Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулы СО спектроскопические постоянны

Таблица 4.21. Спектроскопические постоянные молекулы ЫН Таблица 4.21. Спектроскопические постоянные молекулы ЫН

    При вычислении статистических сумм внутренних степеней свободы компонент воздуха были использованы спектроскопические постоянные для молекул и атомов из ряда журнальных статей и монографий, опубликованных до 1956 г. Список этих постоянных приводится ниже. [c.7]

    Из спектроскопических измерений нельзя получить момент инерции молекулы, усредненный по данному колебательному состоянию вместо этого определяют среднее значение величины, обратной моменту инерции. Рассмотрим для простоты двухатомную молекулу. Вращательная постоянная [c.265]

    Исследование вращательных состояний молекул спектроскопическим методом позволяет получить наиболее точные сведения о структуре молекул. Потребность в такой информации обусловлена в основном двумя причинами необходимостью и возможностью вычислять термодинамические функции и разнообразным интересом к структурным параметрам молекул, возникающим в теории. Основным спектроскопическим способом исследования вращательных состояний молекул является радиоспектроскопический способ изучения чисто вращательных спектров молекул, ибо частоты соответствующих переходов лежат в далекой инфракрасной и микроволновой областях спектра. Однако этот способ исследования можно применять только в том случае, когда молекула обладает постоянным дипольным моментом. Для молекул, не имеющих дипольного момента, основным источником прецизионных данных о структуре служит метод исследования чисто вращательных спектров комбинационного рассеяния. Этот последний способ применим также и для изучения вращательной структуры колебательных полос. [c.401]

    Измеренные величины (длины, углы, веса, объемы, температуры и др.) не служат непосредственно для установления строения они подвергаются теоретической обработке, которая, разумеется, отличается в каждом отдельном случае. Некоторые физические методы приводят к познанию геометрии молекул (например, определяются межатомные расстояния и валентные углы методом интерференции рентгеновских лучей или дифракции электронов) иные дают указания на энергетические состояния молекул (спектроскопические и термодинамические методы) наконец, другие ведут к установлению молекулярных функций, объединяющих в математическом выражении две или несколько физических величин, характерных для данного вещества. Такие молекулярные функции (например, электрическая поляризация, магнитная восприимчивость, молекулярная рефракция, свободная энергия образования и т.д.) находятся в количественных соотношениях со строением вещества. Непосредственно измеренные характерные физические константы вещества являются так называемыми интенсивными свойствами, т.е. величинами, не зависящими от количества вещества (как, например, плотность, показатель преломления, диэлектрическая постоянная, поверхностное натяжение, температура фазовых превращений и т.д.) молекулярные функции, выведенные из этих величин, являются экстенсивными свойствами вещества, т.е. величинами, пропорциональными количеству вещества (точно так же, как объем, вес или теплоемкость). В качестве единицы количества вещества применяется обычно моль. При этом становится возможным сопоставлять физические свойства веществ и, обобщая, установить зависимости между свойствами и строением. [c.83]


    В работе был рассмотрен конкретный молекулярный газ — азот без инертного разбавителя и аналитическое распределение (3.74) сопоставлено с имеющимся в литературе численным расчетом /52/. Спектроскопические постоянные молекул азота, скорости VV- и VT-процессов взяты такими же, как и в /51/. Колебательная температура полагалась равной 3077 К, что соответствует колебательной температуре Y = 3000 К, несколько иным образом определенной в /52/. [c.143]

    В последние годы значительно вырос интерес к теоретическому и экспериментальному исследованию двухатомных молекул щелочных металлов [1-9], что связано с изучением их электронного строения, а также динамики атомных столкновений, процессов ассоциации атомов и диссоциации молекул. В нашей работе [10] рассчитаны спектроскопические постоянные для димеров щелочных металлов. Расчеты проводились методом возмущений на основе полуэмпирических потенциальных кривых, построенных в широкой области изменения межъядерного расстояния. Сравнение рассчитанных и экспериментальных колебательных, вращательных и центробежных постоянных показало высокую точность использованного метода. [c.67]

