Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аммиак технический, очистка

    Сырьем для производства азотной кислоты являются аммиак, воздух и вода. При получении концентрированной азотной кислоты методом прямого синтеза используется технический кислород. Вспомогательными материальными и энергетическими ресурсами являются катализаторы окисления аммиака и очистки выхлопных газов, природный газ, пар и электроэнергия. [c.10]


    Как и в коксовом цехе, количество выбросов находится в прямой зависимости от культуры эксплуатации и правильного выбора технических решений. Так, закрытие цикла конечного охлаждения прекращает выбросы больших количеств бензольных углеводородов, цианистого водорода, аммиака, сероводорода, нафталина. Применение систем коллекторного сбора выхлопов из воздушек делает возможным возвращение их в газопроводы обратного коксового газа, очистку на специальных установках или даже каталитическое сжигание колле- [c.371]

    К таким работам относятся а)растворение металлов и руд в азотной кислоте с выделением оксидов азота б) обработка солянокислых растворов хлоратом калия с выделением хлора в) выпаривание и обработка плавиковой кислотой и ее солями, связанные с выделением фтора г) действие кислоты на технический цинк, обычно содержащий мышьяк, сопровождающееся выделением мышьяковистого водорода д) подкисление растворов, содержащих цианиды е) подкисление растворов, содержащих тиоцианаты (роданиды) ж) сильное подкисление растворов, содержащих ферроцианиды калия (натрия) з) подкисление растворов сульфидов и) подкисление растворов, содержащих соли брома к) выпаривание сероводородных растворов л) осаждение сульфидов металлов сероводородом м) очистка и заправка аппаратов для получения сероводорода н) прокаливание осадков, содержащих ртуть и мышьяк о) отгонка хлористого хромила п) разливка аммиака, брома, пиридина и других едких жидкостей. [c.371]

    Реакция (а) имеет различные технические применения. Равновесие водяного пара по (а) с добавкой не участвующего в реакции азота создается при газификации угля. Через раскаленный уголь продувают последовательно воздух и водяной пар. Вследствие высокой температуры часть двуокиси угле -рода диссоциирует, но вместе с тем происходит и догорание окиси углерод а в двуокись углерода. В то же время окись углерод а образуется и вследствие неполного сгорания углерода по реакции (б), в которой одновременно от распада водяного пара образуется водород. В зависимости от цели конверсии (т. е. переработки газов для изменения их состава) стремятся обогатить равновесную смесь водородом или окисью углерода. Очистку от СОз производят поглощением водой или щелочными растворами под давлением. Смесь СО -f На является сырьем для синтеза спиртов, бензина и т. д. Избыток водяного пара используется при подготовке смеси водорода с азотом воздуха для синтеза аммиака. Эффективность действия избытка массы водяного пара возрастает при понижении температуры, когда константа равновесия превышает единицу. Вычисление, аналогичное выполненному выше, показывает, что при Кр — 1,375 (Г 1000° К) десятикратный избыток водяного пара обеспечивает полноту реакции 97%. При высоких температурах эффективность действия избытка массы одного из исходных веществ становится меньше при Кр ж 0,5 Т ж 1350° К) полнота реакции для того же значения у = 10 составляет 84%. [c.327]


    Представлены теоретические основы и технология производства технического водорода и синтез-газов для получения аммиака, метанола и других п1)одуктов, а также заменителя природного газа. Рассмотрен способ паровой каталитической конверсии углеводородов в трубчатых печах и очистки конвертированных газов. Описаны конструкции трубчатых печей. Данн основы математического моделирования процессов конверсии, адиабатических реакторов и трубчатых печей. [c.2]

    Активированный уголь используют также для очистки азото-водородной смеси при синтезе аммиака, для очистки питьевой воды, для очистки некоторых технически важных газов от примесей, для очистки рафинада, для освобождения винного спирта от примесей сивушных масел и, наконец, как катализатор во многих производствах. [c.270]

