Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисперсные пластичные

    Бентонит — осадочная порода, состояш,ая в основном из глинистых минералов группы монтмориллонита кроме них в бентонитах содержатся также гидрослюды, каолинит, сепиолит, палыгорскит и др. Отличается высокой дисперсностью, пластичностью, способностью к катионному обмену, сорбционными свойствами. Синонимы — бентонитовая глина, отбеливающая глина, местные названия — кил, асканит, гумбрин и т. д. [c.178]


    Реологические свойства пластичных смазок. Пластичные смазки по определению являются пластичными аномально вязкими телами. Их реологические свойства значительно сложнее, чем у жидких масел (жидкостей), что определяет коренные различия условий оптимального применения масел и смазок [284]. Пластичные смазки представляют собой дисперсные системы класса псевдогелей. Частицы загустителя (мыла, парафин, церезин, пигменты), имеющие коллоидные размеры, образуют структурный каркас смазки, подобный губке. Поры каркаса удерживают дисперсионную среду — жидкое масло.-Наличие жесткого структурного каркаса наделяет смазки свойствами твердого тела. [c.271]

    Пластичные смазки, а в определенной степени и парафинистые масла, при низких температурах являются тиксотропными системами. При нагружении таких систем в момент достижения предела прочности при сдвиге лавинообразно разрушаются основные связи в структурном каркасе. Это соответствует скачкообразному снижению предела прочности от измеряемой величины до нуля. После перехода за предел прочности смазка становится жидкостью. При снятии нагрузки между фрагментами дисперсной фазы (частицами загустителя) практически мгновенно возникают новые связи и формируется новый структурный каркас. Если бы размер и форма частиц дисперсной фазы, прочность и число контактов между ними при деформировании смазки не менялись, то и все свойства смазки сохранились бы неизменными. Фактически дело обстоит сложнее. [c.274]

    По классификации П. А. Ребиндера гели делят на I) коагуляционные структуры и 2) конденсационно-кристаллизационные структуры. Коагуляционные структуры характеризуются небольшой прочностью. Между частицами дисперсной фазы в этих системах обычно сохраняются прослойки дисперсионной среды, благодаря чему проявляется некоторая пластичность или даже эластичность. Чем тоньше прослойки среды, тем больше механическая прочность структуры, но и больше ее хрупкость. [c.475]

    В области низких температур, как показали многочисленные исследования, смазочные масла приобретают структуру и некоторые другие особенности, в частности характеризуются пределом текучести, пластичностью, тиксотропностью или аномалией вязкости, свойственными дисперсным системам. Результаты определения вязкости таких масел зависят от того, проводится ли предварительно механическое перемешивание, а также от скорости истечения или от обоих факторов одновременно. Масла, обладающие структурой, не подчиняются закону течения ньютоновских жидкостей, согласно [c.54]


    Пластичные смазки — распространенный вид смазочных материалов. В простейшем случае они состоят из двух компонентов — дисперсионной среды (жидкая основа) и дисперсной фазы (твердый загуститель). Содержание загустителя в смазке обычно составляет 8—12%, но иногда доходит до 20—25%. В качестве дисперсионных сред используются нефтяные, синтетические и, очень ограниченно, растительные масла. Загустителями служат твердые вещества, способные образовывать в дисперсионной среде стабильную структурированную систему — твердые нефтяные углеводороды, металлические (Ы, Са и т. п.) мыла и некоторые продукты органического и неорганического происхождения (бентонит, силикагель, пигменты и др.). Наиболее распространены мыла и твердые углеводороды на долю первых приходится около 85%, а на долю вторых — 13—15% от общего объема применяемых загустителей. [c.298]

    Основная сложность в производстве металлических компози-щюниых материалов состоит в том, что необходимо обеспечить равномерное распределение порошка или волокна в объеме матрицы. Примером металлического композиционного материала является спеченный алюминиевый материал САП, представляющий собой алюминий, упрочненный дисперсными частицами оксида алюминия. Исходным продуктом для производства этого материала служит алюминиевая пудра, содержащая от 6 до 22% оксида алюминия в виде чешуек со средним размером до 10—15 мкм н толщиной менее 1 мкм. Для получения материала САП исходную смесь порошков подвергают холодному прессованию, затем спекают при 450—500 °С. Этот материал отличается большой удельной прочностью (прочность, отнесенная к плотности), особенно тепло-прочностью. С увелнченнем содержания частиц оксида алюминия предел прочности и твердость материала растут, а пластичность н удельная теплопроводность снижаются. САП успешно заменяет теплостойкие или нержавеющие стали в авиации, атомной технике, в химической промышленности и др. [c.395]