    В настоящее время широкое распространение получили расчеты теплоемкости газообразных веществ в состоянии идеального газа методами квантовой механики по данным спектроскопического анализа. Состоянию идеального газа теоретически соответствует нулевое давление и бесконечно большой удельный объем р = 0 у = 00. Расстояние между молекулами в этом состоянии бесконечно велико, так что взаимодействие между ними отсутствует. Тогда уравнение состояния вырождается в уравнение для идеального газа ру = / 7, а теплоемкости при постоянном давлении и объеме являются функциями только температуры Срщ, = Д (7)  [c.8]

    Известно, что для определения силовых полей молекул практически недостаточно одних спектроскопических данных, так как число колебательных частот молекулы всегда меньше числа силовых постоянных. Кроме того, часто из-за перекрывания полос в спектре возникают трудности с выделением полос отдельных колебаний. Использование колебательного кругового дихроизма помогает в решении этого вопроса, поскольку правила отбора могут существенно различаться для отдельных полос в области их перекрывания, например, г(С —Н) в -валине [c.213]

    Метод Эйринга и Поляни. В основу расчета поверхности потенциальной энергии системы трех атомов положена формула Лондона (см. 1). Потенциальная энергия взаимодействия атомов в двухатомной молекуле (энергия связи) берется из спектроскопических данных. Эта энергия для молекулы АВ полагается равной Uab Qab + Jab, где Qab и Jab —кулоновская и обменная энергии взаимодействия. Далее предполагается, что при любых межатомных расстояниях доля кулоновской энергии р Q (Q + J) сохраняется постоянной, меняющейся в диапазоне 0,1—0,15. При таком положении Qab = Р Уав, Jab = (I — р) L ab. Для нахождения зависимости Q и / от гдв используют формулу Морзе [c.88]

    Для целей статистической механики достаточно знать лишь энергетические уровни молекул и их вырождение знание самой волновой функции необязательно. Поэтому знание величин ег, и для всех энергетических уровней а будет рассматриваться как знание структуры молекулы сорта г. Хотя в принципе структура молекулы определяется из решения соответствуюш его уравнения Шредингера, практически получить такое решение чрезвычайно трудно, за исключением случаев простейших молекул. Чаще структуру молекул определяют, анализируя спектроскопическим методом излучение и поглощение света молекулой (излучение или поглощение сопровождается переходом молекулы с одного энергетического уровня на другой, причем частота света V и разность энергий этих уровней связаны соотношением Ае = = V, где к — постоянная Планка). Во многих случаях спектроскопические данные удается скоррелировать с результатами, полученными из анализа простых квантовомеханических моделей молекулярной структуры. [c.440]

    Основные частоты vo, энергии диссоциации О, полученные из спектроскопических данных, и другие постоянные для двухатомных молекул даны в табл. 15.2. [c.469]

    На самом деле колебания воды не являются вполне гармоническими, а ее кинематика и используемые колебательные частоты известны тоже лишь с каким-то приближением. Поэтому, строго говоря, уравнения, составляемые на основании разных частот, будут не абсолютно тождественными и зависимыми. В этом случае в зависимости от выбора четверки уравнений будут получаться несколько различные наборы силовых постоянных, вследствие чего было целесообразно провести усреднение по всем частотам трех наиболее распространенных изотопных форм воды (Н2О, HDO и D2O). Оценка влияния ошибок в задании геометрии молекулы воды [182] и ее колебательных частот [266] на результат решения ОСЗ показывает, что находимое в принятом приближении единое для всех трех изотопных форм воды силовое поле может быть получено с необходимой точностью. Наибольшее отклонение частот, вычисленных с таким полем, от частот, наблюдаемых на опыте, возникает из-за неучета ангармоничности колебаний. Однако введение спектроскопических масс для водорода и дейтерия 1,088 и 2,128 уменьшает среднюю невязку частот до 1 см , что является вполне достаточным для описания спектров воды в конденсирован-пых системах, в которых положение полос вообще точнее + 3 смГ , как правило, не определяется [182]. По этой же причине (достаточно низкой точности определения колебательных частот в жидких и твердых соединениях) дальнейшее повышение точности расчета путем введения различных спектроскопических масс для каждого колебания [106] представляется нецелесообразным. [c.39]