    Восстановление двуокиси рения. Этот способ применяется в хлорном способе рафинирования рения [27]. Исходный порошок технического рения хлорируют при 600—700° получается Re l 5, который очищают вакуумной дистилляцией. Хлорид разлагается водой. При этом 65—70% Re осаждается в виде гидратированной двуокиси. Полное разложение хлорида достигается при pH 2,5—3 [80, с. 71 ]. Отфильтрованный и промытый осадок сушат в вакууме и восстанавливают водородом в две стадии сначала при 400—600°, затем при 800°. Раствор окисляют перекисью водорода, нейтрализуют аммиаком и выделяют из него перренат аммония, который возвращают на восстановление [27 ]. Метод приводит к хорошей очистке от примесей щелочных и щелочноземельных металлов. В то же время железо, кремний и ряд других примесей не отделяются. [c.313]

    Опыты проводились в стеклянных ампулах или бутылях в атмосфере очищенного азота или воздуха при комнатной температуре, при 40 и 100°. Учитывая, что производственные емкости изготавливаются из алюминия, в ампулы и бутыли добавлялись алюминиевые стружки с таким расчетом, чтобы на 100 г стирола приходилось 160 см поверхности алюминия. В опытах применялся свежий стирол-ректификат, получаемый в производстве. Сера, ПДА, П-20, и гидрохинон были обычными техническими продуктами и очистке не подвергались. Использовался импортный образец ТБК. Технический азот очищался от кислорода пропусканием через медные стружки в растворе аммиака и хлористого аммония I31. Альдегиды, перекиси и полимер определялись по принятым методикам I91. Точность определения перекисей составляла [c.73]

    IV. Производства, выбросы которых в атмосферу содержат канцерогенные или ядовитые вещества. Источники производства фенола, изопропилбензола, технического углерода, ацетона, селективной и контактной очистки масел смолоотстойники пиролизных производств реакторы-генераторы установок получения элементной серы резервуары для хранения нефти и нефтепродуктов кубы окислителей производства битума, синтетических жирных кислот и сушилок латекса синтетического каучука производства полиэтиленовой пленки, полиамидных и фенолоформальдегидных смол, фталевого ангидрида, дихлорэтана, винилхлорида, хлорида водорода, стирола, карбида кальция, нефтяного кокса, карбамида, пестицидов, гербицидов и нитрита аммония гидроксиламинсульфатное производство капролактама производства разбавленной азотной кислоты без каталитической очистки, аммиака, метанола, ацетилена производства фосфора, фосфорных кислот, суперфосфата, мо-нокальцийфосфата, аммофоса, диаммонийфосфата грануляционные башни производства аммиачной селитры колонны карбонизации и известковые печи содовых заводов регенераторы производства дегидрирования бутана печи сжигания кубовых остатков и отделения окисления производства капролактама. [c.16]

    В качестве сырья для каталитической гидрогенизационной очистки нафталина используют нафталиновые фракции, получаемые при фракционировании каменноугольной смолы. В них в качестве примесей присутствуют фенолы, основания, непредельные соединения, сернистые соединения и смолистые вещества. Для процесса гидроочистки азотистые основания являются кумулятивными ядами, отравляющими катализатор [6, 7], а также образующими при гидрогенолизе аммиак, который необходимо извлекать из циркуляционного газа. Непредельные соединения и смолистые вещества представляют собой основной источник образования отложений на стенках теплообменной аппаратуры и на катализаторе. Фенолы не влияют на процесс гидрогенизационной очистки, однако на их гидрогенолиз расходуется водород к тому же их целесообразно выделять из исходного сырья как ценный продукт. Радикальный способ подготовки сырья к гидрогенизационной очистке— четкая ректификация исходной нафталиновой фракции. Как показано в работе [6], технический нафталин (содержащий 0,8% фенолов, 0,2% оснований, 0,1% -непредельных соединений и до 0,03% метилнафталпнов) можно получить ректификацией нафталиновой фракции на колонне разделительной способностью 30 т. т. В техническом нафталине сосредоточивается 977о от его содержания в исходном сырье. [c.282]