    Пластичные смазки представляют собой коллоидные системы, отличающиеся значительной концентрадией и высокой степенью структурирования твердой фазы. Структура смазок изучается при помощи электронного микроскопа, позволяющего получать увеличение более 100 тыс. раз при разрешающей способности до 4 А. Исследования смазок с использованием методов электронной микроскопии позволили установить, что дисперсная фаза большинства мыльных смазок образована лентовидными или игольчатыми частицами (волокнами) анизометричной формы. В одном или двух измерениях размеры этих частиц коллоидные — менее 1 мкм. [c.356]

    При компаундировании нефтепродуктов, содержащих высокомолекулярные соединения, актуальны вопросы регулирования агрегативной устойчивости образующей нефтяной дисперсной системы. При смешении различных компонентов и получении товарных нефтепродуктов (котельные, судовые топлива топочные мазуты профилактические средства пластичные смазки битумы пеки, и др.) формируются структурные единицы, при определенных условиях вызывающие расслоение нефтяных дисперсных систем с образованием осадков при хранении и применении. В каждом случае специальные мероприятия (введение ПАВ-стабилиза-торов в оптимальных количествах изменение состава дисперсионной среды и т. д.) позволяют предупредить нежелательные явления. [c.44]

    В качестве основы (матрицы) используются металлы и сплавы, полимеры, керамика. Они обеспечивают связь между составляющими компонентами, прочность и пластичность под действием нагрузок. Значительно разнообразнее применяемые наполнители, особенно для композитов на основе пластмасс, от которых зависит прочность и жесткость композитов. Из наполнителей следует выделить металлические и углеродные волокна, дисперсные тугоплавкие металлы с размером частиц от 0,01 до 0,06 мкм, нитевидные кристаллы карбида и нитрида кремния. Созданы также упрочняющие нити и волокна с нанесенными барьерными слоями карбид бора — бор на вольфраме, карбид бора на боре, углеродные волокна, покрытые карбидом кремния, бором, бор на оксиде кремния (IV) и т. д. [c.177]

    Конденсационно-кристаллизационные структуры (хрупкие гели) образуются за счет химических связей между частицами либо путем сращивания кристалликов твердой фазы. Таким образом, между частицами дисперсной фазы возникают непосредственные фазовые контакты. Эти структуры жестки и хрупки они не способны к набуханию и в них не происходит синерезис. Прочность таких структур выше, чем коагуляционных, однако после механического разрушения химические и кристаллизационные связи не восстанавливаются самопроизвольно. Вследствие этого в таких системах отсутствуют тиксотропные свойства, а также эластичность и пластичность. Типичным представителем конденсационных структур является гель кремниевой кислоты. Кристаллизационные структуры образуются при твердении минеральных вяжущих материалов цементов, гипса, извести. [c.475]


    По консистенции смазки разделяют на полужидкие, пластичные и твердые. Пластичные и полужидкие смазки представляют собой коллоидные системы, состоящие из дисперсионной среды, дисперсной фазы, а также присадок и добавок. Твердые смазки до отвердения являются суспензиями, дисперсионной средой которых служит смола или другое связующее вещестю и растворитель, а загустителем — дисульфид молибдена, графит, технический углерод и т.п. После отвердения [c.313]

    Наибольшее практическое значение имеют структурно-механические, или реологические, свойства буровых жидкостей. Специфика коллоидно-дисперсных и микрогетерогенных систем предопределяет их промежуточное положение между истинно твердыми и истинно жидкими телами. Они обладают вязкостью, пластичностью, упругостью и прочностью. Важнейшей особенностью коллоидных систем является аномалия вязкости. Их вязкость не является постоянной величиной, а зависит от градиента скорости. Для многих коллоидных систем, образующих пространственные структуры, характерно наличие предела текучести, т. е. напряжения сдвига, ниже которого движение не происходит. Аномалия обусловлена наличием в коллоидных системах структурных сеток, образуемых дисперсной фазой. [c.5]

