растворе ионов хлора особенно важно иметь это в виду для материалов, пассивирующихся в чистой азотной кислоте. Алюминий рекомендуется для концентраций кислоты <1% и >80%. Титан и цирконий ие рекомендуются для дымящей азотной кислоты, о этом случае возможно образование пирофорных продуктов реакции, чувствительных к удару, т. е. реакция может протекать со взрывом. Медь и свинец нестойки в растворах азотной кислоты, так как в результате нх реакции с кислотой образуются легкорастворимые вещества. Для эксплуатации при нормальной температуре рекомендуется аппаратура из хромистого чугуна. Необходнмо учитывать возможность [c.807]

    Окисление парафинов С4—в кислоты. Одним из промышленных методов синтеза низкомолекулярных монокарбоновых кислот с преимущественным вы-кодом уксусной кислоты является метод жидкофазного окисления индивидуальных углеводородов С4—С, или их технических смесей под давлением. Впервые промышленное окисление н-бутана в растворе уксусной кислоты осуществлено в США фирмой Се1апезе. Окисление проводится в реакторе из нержавеющей сталн Кислородом воздуха в присутствии солей кобальта или марганца. Основной продукт реакции — уксусная кислота, побочные продукты — муравьиная и пропио-Иовая кислоты, метиловый и этиловый спирты, метилэтилкетон, этилацетат, ацетон. На 1 т уксусной кислоты расходуется 752—875 кг бутана, причем уксусная кислота составляет 80—90% (масс.) от всех кислородсодержащих продуктов реакции. [c.177]

    Окисление проводится в реакторе 1 из нержавеющей стали в интервале температур 160—190 °С и при давлении 4,8 МПа без катализатора или в присутствии солей кобальта, меди, магния, ванадия. Воздух подается в нижнюю часть реактора в таком количестве, чтобы содержание кислорода в отдувочном газе составляло не более 4% (об.). Пары продуктов реакции и непрореагировавшие углеводороды поступают совместно с отработанным воздухом в конденсационную систему 2—4, приспособленную для утилизации теплоты. Отсюда жидкий конденсат возвращается в зону реакции. Отработанный воздух поступает в турбодетандер 5, где охлаждается до —60 °С. Полученный холод используют на установке. Оксидат из реактора поступает в ректификационную колонну 7, в которой отделяются нейтральные кислородсодержащие продукты, возвращаемые на доокис-ление в реактор 1. На колонне 8 происходит отделение воды и кислот С —С4, а тяжелый кубовый остаток, пройдя блок выделения янтарной кислоты 9, поступает на повторное окисление. Вода от кислот отгоняется с помощью азеотропной перегонки (блок 10). Товарные муравьиная, уксусная и пропионовая кислоты выделяются с применением азеотропной и обычной ректификации (блоки 11—13). Суммарный выход кислот С —С и янтарной кислоты в расчете на превращенный бензин находится на уровне 100—110%, причем выход уксусной кислоты составляет 60—75% от товарной продукции и зависит от технологии проведения процесса и используемого для окисления сырья. [c.178]

    В лаборатории автора в качестве пиролизера использовалась трубка из нержавеющей стали длиной 200 мм, внутренним диаметром 1 мм. Трубка равномерно нагревалась до 500—550° С пропусканием через нее тока, подаваемого через специальный низковольтный трансформатор. Через трубку автоматически, с определенной скоростью (0,25—0,5 мл1час), пропускался исследуемый углеводород. Полученные продукты распада исследовались газовой хроматографией с применением капиллярных колонок. Так как продукты распада содержали непредельные [c.326]

    Другим теплообменником, который также можно считать теплообменником со скреперами является теплообмен-пик шнекового типа. Он представляет собой цилиндрический кожух, в котором установлены два полых шнека, вращающихся в противоположные стороны. Одна жидкость прокачивается через полые шнеки, а другая, текущая противотоком, входит с одного конца цилиндра и выводится из другого конца за счет действия шнеков. Шнеки приводятся в движение электродвигателем, имеющим переменную частоту вранюппя. Эта конструкция теплообменника особенно удобна для вязких или клейких продуктов. Материалами могут служить мягкая сталь, нержавеющая и кислотостойкая стали. Для расчета можно применять нормы, используемые для расчета теплообменников тииа рубашки . [c.311]