    В ряде технических приложений приходится встречаться с конденсацией пара, сильно разбавленного неконденсирующимися газами. Сюда относятся, например рекуперация летучих растворителей по конденсационному методу работа конденсаторов паросиловых установок выделение аммиака из азото-водородной смеси после синтеза очистка газа, содержащего окислы азота от водяного пара для прямого получения крепкой азотной кислоты концентрирование серной кислоты и производство олеума. [c.159]

    Все выше рассмотренные отечественные насадки нашли применение в различных технологических процессах, в частности следует отметить процессы извлечения СОг из дымовых газов в производстве технического азота, очистку конвертированного газа от СОг при атмосферном и повышенном давлении в производстве аммиака (моноэтаноламиновая очистка, процессы Карсол и Бенфильд ), поглощение триоксида серы серной кислотой в производстве П2504. [c.212]

    Очистка технического сжиженного аммиака -  [c.185]

    Вследствие постоянно происходящих изменений в развитии и потребностях производства наблюдается обновление ассортимента коммерческих кремнеземных золей появляются новые виды, а некоторые исчезают из продажи поэтому невозможно предсказать, какие виды золей останутся в будущем. Применявшиеся в прошлом и используемые в настоящее время типы золей представлены в табл. 4.3. В таблицу включены и некоторые виды продукции, которых нет в продаже сейчас, но о них упоминалось в более ранних технических публикациях. Большая часть золей содержит частицы диаметром 5—50 нм при содержании 30—50 масс. % 8102. Большинство таких золей стабилизировано либо гидроксидом натрия, либо аммиаком при pH 8—10. Несколько типов золей стабилизировано при низких значениях pH посредством проведения специальной очистки, замещением воды каким-либо полярным органическим растворителем или же за счет образования на частицах положительного заряда нанесением оксида алюминия. Коммерческие золи состоят из дискретных частиц с очень небольшой степенью агрегации, так как при высоких концентрациях кремнезема любая, сколько-нибудь значительная степень агрегации должна весьма сильно вызывать повышение вязкости. [c.572]

    В Германии этаноламины получали, пропуская газообразную окись этилена в водный раствор аммиака при 30—40° и 3 ата [3]. При реакции выделялось очень большое количество тепла. Температуру поддерживали на определенном уровне, охлаждая реакционную смесь в выносном холодильнике, через который эта смесь непрерывно циркулировала. Когда процесс заканчивался, избыток аммиака и воду отгоняли, а этаноламины разгоняли, если это требовалось, ректификацией в вакууме. Изменяя отношение аммиака к окиси этилена, получали различные соотношения моно-, ди- и три-этаноламина в продуктах реакции. Если молярное отношение аммиака к окиси равнялось 7,5 1, моно- и диэтаноламин получались в равных количествах. Если это же отношение составляло 5 1, то главным продуктом реакции являлся диэтаноламин. При отношении 2 1 смесь после удаления аммиака содержала 75% трнэтаноламина, 10% диэтаноламина, 5% моноэтаноламина и 10% высших продуктов конденсации окиси этилена с триэтаноламином (эфирного характера). Эту смесь применяли без дальнейшей очистки как технический триэтаноламин. [c.364]

    Прокаленный ШОз имеет чистоту выше 98—99% и пригоден для получения из него металла менее ответственного назначения. Для более ответственного назначения, в частности для электро- и радиоламповой промышленности, требуется WOз или H2W04 более высокой чистоты. Для получения таких продуктов вольфрамовую кислоту непосредственно после отмывки и фильтрования подвергают аммиачной очистке. Последняя производится так же, как и растворение вольфрамовой кислоты, получаемой кислотным разложением вольфрамовых концентратов H2W04 растворяют в растворе аммиака, кристаллизуют паравольфрамат аммония и т. д. (см. ниже). При получении вольфрамовых соединений высокой чистоты пользуются наиболее чистыми реагентами. Процессы ведут в меньших масштабах при меньших одновременных загрузках и применяют особо коррозионностойкую аппаратуру. В результате одно- или двукратной аммиачной очистки получаются вольфрамовая кислота и й Оз чистотой до 99,95%. Степень очистки (в частности, от молибдена) в значительной мере зависит от качества исходных концентратов и полноты осаждения паравольфрамата. Примерные технические условия на вольфрамовый ангидрид (состав в. %) [7]  [c.264]