    В качестве омыляемого сырья при производстве кальциевых пластичных смазок типа солидола оказалось возможным использовать дистиллированные жирные кислоты производства хлопкового масла. Такие смазки (дисперсионная среда — отработанные нефтяные масла) обладают хорошими объемно-механическими свойствами, хотя стабильные дисперсные системы образуются лишь при повыщенном содержании загустителя (18—21% против 10—12% при использовании свежих нефтяных масел). Исследованы свойства смазок на литиевых мылах дистиллированных жирных кислот хлопкового масла дисперсионная среда — нефтяные масла типа МГ-22А. Эти продукты не уступают товарным на основе стеарата лития, за исключением высокотемпературных свойств. Изучена возможность улучшения последних с помощью ряда добавок лучший результат получен при введении 2—3% аэросила АМ-1-300 или А-380. [c.258]

    Пластичность, или пластическое течение, в отличие от двух предшествующих видов механического поведения является нелинейной при напряжениях, меньших (по модулю) некоторого т — предела текучести, или критического напряжения сдвига, деформация практически отсутствует, тогда как при достижении т = т начинается течение, и для последующего увеличения его скорости у не требуется существенного повышения т (рис. 3, в). Диссипация энергии составляет х у — это сухое (кулоновское) трение. В коагуляционных дисперсных системах — пастах, порошках — природа такого поведения связана с последовательными процессами разрыва и восстановления контактов между частицами, в системах же с фазовыми контактами их разрушение необратимо, и критическое значение приложенного напряжения соответствует прочности. [c.310]

    Известен метод определения параметров пластичности и релаксации с помощью прибора типа торсионного вискозиметра. Разработан торсионный вискозиметр конического типа для изучения реологических свойств разбавленных и маловязких дисперсных систем. В коническом ротационном вискозиметре цилиндры заменены усеченными конусами, что расширяет пределы скоростей сдвига, при которых сохраняется ламинарный режим течения. [c.18]

    Ребиндер П. А. О природе пластичности и структурообразования в дисперсных системах. Сб., посвященный памяти академика П. П- Лазарева. АН СССР, 1956. [c.11]

    При структурировании дисперсные частицы либо непосредственно контактируют друг с другом, вытесняя полностью дисперсионную среду из места контакта и образуя наиболее прочную структуру, в то же время отличающуюся хрупкостью, либо разделены тонкой жидкостной прослойкой, придающей структуре пластичность или эластичность. При увеличении толщины этой прослойки и, как следствие, увеличении расстояния между частицами дисперсной фазы и ослаблении молекулярных сил их взаимодействия прочность структуры снижается, а по достижении некоторого значения она может быть разрушена уже слабыми физическими, например механическими, воздействиями, в частности встряхиванием или перемешиванием. Для многих коагуляционных структур подобное разрушение может быть обратимо, то есть по истечении времени разрушенные структуры восстанавливаются, постепенно приобретая первоначальную прочность. Эта способность разрушенных физическими воздействиями структур самопроизвольно восстанавливаться во времени называется тиксотропией. [c.30]

    Считается, что в аморфных структурах растворы высокомолекулярных соединений точно так же, как и молекулы в обычных жидкостях, имеют параметры ближнего и дальнего порядка. В ближнем порядке молекулы высокомолекулярных соединений ориентированы друг относительно друга параллельно, образуя достаточно плотные и хорошо спрессованные пучки или пачки молекул. Существование таких пачек в растворах высокомолекулярных соединений подтверждается пластичностью растворов полимеров, так как молекулы высокомолекулярных соединений могут по различному располагаться в таких пачках, да и пачки могут принимать различные формы. В нефтяных дисперсных системах структурные группы высокомолекулярных соединений, пучки или пачки, могут легко образоваться из макромолекул, имеющих регулярное строение полициклических и нормальных парафиновых углеводородов, нафтеновых и различных смешанных молекул, а также гетероатомных молекул. [c.59]

    Такие физические свойства глины, как иабухаемость, дисперсность, пластичность- усадка нри высушивании, прочность в сухом состоянии находятся в тесной функциональной зависимости, во-первых, от величины емкости поглощения, а во-вторых, от состава поглощенных катионов. Поэтому емкость поглощения и состав поглощенных катионов нужно рассматривать как важнейшие константы глины. [c.11]

    Роль структурной пластичность дисперсных систем, раство-упорядоченности полимеров г > г [c.146]