    Металлы или сплавы, имеющие плотные, хорошо прилегающие оксидные пленки (нержавеющие стали, титан), в большии-сгве своем отличаются высоким сопротивлением струйной эрозии (см. табл. 9,3). Часто, однако, оксидная пленка (нли пленка продуктов коррозии), очень хорошо защищающая металл от дальнейшей коррозии в неподвижной среде, оказывается неэффективной при быстром движении среды. [c.458]

    Узлы аппарата, которые не были изолированы защитным эпоксидным покрытием, были покрыты рыхлым слоем продуктов коррозп и бурого цвета толщиной 5— 8 мм. Поверхность стоек из углеродистой стали, поддерживающих отсекатели горелок, проработавшие в аппарате погружного горения около одного месяца, была покрыта цепочкой язв диаметром до 4—5 и глубиной 1,5—2 мм. Число яз в достигло 40 на 1 дм поверхности. Состояние поверхности узлов аппарата, изготовленных из нержавеющей стали Х18Н10Т, хорошее. [c.212]

    Структура пассивной пленки на сплавах, как и пассивной пленки вообще, была описана и теорией оксидной пленки и адсорбционной теорией. В соответствии с оксидно-пленочной теорией, защитные оксидные пленки формируются на сплавах с содержанием легирующего компонента выше критического, а незащитные — на сплавах ниже критического состава. В случае преимущественного окисления пассивной составляющей сплава, например хрома, защитные оксиды (такие как СГаОз) формируются, только если содержание хрома в сплаве превышает определенный уровень. Эта точка зрения не позволяет делать никаких количественных прогнозов, а тот факт, что пассивная пленка на нержавеющих сталях может быть катодно восстановлена и не соответствовать стехиометрическому составу, остается необъясненным. Согласно адсорбционной теории, в водной среде кислород хемо-сорбируется на Сг—Ре-сплавах выше критического состава, обеспечивая пассивность, но на сплавах ниже критического состава он реагирует с образованием непассивирующей оксидной пленки. Насколько данный сплав благоприятствует образованию хемосорбционной пленки или пленки продуктов реакции, зависит от электронной конфигурации поверхности сплава, особенно от взаимодействия -электронов. Так называемая теория электронной конфигурации ставит в связь критические составы с благоприятной конфигурацией -электронов, обеспечивающей хемосорбцию и пассивность. Теория объясняет природу взаимодействия электронов, определяющую, какой из компонентов придает сплаву данные химические свойства, например, почему свойства никеля преобладают над свойствами меди в медно-никелевых сплавах, содержащих более 30—40 % N1. [c.91]

    Обнаружено, что сплав 8 % А1 — Си, окисляющийся на воздухе при 750 °С в присутствии паров М0О3, которые образуются из находящейся там же, но не в контакте со сплавом молибденовой проволоки, корродирует с очень высокой скоростью [33]. Нержавеющая сталь, содержащая несколько процентов молибдена или ванадия, на воздухе окисляется быстрее, чем без этих добавок. Причина этого нашла объяснение в [34, 35] те же явления для стали с примесью не более 0,04 % бора исследованы в [36]. В последнем случае образуются рыхлые, пористые продукты окисления, имеющие большой объем и высокую пористость. [c.200]