    Отечественные седла типа Инталокс, насадка ГИАП и НИИэмальхиммаш и кольца Палля успешно применяются при производстве аммиака (стадия очистки МЭА при атмосферном и избыточном давлении), а также в производстве технического азота (извлечение СОа из топочных газов). [c.75]

    Из других методов получения технического антрацена известны очистка жидкой сернистой кислотой, жидким аммиаком, оксидами азота, каталитическим окислением [c.357]

    Литературные данные по применению метода экстракции в основном связаны с решением трех задач. Первая, наиболее важная задача заключается в выделении изопрена из технических фракций С5 пиролиза с помощью полярных растворителей различных классов. В качестве экстрагентов рекомендованы ДМФА [99—104], НМП [105— 107], метилкарбитол [108—111], лактопы [112], система из двух растворителей жидкий метан — полярное вещество [113], легкокипяшре растворители, образующие азеотропные смеси с олефинами, например, ацетальдегид, окись пропилена, метанол, метилформиат [114], а также смеси перечисленных веществ друг с другом и с водой. Вторая задача связана с очисткой изопрена и изоамиленов от нежелательных примесей. Так, для отделения от изонрена ацетиленовых углеводородов рекомендуется водный ДМФА [115]. Для извлечения примесей ЦПД может быть использована смесь жидкого аммиака с модификатором [116], а также НМП [117, 118]. И, наконец, третья, более частная задача состоит в удалении из изопрена некоторых водо-растворимых примесей (сернистые соединения, формальдегид, ацетон, АН, аммиак) путем отмывки водой или водными растворами щелочи, гидроксиламина и т. д. [119—122]. [c.237]

    Однако прежде чем отдувка аммиака воздухом сможет найти широкое применение, необходимо решить несколько технических проблем. Практика работы с охладительными башнями вскрыла следующие эксплуатационные проблемы на загрузке башен образуются отложения карбоната кальция, которые необходимо часто удалять промывкой кислотами или с помощью (механической очистки зимой в башне образуется лед аммиак характеризуется повышенной растворимостью при низких температурах, что снижает эффективность его удаления и может привести к необходимости подогрева башен в зимнее время нитратный азот, образующийся в процессе биологической очистки, не поддается воздушной отдувке. В настоящее время проводятся. исследования эксплуатационных свойств различных загрузок, в меньшей степени подверженных [c.373]

    Следует отметить, что мембранная установка по извлечению водорода из продувочных газов синтеза аммиака становится неотъемлемой частью современнного энерготехнологического агрегата большой единичной мощности и дает существенную прибыль. Так, за 1981 г. только на установках Призм извлекали около 1 млрд. м водорда в год [38]. По данным Монсанто [39], себестоимость полученного с помощью мембранной установки технического водорода составляет 0,028 долл/м , в то время как рыночная цена этого продукта 0,143—0,214 долл/м . Поэтому, например, для установки двухступенчатой очистки производительностью (ом. табл, 8.4) по техническому водороду 2084 м7 Ч, годовой экономический эффект составляет около [c.279]

    Сероводород является одной из самых нежелательных примесей в газе поскольку он ядовит и способен оказывать корродирующее действие на металлы. Кроме того, загрязнение газа сероводородом приводит к дезактивации и отравлению катализаторов, применяемых во многих процессах производства и использования водорода, как, например, при конверсии СО, конверсии углеводородов, синтезе аммиака, синтезе метанола, гидрогенизации пищевых жиров и т. д. Поэтому очистка газа от сероводорода предусматривается в большинстве схем получения водорода. Так, при производстве водорода или сицтез-газа методом газификации твердых или-жидких топлив (содержащих обычно в своем составе серу) очистке от НгЗ подлежит водяной газ, поскольку для дальнейшего получения из него водорода водяной газ должен быть направлен на каталитический процесс конверсии окиси углерода. При получении водорода из углеводородных газов — очистке от серы подвергается первичное газообразное сырье. При железо-паровом способе сероводород удаляется из целевого газа — технического водорода. Практически, из промышленных способов получения водорода только процесс электролиза воды не связан с очисткой газа от сероводорода. [c.316]