    Механические свойства концентрированных систем, в которых частицы дисперсной фазы имеют сольватные оболочки, все же обычно значительно ниже механических свойств систем с коагуляционными и конденсационно-кристаллиза-ционными структурами. Кроме того, благодаря образованию сольватных оболочек у частиц система пластифицируется, понижается ее прочность и у нее появляются пластично-вязкие свойства, тогда как при возникновении пространственных структур повышаются упруго-хрупкие свойства системы. [c.322]

    Темпцжтура. Поскольку энергии активации отдельных реакций термолиза различаются между собой весьма существенно, то температура как параметр управления процессом позволяет обеспечить не только требуемую скорость термолиза, но и регулировать соотношение между скоростями распада и уплотнения, а также, что особенно важно, между скоростями реакций поликонденсацни, тем самым меняя свойства фаз и условия кристаллизации мезофазы. При этом регулированием продолжительности термолиза представляется возможным обрывать на требуемой стадии "химическую эволюцию в зависимости от целевого назначения процесса. Для получения кокса с лучшей упорядоченностью структуры коксования сырья целесообразно проводить при оптимальной температуре. При пониженных температурах из-за малой скорости реакций деструкции в продуктах термолиза будут преобладать нафтено-ароматические структуры с короткими алкильными цепями, которые препятствуют дальнейшим реакциям уплотнения и форхшрованию мезофазы. При температурах выше оптимальной скорости реакций деструкции и поликонденсации резко возрастают. Вследствие мгновенного образования большого числа центров кристаллизации коксующийся слой быстро теряет пластичность, в результате чего образуется дисперсная система с преобладанием мелких кристаллов. Возникающие при этом сшивки и связи между соседними кристаллами затрудняют перемещение и рост ароматических структур. Более упорядоченная структура кокса получается при средних (оптимальных) температурах коксования ( 480 С), когда скорости реакций деструкции и уплотнения соизмеримы со скоростью роста мезофазы. Коксующийся слой при этом более длительное время остается пластичным, что способствует формированию крупных сфер мезофазы и более совершенных кристаллитов кокса. [c.63]

    СМАЗОЧНЫЕ МАТЕРИАЛЫ — вещества, вводимые между трущимися поверхностями механизмов для снижения износа частей механизмов и повышения их полезного действия. Отдельную группу составляют смазочно-охлаждающие жидкости, используемые при обработке материалов резанием или давлением. С. м. подразделяют на 4 основные группы жидкие, пластичные, твердые и газообразные. Жидкие С. м., составляющие 90% всего количества С. м., применяют также в качестве гидравлических жидкостей, изоляционных материалов, для технологических, медицинских и других целей. Пластичные С. м., выпуск которых достигает 8% от всего производства С. м., представляют собой дисперсные системы типа псевдогелей, которые получают добавлением к жидким маслам твердых загустителей. Пластичные С. м. применяют для смазки подшипников качения и скольжения, различных тихоходных и транспортных машин, для защиты от коррозии, а также для уплотнения резьбовых соединений, в сальниках. [c.230]

    Таким образом, измерения реологических параметров — модулей упругости, граничных напряжений и вязкостей — позволяют характеризовать упруго-пластично-вязкие свойства реальных структурированных дисперсных систем. [c.256]

    В области низких температур, как показали многочисленные исследования смазочные масла обладают рядом особенностей, в частности пределом текучести, или пластичностью, тиксотроп-ностью , или аномалией вязкости, свойственным дисперсным системам. Вязкость таких систем (фиг. 28) изменяется при различных скоростях протекания дисперсных тел через капиллярные трубки. При увеличении скорости течения, точнее градиента скорости (участок 2), структура дисперсной системы разрушается, в связи с чем вязкость вещества снижается и доходит до определенного [c.77]

    Пластичность теста, равно как и степень дисперсности вяжущего вещества, существенно влияет на технику и экономику производства цементных бетонов, известково-песчаных автоклавных материалов, [c.166]