    Предлагались и другие гипотезы для объяснения межкристаллитной коррозии, однако механизм, связанный с обеднением хромом, более всего отвечает экспериментальньпл данным, и, по-видимому, соответствует истине. Например, в карбидах, выделившихся на границах зерен после сенсибилизации нержавеющих сталей, как и ожидалось, обнаружено Повышенное содержание хрома. В продуктах коррозии на границе зерна, полученных в условиях, когда исключалось разрушение карбидов, содержание хрома оказалось ниже, чем в целом в сплаве. Так, Шафмейстер[17] подвергал воздействию холодных концентрированных растворов серной кислоты нержавеющую сенсибилизированную сталь, содержащую 18 % Сг, 8,8 % N1, 0,22 % С. После 10-дневных испытаний в продуктах коррозии сплава на границе зерен он обнаружил только 8,7 % Сг. Содержание N1 и Ре в продуктах коррозии составляло, соответственно, 8,4 и 83,0 %. А это означает, что по границам зерен не происходит обеднения сплава никелем, но увеличивается содержание железа. Исследования сенсибилизированных нержавеющих сталей с помощью сканирующего микроскопа показали обеднение границ зерен хромом и [c.306]

    Появление питтинга приводит к образованию активно-пассивного элемента с разностью потенциалов 0,5—0,6 В. Большая плотность тока в этом элементе отвечает высокой скорости коррозии в питтинге, являющемся анодом. В то же время участки сплава, непосредственно прилегающие к питтингу, находятся при потенциалах ниже критического значения. При протекании тока ионы С1" поступают в питтинг, образуя концентрированные растворы хлоридов железа (П), никеля и хрома (III). В результате их гидролиза раствор в питтинге подкисляется (рис, 18.4). В области накопления анодных продуктов коррозии нержавеющей стали 18-8 в 5 % растворе Na l при плотности тока 200 А/м (0,02 А/см ) измеренное значение pH = 1,5 [43]. [c.313]

    Высокая концентрация ионов С1 и низкое значение pH поддерживает питтинг в активном состоянии. В то же время высокая плотность растворов, содержащих продукты коррозии, обусловливает их вытекание из питтинга под действием силы тяжести. При контакте этих продуктов с поверхностью сплава пассивность в этих местах нарушается. Это явление объясняет часто наблюдаемую на практике форму питтинга, удлиненную в направлении действия силы тяжести (течения продуктов коррозии). На пластинке нержавеющей стали 18-8 после выдержки в морской воде в течение 1 года была обнаружена узкая бороздка, протянувшаяся на 6,35 см от начальной точки (рис. 18, 5, а). Возникновение коррозионных разрушений такого типа было воспроизведено в лабораторных условиях [43]. По поверхности образца стали 18-8, полностью погруженного в раствор Fe la и немного отклоненного от вертикали, постоянно пропускали слабую струю концентрированного раствора Fe lj. Через несколько часов под струей раствора Fe la образовывалась глубокая канавка (рис. 18.5, Ь). На поверхности железа подобная канавка не образуется, так как на нем не возникает активно-пассивный элемент. [c.313]

    Мартенситные стали, если их подвергнуть термической обработке для повышения твердости, приобретают сильную склонность к растрескиванию в слабо- и умереннокислых растворах. Особенно это проявляется в присутствии сульфидов, соединений мышьяка или продуктов окисления фосфора или селена. Специфические свойства кислот не имеют существенного значения до тех пор, пока процесс идет с выделением водорода. Эта ситуация отличается от случая аустенитных сталей, которые разрушаются исключительно в результате специфического действия анионов. Катодная поляризация также не защищает мартенситные стали от растрескивания, а ускоряет его. Все эти факты свидетельствуют, что мартенситные стали в указанных условиях разрушаются не по механизму КРН, а в результате водородного растрескивания (см. разд. 7.4). При катодной поляризации в морской воде, особенно при высоких плотностях тока, более пластичные ферритные стали подвергаются водородному вспучиванию, а не растрескиванию. Аустенитные нержавеющие стали устойчивы и к водородному вспучиванию, и к водородному растрескиванию. [c.319]


Смотреть страницы где упоминается термин Нержавеющие продукты: [c.179]    [c.349]    [c.23]    [c.157]    [c.316]    [c.126]    [c.80]   
Морская коррозия (1983) -- [ c.335 ]




ПОИСК





Смотрите так же термины и статьи:

нержавеющей



© 2025 chem21.info Реклама на сайте