    Раствор после упаривания переливают из колбы в 2-литровый стакан, прибавляют раствор 50 г (1,25 мол.) едкого натра в 100 мл воды и небольшое количество животного угля и смесь кипятят до полного исчезновения запаха аммиака (примечание 4). Затем фильтруют с отсасыванием, разбавляют водой до 500 мл и переносят в 2-литровую круглодонную колбу, снабженную механической мешалкой и охлаждаемую проточной водой. При постоянном перемешивании и охлаждении ниже 30° к раствору приливают из двух делительных воронок 150 г (1,1 мол.) хлористого бензоила (примечание 2) и холодный раствор 80 г (2 мол.) едкого натра в 200 мл воды. Прибавление регулируют таким образом, чтобы реакция смеси все время была слабощелочная. На прибавление реагентов уходит около 1 часа, и затем смесь перемешивают еще в продолжение получаса. Раствор выливают в 2-литровый стакан, где находится 125 мл концентрированной соляной кислоты, и после охлаждения осадок отфильтровывают и сушат. Получают 150—160 г сухого осадка, который помещают в стакан прибавляют 300 мл технического четыреххлористого углерода, стакан покрывают часовым стеклом и смесь слабо кипятят в продолжение 10 мин. После того, как смесь несколько охладится, ее отсасывают, не давая полного разрежения, и гиппуровую кислоту промывают на фильтре 50 мл четыреххлористого углерода (примечание 5). Высушенный осадок весит 135— 140 г. Для окончательной очистки кислоту растворяют приблизительно в 2 л кипящей воды, фильтруют через воронку, обогреваемую паром, и раствор оставляют для кристаллизации, причем не применяют искусственного охлаждения. Кислота выделяется в виде характерных белых игл с т. пл. 186—187° (не исправ.). Выход 115—122 г (64—68% теоретич., считая на взятую монохлоруксусную кислоту). После упаривания маточного раствора до 200 мл получается еще 6—7 г гиппуровой кислоты, слегка окрашенной в коричневый цвет. [c.159]

    Применение очень высоких давлений ограничивается техническими трудностями, связанными с изготовлением аппаратуры. На скорость процесса синтеза аммиака отрицательно влияют вредные примеси [сероводород, оксид углерода (II), пары воды и др.], понижающие активность катализатора. Поэтому азотоводородную смесь, только часть из которой превращается в аммиак, подвергают тщательной очистке. Все системы синтеза аммиака работают с использованием принципа циркуляции, т. е. для более полного использования Н2 и N2 образовавшийся аммиак сжижают под действием низких температур и отделяют, а непрореагировавшую часть азотоводородной смеси вновь направляют в колонну синтеза аммиака. [c.43]

    Сформулированные направления по совершенствованию рецептурно-технологических приемов для достижения предлагаемых норм расходов материальных ресурсов не требуют для своего осуществления, как это следует из приведенного ниже описания, реконструкции и технического перевооружения действующих мощностей. Так, в производстве сульфонатной присадки С-150 предлагается установить оптимальный состав нефтяного масла-сырья но ароматическим углеводородам, уменьшить избыток гидроксида кальция, расходуемого в процессе карбонатации, внедрить безмасляную карбонатацию,, использовать в качестве растворителя на стадии карбонатации и очистки присадки деароматизированный бензин вместо толуола и др. В дальнейшем в результате совершенствования технологии можно будет исключить некоторые стадии производства, а следовательно уменьшить потери сырья и материалов, исключить из процесса аммиак и изопропиловый спирт, уменьшить более чем наполовину образование шлама, содержащего более 30 % товарной присадки и других органических веществ. [c.114]