    КАОЛИН, тонко дисперсная пластичная порода, состоящая в осн. иэ каолинита А14[3140ю](0Н)в. При 500—600 "С теряет воду, при 1000—1200 °С разлаг. с образованием у-АЬОз и муллита. Не раств. в воде и минер, к-тах (за исключением плавиковой) при кипячении с концентриров. НаЗО разлаг. с образованием А12(304)з и кремниевых к-т. Примен. наполнитель и покрытие в произ-ве бумаги наполнитель в произ-ве резины сырье в произ-ве керамики входит в состав примочек, присыпок, мазей в медицине и парфюмерии (под названием <белая глина ). КАПЕЛЬНЫЙ АНАЛИЗ, метод микрохим. анализа, в к-ром аналит. р-цию проводят в капле р-ра. Использ. разл. р-ции, чаще всего протекающие с образованием окрашенных соед. определяемого компонента с реагентом. Р-ции выполняют ка фильтров, бумаге (иногда предварительно пропитанной р-ром реагента и высушенной), фарфоровой или стеклянной пластинке, реже — в микропробирке или микротигле. Пределы обнаружения в-в — 0,1—0,001 мкг в капле объемом 50 мм . Миним. пределы обнаружения достигаются при выполнении анализа на фильтров, бумаге. Благодаря различиям в адсорбируемости определяемых соед., они образуют на бумаге концентрич. окружности и м. б. обнаружены при совм. присутствии по характерно окрашенным кольцам. [c.240]

    Ведекинд и Кужель применили вещества, уже явно химически действующие на измельчаемое тело. Методом Кужеля готовилась коллоидно-дисперсная пластичная масса металла, из которой путем продавливания через отверстия получались тонкие нити для электрических лампочек. [c.286]

    Пластичные смазки занимают промежуточное положение между жвдкими и твердыми смазочными материалами. Они представлякл собой структурированные коллоидные системы. Их свойства зависят прежде всего от особенностей трехмерного структурного каркаса, образующегося из дисперсной фазы, который в своих ячейках удерживает большое количество (80-90 %) дисперсионной среды. Устойчивость структурированной системы зависит от прочности структурного каркаса, сил взаимодействия между его отдельными частицами, между элементами структурного каркаса и дисперсионной средой на транице раздела фаз, числа контактов частиц каркаса в единице объема, электростатических свойств, критической концентрации ассоциации различных мыл и других коллоидно-химических факторов. [c.354]

    Пластичные смазки являются распространенным видом смазочных материалов в большинстве случаев они состоят пз трех компонентов — дисперсионной среды (жидкой основы), дисперсной фазы (твердого загустителя) и добавок (модификаторов структуры, присадок и наполнителей). В качестве дисперсионной среды смазок используют нефтяные, синтетические и иногда растительные масла. Загустителями чаще всего являются металлические мыла (соли высокомолекулярных жирных кислот), твердые нефтяные углеводороды (церезины, петролатумы) и некоторые продукты неорганического (бентонит, силикагель) и органического (пигменты, производные мочевины) происхождения. Загустители образуют в дисперсионной среде стабильную структурированную систему, их содержание не превышает 20—22% (обычно 8—12%). Для регулировапия структуры и улучшения функциональных свойств в смазки вводят добавки (поверхностно-активные вещества и твердые порошкообразные продукты). [c.253]

    В связно-дисперсном состоянии НДС прочность может быть охарактеризована различными свойствами (пластичностью, дуктильиостью, пенетрацией и др.). В случае, когда связно-дисперсное состояние обусловлено силами химического взаимодействия, механическая прочность может быть оценена разрушае-мостью твердого тела под влиянием внешних сил, механической прочностью на изгиб, на удар и т. д. [c.128]

    Под действием механических напряжений нефтяная дисперсная структура способна к течению, но с раяличной скоростью. Текучесть (пластичность) дисперсных систем — величина обратно ироиорцнональная коэффициенту внутреннего трения (вязкости), Поэтому переход нефтяной системы из одного состояния в другое (молекулярный раствор, золь, гель) изменяет вязкость и соответс гвепно се способность к течению, выраженную с но-моп[ью различных количественных характеристик. [c.178]