    Замечательный новый спектроскопический метод изучения молекул дало открытие ядерного магнитного резонанса (ЯМР). Смысл этого явления заключается в следующем. Если какое-либо вещество содержит атомы, ядра которых имеют магнитный момент (такими атомами являются водород, азот, фтор, фосфор углерод и кислород имеют немагнитные ядра), то в магнитном поле ядра этих атомов стремятся ориентироваться по полю. В результате существования нескольких ориентаций ядерных моментов в магнитном поле уровни энергии атомов расщепляются на так называемые подуровни сверхтонкой структуры. Как известно из атомной теории, если спин частицы (ядра) равен /, то происходит расщепление уровня энергии на 2у4-1 подуровня, соответствующих разным ориентациям магнитиков в пространстве. Если наложить на образец, помещенный в постоянное магнитное поле, некоторое слабое переменное поле, то при определенных условиях резонанса, когда энергия квантов электромагнитного поля точно равна разности энергетических уровней магнитиков, будет наблюдаться поглощение электромагнитной энергии в образце, которое может быть легко измерено. Условие резонансного поглощения hv—Hg l, где к — постоянная Планка, V — частота электромагнитных колебаний, р — магнитный момент ядра, g — постоянная сверхтонкой структуры, Н — магнитное поле. [c.177]

    Энергия диссоциации окиси бериллия и соответственно ее теплота сублимации могут быть получены на основании спектроскопических данных. Линейная экстраполяция уровней колебательной энергии в состоянии ХЧ], выполненная по постоянным, приведенным в табл. 231, приводит к диссоциационному пределу, приближенно равному 47 500 (136 ккал моль). В предположении, что молекула ВеО в состоянии ХЧ1 диссоциирует на атомы Ве С5) + О Ю), это дает Во (ВеО) = 90 ккал моль. [c.803]

    Концентрацию свободных радикалов определяют спектроскопическими или другими методами, о скорости взаимодействия радикала с молекулой судят по уменьшению концентрации радикала. Так, например, при измерении скорости взаимодействия гидроксила с различными веществами создают постоянную концентрацию радикала в струе, подвергая пары воды высоковольтному разряду. К струе, содержащей радикалы, подмешивают вещества, молекулы которых реагируют с гидроксилом. [c.139]

    Обозначения а — постоянная решетки Тс — точка Кюри р — магнитный момент на молекулу, g — фактор спектроскопического расщепления [c.566]

    С другой стороны, р-электроны атомов и соответствующие тг-электроны молекул, имеющие квантовое число 1=1, обладают и орбитальными и спиновыми моментами. Но результирующий магнитный момент равен нулю не только у систем с двумя 5 - и шестью /1-электронами, образующими нормальный стабильный октет, как в структурах инертных газов, но также у систем с двумя 5- и двумя р-электронами, которые в спектроскопии обозначаются как зРо. Такие системы имеются у атомов углерода, олова и свинца. С другой стороны, системы, содержащие четыре р-электрона, как в атомах кислорода и серы, могут обладать результирующим моментом. Одно из нормальных спектроскопических состояний атома кислорода, а именно, состояние Рг соответствует атому, имеющему магнитный момент. С химической точки зрения существенно, что те атомы и молекулы, которые содержат нечетное число электронов, имеют некомпенсированный электронный спин и поэтому должны обладать результирующим магнитным моментом. Возможные значения магнитного момента любой такой системы строго ограничены они определяются квантовыми законами. Резонансные взаимодействия между электронными группами и обменная энергия образования связей не влияют на эти значения. Как будет показано на стр. 34-41, только те вещества, которые обладают постоянными магнитными моментами, обнаруживают парамагнитные свойства. Поэтому для всех органических соединений и других производ- ных легких элементов парамагнетизм можно рассматривать как физическое свойство, являющееся индикатором на свободные [c.30]

    Галогены. Мы уже указывали на спектроскопические данные о диссоциации молекул галогенов на свободные нейтральные атомы. В случае брома и иода на основании измерений интенсивности поглощения можно вычислить химический состав смеси при стационарном равновесии фотохимической реакции (в условиях постоянного освещения) между диссоциацией (1) и рекомбинацией (2)  [c.126]