    В стальной автоклав емкостью 5 л, снабженный мешалкой и рассчитанный на рабочее давление 40 ати, помещают 1100 г технической тяжелой соли (или 987 г 100%-ной соли, 3 моля), 500 г калиевой соли л -нит-робензолсульфокислоты (примечание 2) и 2,5 л 25%-ного раствора аммиака. Автоклав плотно закрывают, включают мешалку и в течение 2 часов поднимают температуру до 170 . Эту температуру выдерживают в течение 50 часов давление в автоклаве поднимается до 25 ати. После охлаждения автоклава до температуры 50°, осторожно открывая вентиль, выпускают газы (главным образом аммиак), отводя их в вентиляцик). Затем автоклав открывают и реакционную массу фильтруют через воронку Бюхнера, В осадке находится 1-аминоантрахинон в виде темно-красных кристаллов с металлическим блеском. В фильтрате вишнево-красного цвета остаются все побочные продукты фильтрат выливают, а осадок тщательно промывают водой. Для дальнейшей очистки осадок 1-аминоантрахинона переносят в эмалированный котел емкостью 15 л, размешивают его в 10 л воды, подкисляют соляной кислотой до слабокислой реакции на конго, нагревают до температуры 80-—90° и фильтруют горячим (примечание 3). [c.447]

    Очистка для гидрирования. 500 г технически чистого пиридина оставляют иа 24 ч над едким кали, сливают с осушителя и перегоняют. Дистиллят смешивают с 15 г свежеперегнанного анилина и постепенно прибавляют при хорошем перемешивании 5 г чистого амида натрия в порошке. Эту операцию проводят в трехгорлой колбе с мешалкой и обратным холодильником с хлоркальциевой трубкой. После прибавления всего амида натрия продолжают перемешивание и нагревают иа водяной бане до прекращения выделения аммиака. Пиридин отгоняют остаток в колбе разлагают, добавляя спирт. Дистиллят кипятят с обратным холодильником 1 ч с 10 мл безводной фосфорной кислоты и перегоняют на колонке. [c.367]

    Для очистки 2 г технического лофина растворяют в смесн 60 мл этилового спирта и 80 мл водного аммиака. Раствор кипятят с обратным холодильником в течение I часа, отфильтровывают, охлаждают и для полного выделения осаждают лофин водой. Отфильтровывают, промывают водой до исчезновения щелочной реакции промывных вод по универсальной индикаторной бумажке и сушат при 100°. [c.80]

    Соляная кислота (асс1с1ит Ыс1гос1ог1сит). Соляная кислота нужна прежде всего для приготовления хлористого цинка, применяемого при пайке металлов (гл. 5, 2), Кроме того, ее используют для травления, т. е. очистки поверхности меди и латуни от окислов и загрязнения (гл. 17, 4). Наконец, кислота нужна для получения углекислого газа в аппаратах Киппа (гл. 18, 1). Во всех этих случаях возможно применение технической (неочищенной) соляной кислоты. Однако более желательно пользоваться для этих целей очищенной кислотой, тем более, что она стоит лишь немного дороже технической. Соляная кислота нейтрализуется раствором аммиака (нашатырным спиртом) или соды (в крайнем случае — порошком мела). [c.412]

    Азот, получаемый в небольших количествах из воздуха методом адсорбции на углеродных молекулярных ситах, содержит гораздо больше примесей — до 2-10 мол. % и требует дополнительной очистки. Азот, получаемый диф-фзгвионным методом с использованием полимерных мембран, содержит еще больше примесей. Содержание основного вещества в продукте в зависимости от производительности колеблется от 95 до 99 мол. %, т.е. продукт требует дополнительной очистки. От влаги и диоксида углерода азот очищают теми же методами, что и кислород. Очистка технического азота от кислорода проводится путем его химического связывания в слое меди, нагретом до 400-470 °С. Технический азот с добавкой аммиака пропускают над активной медью. При этом кислород соединяется с медью, а оксид меди восстанавливается аммиаком до свободной меди. Такая очистка позволяет снизить содержание кислорода в техническом азоте до 10 мол. %. Ка- [c.914]