    На рис. 67 схематически представлены стадии перехода НДС из одного состояния в другое в зависимости от температуры. Разделение схемы на две области вне пределов зоны молекулярных растворов ( Ж) основано на различии в прочности связи внутри структурных единиц и между ними. Химический состав, порядок расположения молекул, расстояние между ними, структура студней, золей и гелей в двух областях АЕ и ЖМ) и их свойства могут отличаться принципиально друг от друга. Область, в пределах которой действуют ММВ, имеет участки АБ (студни) и ГЕ (золн). Участок АБ, в свою очередь, состоит из двух зон, в которых соответственно образуются упру-го-хрупкие и упруго-пластичные студни (на рис. (з7 они не показаны), как и участок ГЕ, который включает зону ГД (кинетически неустойчивое состояние золя). Каждая зона отделена друг от друга характерными температурами, в пределах которых сохраняется одна и та же закономерность изменения свойств НДС. Соответственно пх именуют в точках температурами Б — стеклования (кристаллизации), В — плавлепия, Д — перехода в устойчивое дисперсное состояние, Е — перехода в состояние молекулярного раствора. В зоне ЕЖ нефтяная миогокомсюнент-пая система находится в состоянии молекулярных растворов. В некоторых остатках (пеки, битумы) зона ЕЖ вообищ может отсутствовать. [c.185]

    Разница седиментационных объемов агрегативно устойчивых и неустойчивых систем наиболее четко проявляется, если частицы имеют средние размеры. Крупные частицы неустойчивых систем благодаря заметной силе тяжести образуют более плотный осадок, а очень мелкие частицы в устойчивых системах оседают настолько медленно, что наблюдать за осал<дением не представляется возможным. Причиной рыхлости осадков является анизометрия образующихся первичных агрегатов или флокул. Исследования показывают, что наиболее вероятны цепочечные и спиральные первоначальные образования, из которых затем получаются осадки с большим седиментационным объемом. Осадки того или иного качества получают прн осаждении и фильтрации суспензий в различных производствах. Их свойства обычно регулируют путем изменения pH, добавления поверхностно-активных веществ. Увеличение концентрации дисперсной фазы способствует образованию объемной структуры в агрегативно неустойчивых системах. Этот факт широко используется для предотвращения седиментации, в частности, при получении пластичных материалов и изделий из них. [c.344]

    Размеры рассмотренных участков реологической кривой могут быть самыми различными в зависимости от природы системы и условий, при которых проводят испытания механических свойств (например, температуры). В коагуляционных структурах систем с твердой дисперсной фазой предел упругости растет с увеличением концентрации частиц и межчастичного взаимодействия. В этом же наиравлении уменьшается область текучести. Для материалов, имеющих кристаллизационную структуру, например для керамики и бетонов, характерны большая (по напряжениям) гуковская область деформаций и практическое отсутствие области текучести — раньше наступает разрушение материала (хрупкость). Поэтому им не свойственны ни ползучесть, ни тиксотропия. Для полимеров с конденсационной структурой наиболее типичны релаксационные явления, включая проявление эластичности, пластичности и текучести. Доля Гуковской упругости в них возрастает с ростом содержания кристаллической фазы. Наличие области текучести у полимеров объясняют разрушением первоначальной структуры и возникновением определенного ориентирования макромолекул, надмолекулярных образований и кристаллитов. По окончании такой переориентации наблюдается некоторое упрочнение материала, а затем с ростом напряжения материал разруилается. В какой-то степени промежуточными реологическими свойствами между свойствами керамики и полимеров обладают металлы и сплавы. У них меньше области гуковской упругости (по напряжениям), чем [c.380]

    При дальнейшем повышении температуры материал может приобретать пластичность, что приводит к деформированию структуры даже под действием силы тяжести. Эту стадию спекания легко зафиксировать по резкому уменьшению объема тела. Пластическую деформацию можно вызвать и при более низких температурах, применив прессование при высоком давлении, что широко используется в порошковой металлургии. Таким образом, материал спекается тем легче, чем он пластичнее при температуре спекания. Различные материалы по-разному проявляют способность к пластическим деформациям. Например, железо уже при температуре, составляющей /з от температуры плавления, пластически деформируется под действием силы тяжести лед даже при температуре плавления проявляет хрупкие свойства. Поэтому чтобы вызвать пластическую деформацию, нередко при спекании необходимо достигать температур, близких к точке плавления (она может понижаться с ростом дисперсности). Оплавление пористого тела в первую очередь происходит с внеишей его поверхности. Так как заготовка, представляющая собой пористое тело, хорошо смачивается собственным расплавом, то последний по мере появления сразу же проникает внутрь пористого тела под действием капиллярных сил. Этот процесс заканчивается, когда все поры окажутся заполненными. [c.390]