    Если отнесение термодинамически важных основных частот колебаний можно провести по спектроскопическим данным, то вклад внутримолекулярных степеней свободы может быть рассчитан суммированием эйнштейновских членов для каждой фундаментальной частоты. Сложение вкладов внутренних колебаний молекул с внешними [уравнение (33)] дает полную теплоемкость при постоянном объеме Су, которая связана с Ср выражением [c.58]

    Более поздние исследования подтверждают, что модели агрегатов некорректны. Спектроскопические данные (см. п. 4.7.2) показывают, что вода не состоит из малого числа отчетливо различных разновидностей молекул. Кроме того,. малый разброс времени диэлектрической релаксации (см. 4.6.1) говорит, что, даже если в воде и существуют малые агрегаты различного размера, время их жизни не превышает 10 " с. Модели малых агрегатов пе могут объяснить сильную угловую корреляцию молекул в воде, о чем свидетельствует высокое значение диэлектрической постоянной воды. [c.259]

    Большую трудность представляло определение десяти силовых постоянных. Как общепринято при спектроскопических расчетах а) силовые постоянные взаимодействия углов и связей, не имеющих общих атомов, а также двух соседних связей (С—О, О—О) равны нулю б) вполне допустимо предположить, что взаимодействием X со всеми остальными координатами можно пренебречь, так как при плоской конфигурации эта координата полностью отделилась бы по симметрии. Силовую постоянную С—О, С—О—О и С—О—О, О—О приняли равной 0,400, как в молекуле гидроперекиси Остальные четыре диагональные постоянные были определены по методу вариации. [c.426]

    Структурные изменения при кипении или сублимации. Поскольку о структурах жидкостей известно так мало, фактически нам приходится ограничиться сравнением структур в твердом и парообразном состояниях. В доструктурной эре знание структур паров подтверждалось только молекулярной массой и ее изменением в зависимости от температуры и давления. Благодаря электронной дифракции и спектроскопическим исследованиям разного рода теперь стала довольно доступной богатая информация, устанавливающая связь между межатомными расстояниями и валентными углами в молекулах пара. Эта информация ограничивается главным образом сравнительно простыми молекулами не только потому, что невозможно установить большое число параметров, требуемых для того, чтобы определить геометрию более сложной молекулы из ограниченных экспериментальных данных, но также и потому, что геометрия многих молекул становится промежуточной, если молекулы гибки. (К тому же некоторые методы установления молекулярной структуры подчиняются определенным ограничениям например, микроволновые спектры обычно возникают только от молекул с постоянным дипольным моментом.) Информация о молекуляр- [c.38]

    В данной работе рассчитаны спектроскопические постоянные для основных электронных состояний гетероядерных молекул щелочных металлов (NaLi, NaK, NaRb, МаСз). Экспериментальные исследования рассматриваемых молекул проводились в ряде работ с использованием различных лазерных методик и спектральной техники высокого разрешения. Наиболее полные экспериментальные данные для основных электронных состояний получены в работах [8, 9, 12-14 ]. [c.67]

    Константа равновесия зависит от разности с1К)бодпых энергий п вор тных изомеров. и от абсолютной температуры и может быть определена спектроскопическими методами. Величины потенциальных барьеров могут быть получены иа значе1гий термодинамических постоянных молекул. [c.376]

    В этом разделе была рассмотрена морфология поверхностей разрушения, позволяющая выявить виды локального разделения материала. Были определены микроскопические размеры структурных элементов, которые разрываются или разделяются молекулярных нитей, фибрилл или молекулярных клубков, ребер, кристаллических ламелл, сферолитов. Однако, когда говорят об их основных свойствах, используют макроскопические термины разрыв, деформация сдвига, пределы пластического деформирования, сопротивление материала распространению трещины. Не было дано никаких молекулярных критериев разделения материала. Такие критерии существуют для отдельных молекул температура термической деградации и напряжение или деформация, при которых происходит разрыв цепи. По-видимому, следует упомянуть критическую роль температуры при переходе к быстрому росту трещины [30, 50, 184—186, 197] и постоянное значение локальной деформации ву в направлении вытягивания материала (рис. 9.31), которая оказалась независимой от длины трещины и равной - 60 % на вершине обычной трещины в пленке ПЭТФ, ориентированной в двух направлениях [209]. Следует также упомянуть критическую концентрацию концевых цепных групп определенную путем спектроскопических ИК-исследоваиий на микроскопе ориентированной пленки ПП в окрестности области, содержащей обычную трещину (рис. 9.32), и поверхности разрушения блока ПЭ [210]. Оба материала вязкие и прочные. По распределению напряжения перед трещиной в пленке ПП можно рассчитать параметры Кс = (У г)Уш = ,,г 2 МН/м" и G = 30 17 кДж/м [11]. Эти значения в сочетании с данными табл. 9.2 довольно убедительно свидетельствуют о том, что разрыв цепи сопровождается сильным пластическим деформированием. Возможная роль разрыва цепи в процессе применения сильной ориентирующей деформации или после него была детально рассмотрена в гл. 8. [c.403]