    Весьма важным фактором, влияющим на эффективность обесфеноливания сточной воды биохимическими методами, является концентрация в ней, помимо фенолов, других химических веществ цианидов, роданидов, сероводорода и др Так как фенолы разрушаются быстрее этих соединений, то для их окисления количество кислорода, подаваемого с воздухом при аэрации биологического бассейна, оказывается недостаточным Это приводит к накоплению в единице объема Жидкости указанных примесей и достижению ядовитой для микробов концентрации, в результате чего разрушение фенолов замедляется ити вовсе прекращается Поэтому разбавление сточных вод свежей технической водой (1 1) снижает концентрацию примесей в единице объема жидкости и предупреждает повышение концентрации их до ядовитой для микробов Особенно нежелательной примесью является аммиак, который окисляется значительно быстрее фенотов и при этом затрачивается большое количество кислорода Содержание аммиака в сточной воде тормозит процесс обесфеноливания Опыт работы биохимических установок показал, что при содержании аммиака (общего) в исходной воде в рре-Делах 0,5—1,0 г/л конечное содержание фенолов в воде не превышает 2 мг/т Повышение содержания аммиака в воде до 1,5 г/л приводит к увеличению фенолов до 4—5 мг/л Следовательно, снижение содержания аммиака в сточной воде, идущей на биохимическую доочистку, повышает эффективность обесфеноливания На коксохимических заводах широкое распространение получил биохимиче-скии метод очистки сточных вод с использованием специфических культур бактерий, он получил название микробного Этот метод может использоваться для обесфеноливания сточных вод с большой концентрацией фенолов и других соединений [c.217]

    Лабораторией нашего института в 1961-62 гг. был разработан и внедрен способ очистки технического аюшака с целью получения особо чистого продукта Очистка проводилась в две стадии на. первой очищался жидкий аммиак активированным углем и на второй очищался испаренный газообразный ашшак с помсщью ультратонкого стекловолокна, ткани "ФП" и алшогеля. Содержание масла в очищенном продукте (жидком агльшаке) составляло 0,10-0,15 мг/л. [c.117]

    Превращение роданистого амхмония в тиохмочевияу имеет большое практическое значение, например, при использовании. роданистого аммония, получающегося при очистке коксового и светильного газа. Для получения тиомочевины из роданистого аммОния нагревают кристаллический роданистый аммоний в течение нескольких часов до 140—160° под обыкновенным или уменьшенным давлением. Выход тиомочевины достигает 26%. Имеются и другие методы, описанные в технической литературе, как например, получение из цианамида с аммиаком и сероводородом, из цианамида кальция и сер- 40 [c.240]

    В связи со столь высоким содержанием примесей и трудностью отделения -аминокислот (сх-аланин, ц-аминомасляиая кислота, валин, гликокол и др.) от галоидных солей аммония часто применяется комбинированная схема очистки . Согласно этой схеме технический продукт растворяют в дистиллирован-иой воде и раствор нагревают до кипения при размешивании к нему добавляют гидроокись бария для выделения аммиака. Выделившийся аммиак улавливают для использования при регенерации анионита. Барий удаляют из раствора в виде сернокислой соли путем прибавления 40%-ной серной кислоту,i при [c.183]

    В качестве реагентов для нейтрализации органических жирных кислот применяют известь (5—10%-ный известковый раствор) или смесь извести с 25%-НОЙ технической аммиачной водой (NH4OH). Добавление аммиака способствует последующей биохимической очистке этих вод и снижает содержание известкового шлама. [c.572]


Смотреть страницы где упоминается термин Аммиак технический, очистка: [c.98]    [c.349]    [c.415]    [c.1828]    [c.321]    [c.395]    [c.640]    [c.607]    [c.129]   
Методы эксперимента в органической химии Часть 1 (1980) -- [ c.177 ]




ПОИСК





Смотрите так же термины и статьи:

Аммиак технический

Очистка технического сжиженного аммиака



© 2025 chem21.info Реклама на сайте