    Высокая степень структурирования дисперсной фазы придает смазкам твердообразное состояние и пластичность, что существенно отличает их по свойствам и применению от жидких и твердых смазочных материалов. В отсутствие нагрузок смазки ведут себя подобно твердым телам не растекаются под действием собственного веса, удерживаются на вертикальных поверхностях, не брасываются инерционными силами с движущихся деталей. Однако при весьма малых нагрузках, превыщающих предел прочности смазки, структурный каркас разрушается, смазка начинает деформироваться (течь) и приобретает вязкотекучее подвижное состояние. Важной особенностью является обратимость процесса разрущения структурного каркаса при снятии нагрузки течение прекращается и смазка вновь приобретает свойства твердого тела. Легкость переходов смазок из пластичного в вязкотекучее состояние и обратно (тиксотроппые превращения) является одним из их достоинств и обеспечивает преимущества применения перед жидкими и твердыми смазочными материалами. [c.357]

    Высокий уровень защитных свойств позволяет рекомендовать вводить отработанные пластичные смазки в состав антикоррозионных покрытий вместо используемых в таких композициях мыл (НГМ-МЛ и др.). Для предотвращения слипания и смерзания влажных горных пород в процессе транспортировки и разгрузки возможно применение так называемых профилактических смазок, дисперсионной средой в которых являются легкие газойли (180— 350°С) деструктивных процессов нефтепереработки, а дисперсной фазой — обладающие высокой поверхностной активностью крекинг-остатки дистиллятного или остаточного происхож,цения. Высокое содержание ПАВ в отработанных пластичных смазках (мыла, продукты окисления, присадки) позволяет использовать последние в качестве эффективных добавок к указанным продуктам. [c.321]

    Пластификация битумных мастик расширяет температурный интервал эластично-пластичного состояния, понижает температуру хрупкости. Увеличение количества дисперсной среды путем введения нефтяных масел снижает теплостойкость масти) при некотором повышении пластичности при низких температурах. Использование в качестве пластификатора мастик некотор 1Х полимеров (полидиена и др.), имеющих более низкую температу11у, чем битум, позволяет получать мастики с повышенной пластичностью, с более низкой температурой хрупкости и в то же время с повышенной эластичностью и термической устойчивостью. Так, введение в битуморезиновую мастику (BH-IV (93%) + резина (7%)] золеного масла изменяет вязкость ее при - -40, + 60,+ 80° С соответственно в 7,5 13 8,5 раза, а введение полидиена (5%) — только в 1,4 2,6 и 2,5 раза при увеличении пластичности при отрицательной температуре. Битумо-нолидиеновая мастика течет как ньютоновская жидкость при температуре свыше + 240° С, битумо-минеральная и битумо-резиновая— при +180° С (соответственно вязкости 1 Н-с/м и 12 Н-с/м ). [c.158]

    Основной задачей реологии является взу чение закономерностей поведения различных материалов под действием деформирующих усилий. При этом рассматриваются процессы, связанные с необратимыми остаточными деформаци-чми и течением разнообразных вязких и пластитшых материалов (неньютоновских жидкостей, дисперсных систем и др.), а также явления релаксации напряжений, упругого последействия и т.д. Реология тесно переплетается с гщфомеханикой, теориями упругости, пластичности и ползучести. [c.4]

    Общепринятое название систем, в которых появление предельного напряжения сдвига вызывается взаимодействием частиц дисперсной фазы,— гель. Гелеобразование встречается очень часто при работе с концентрированными суспензиями различных минералов и органических веществ красками, замазками, пастами и др. Издавна известно гелеобразование в глинах. Способность этих систем под действием значительных нагрузок необратимо деформироваться и сохранять форму неизменной при низких напряжениях называется пластичностью. Изучение структурно-механических свойств гелей и структур, образующихся в концентрированных растворах высокомолекулярных соединений, представляет не только теоретический, но и огромный практический интерес в силу ра шообразного применения их [c.131]


Смотреть страницы где упоминается термин Дисперсные пластичные: [c.164]    [c.43]    [c.300]    [c.564]    [c.70]    [c.137]    [c.5]    [c.13]    [c.138]   
Руководство к практическим занятиям по коллоидной химии Издание 4 (1961) -- [ c.249 ]




ПОИСК





Смотрите так же термины и статьи:

Пластичность



© 2025 chem21.info Реклама на сайте