    Известно, что в многоатомных молекулах сохраняется симбатность частоты (или волнового числа) колебания и величины (к//л), где к - силовая постоянная связи и /i - приведенная масса молекулы. Таким образом, полоса поглощения фуллерена С60, соответствующая его характеристической частоте 528 см" отображает колебания фрагмента молекулы, имеющей большую молекулярную массу. По этой же причине в данной области практически отсутствует поглощение других компонентов смеси. Данный факт свидетельствует в пользу того, что полоса поглощения 528 см и ее интенсивность являются оптимальными для количественного анализа фуллеренов С60 ИК-спектроскопическим методом сложных многокомцонентных смесей. Поэтому для дальнейших исследований образцов, подобных представленному на рис. 1.4, был получен градуировочный фафик фуллеренов С60 в четыреххлористом углероде, откалиброванный по полосе поглощения 528 см" (рис. 1.5). [c.17]

    Спектроскопическое изучение трехатомных молекул столь же важно и столь же интересно, как и анализ электростатических данных, которым мы сейчас и займемся. Как и в случае двухатомных молекул, спектры поглощения и испускания доставляют сведения о межатомных расстояниях и частотах колебаний, тогда как данные о диэлектрических свойствах и рефракции являются источником знания молекулярной поляризуемости и значений дипольных моментов. Так как поляризуемость является мерой деформации электронных орбит, она представляет свойство, общее для всех электронных систем и поэтому для всех типов молекул. Данные для трехатомных молекул включены в табл. 14. Существование постоянного электрического диполя как в случае трехатомных, так и двухатомных молекул обусловлено их асимметрией. Хотя и нет необходимости в привлечении новых принципов, следует отметить важное отличие, состоящее в том, что как поляризуемость, так и постоянный дипольный момент, наблюдаемые для трехатомных молекул, являются сложными величинами. Если геометрия молекулы известна, то обычно оказывается возможным, как показал Дж. Дж. Томсон, разложить вектор общего дипольного момента на составляющие для каждой связп. Однако для определепия удельных поляризуемостей, связанных с различными осями молекулы, требуется постановка специальных опытов. Мы ограничимся здесь рассмотрением вопроса об общей поляризуемости и о постоянном динольном моменте. [c.420]

    Строение изолированной молекулы воды в парах хорошо известно из спектроскопических данных однако, как от.мечалось в гл. 8, соединения, содержащие водород, часто имеют аномальные свойства из-за образования водородных связей. Следовательно, нельзя считать, что структурная единица в конденсированных фазах (вода и лед) имеет в точности такое же стп е-ние. Обычно структура льда обсуждается раньше, чем структура воды, так как дифракционные методы дают значительно больше информации о структуре твердого тела, чем о структуре жидкости. В жидкости происходит постоянное перемеще1п1в частиц, и можно определить только среднее окружение, т, е. число и пространственное расположение ближайших к молекуле частиц, усредненные во времени и пространстве. Единственной информацией, которую можно получить при исследовании [c.383]

    HNO. Впервые молекула HNO была обнаружена спектроскопически в 1957 г. Делби [1252, 1253] в продуктах импульсного фотолиза нитрометана, нитроэтана, изоамилнитрита и смеси аммиака с окисью азота. Спектр был сфотографирован в области 6500—7700 A в поглощении с высоким разрешением (около 0,1 см ) на спектрографе с решеткой. Наблюдались три полосы с вращательной структурой, характерной для молекул типа асимметричного волчка. Эти полосы (0,0,0—0,0,0 0,0,1—0,0,0 и 0,1,0—0,0,0) были отнесены к электронному переходу М" — А молекулы HNO. На основании анализа полос были вычислены вращательные постоянные в верхнем и нижнем состояниях, частоты Va и Vg верхнего состояния и величина Vqo- Анализ спектра изотопной молекулы DNO подтвердил эту интерпретацию. Было принято также, что нижнее состояние является основным состоянием HNO. [c.373]

    Новое и перспективное направление струевой разрядной методики (в основном разработанное в лаборатории Сетсера) состоит в том, что возбуждение молекул осуществляется при столкновении с потоком возбужденных атомов Аг( Р2,о), полученных в слабом разряде постоянного тока [135, 136, 209]. Метод пригоден как для изучения кинетики обмена энергией в стационарных условиях, так и для спектроскопических исследований. Переходы из состояний и Ро в основное состояние Аг запрещены, поэтому эти атомные состояния метастабильны и существуют в течение нескольких миллисекунд они возникают в быстром потоке газа через тлеющий разряд с полым катодом и составляют примерно 0,01 % от полной концентрации Аг в потоке. Оба состояния Рг и Ро, имеющие энергию возбуждения 93 144 и 94 554 см соответственно, наблюдаются в поглощении [c.344]

    Есть все основания полагать, что многие различия в значениях спектроскопических и структурных параметров комплексов, определяемых экспериментально и получаемых из квантовохимических расчетов димеров, объясняются тем, что в эксперименте обычно наблюдаются ассоциаты. Для ответа на этот вопрос следует в одном и том же приближении рассчитать свойства димеров и ассо-циатов, содержащих бесконечное число молекул. Наиболее благоприятны для подобных расчетов молекулярные кристаллы, обладающие высокой пространственной симметрией. Имеется несколько работ, посвященных квантовомеханическому исследованию кристаллов НЕ. В них обычно ограничиваются рассмотрением одномерных цепей (НЕ) , полагая взаимодействие между цепями слабым. Для расчетов обычно используется метод кристаллических орбиталей, являющийся обобщением метода МО ЛКАО ССП на системы с пространственной симметрией. В табл. 4 приведены некоторые результаты расчета Шустера и Карпфена (см. [7]). Как видно из таблицы, геометрические параметры и силовые постоянные связи НЕ, определяющие частоты колебаний, у димера и бесконечной цени существенно различаются. С другой стороны, вычисленные характеристики бесконечной цепи (НЕ), очень близки экспериментальным значениям параметров кристалла. При переходе от (НЕ)2 к (НЕ)- увеличивается поляризация связей НЕ, о чем свидетельствует уменьшение заряда на атомах Н. Следует отметить, что согласно Меркелю и Блюмену [39], соответствующие изменения происходят в основном уже при образовании небольшого кластера. [c.27]

    На основании предыдущих исследований [1] было дано спектроскопическое определение совершенной изоморфности органических кристаллов. Спектры комбинационного рассеяния света малых частот совершенно изоморфных кристаллов органических соединений являются подобными по числу и интенсивности соответственных, т. е. относящихся к однотипным колебаниям, линий. Частоты линий 1С(пектров закономерно смещаются с изменением моментон инерции (или масс) молекул, а также с некоторым изменением квазиупругих постоянных. Состояние поляризации соответственных линий одно и то же для одинаковых ориентаций кристаллов по отношению к направлению возбуждающего света и направлению наблюдения. Определенные закономерности в ряду изоморфных кристаллов имеются и в ширине соответственных линий спектров малых частот. [c.230]

    Подавляющее большинство значений постоянных дисперсионных сил было найдено в рамках полуэмпирического подхода с использованием таких спектроскопических характеристик атомов и молекул, как силы осцилляторов /о и частоты перехода сооп, а также путем изучения закону дисперсии. Схема вьгаислепия [c.98]


Смотреть страницы где упоминается термин Молекулы СО спектроскопические постоянны: [c.44]    [c.214]    [c.67]    [c.77]    [c.162]    [c.423]    [c.568]    [c.494]    [c.95]    [c.17]    [c.162]   
Количественная молекулярная спектроскопия и излучательная способность газов (1963) -- [ c.189 , c.274 , c.328 ]




ПОИСК







© 2025 chem21.info Реклама на сайте