Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механическая прочность и структура полимеров

    В основе ценных, а порой уникальных свойств полимеров лежат физико-химические особенности их строения. Структура полимеров достаточно стабильна благодаря относительной прочности связей между звеньями внутри цепи. Внутренние участки цепи как бы экранированы, защищены от внешних агрессивных химических воздействий. Вместе с тем отдельные цепи в структурах полимеров способны довольно плавно и обратимо смещаться относительно друг друга, изменять свои размеры за счет перехода от спиралевидной конфигурации к линейной, и наоборот. Благодаря этому при больших механических нагрузках структура полимеров не разрушается, а лишь несколько видоизменяется, сохраняя способность более или менее полно возвращаться к исходной после снятия нагрузки. Эти структурные особенности придают полимерным материалам ценные свойства высокую эластичность, способность к обратимым упругим деформациям — растяжению, изгибу, скручиванию. Другое ценное их качество — пластичность, способность принимать любую форму в процессе изготовления, что позволяет производить большинство изделий из полимеров простым и экономичным способом — отливкой и формовкой. [c.126]


    В зависимости от условий полимеризации и термической обработки большая или меньшая часть полимерного вещества переходит в кристаллическое состояние, поэтому обычно наряду с аморфной в полимере представлена в той или иной степени кристаллическая структура. К распространенным кристаллизующимся полимерам относятся полиолефины (полиэтилен, полипропилен), полиамиды (капрон) и полиэфиры (лавсан). При нагревании кристаллическая структура полимера нарушается, и он переходит в аморфное состояние. Механическая прочность кристаллических полимеров значительно больше, чем аморфных. Например, прочность на разрыв аморфного полиэтилена 20—30, а кристаллического до 700 —1000 MH/м Волоконце полиэтилена длиной 7—10 см и толщиной 0,03—0,04 мм обладает прочностью до 4 ГН/м , в то время как прочность лучших сортов легированной стали около 2 ГН/м . Полиэтилен легче стали в 7—8 раз, поэтому при равной массе полимерное волокно окажется в 15—20 раз прочнее стали. [c.337]

    В качестве объектов исследования были выбраны различные линейные полимеры полиэтилен, полипропилен, поливиниловый спирт, полиакрилонитрил, полиамид, полиэфир, целлюлоза и др. Были изучены также такие слоистые структуры, как графит, нитрид бора, карбид кремния. Было установлено, что граничные значения механической прочности ориентированных полимеров достаточно высоки. [c.128]

    Твердые смазки, не имеющие слоистой структуры (металлы, полимеры и т. п.), проявляют смазывающее действие в результате малого сопротивления срезу образующихся мостиков адгезии. Будучи нанесенными тонким слоем на металлическую поверхность, они создают положительный градиент механической прочности трущихся материалов и тем самым обеспечивают устойчивое внешнее трение с малыми силами трения. [c.205]

    Естественно, что сегментированные эластомеры могут иметь трехмерную структуру. Однако увеличение концентрации химических поперечных связей неизбежно уменьшает взаимодействие в жестких сегментах, а последнее влечет за собой снижение твердости, механической прочности и разрывного удлинения. Особенности пространственной структуры этих полимеров определяют поведение их при воздействии температуры. При повышенных температурах сетка разрушается, и эластомеры проявляют все признаки термопластичности. [c.544]

    Природный графит встречается редко и находит ограниченное применение. В больших количествах используют искусственный графит, получаемый нагреванием в электропечи при 2200—2800 °С углей или нефтяного кокса (продукт пиролиза нефтяного пека). Различные формы графита получают также пиролизом (сильное нагревание без доступа воздуха) ряда органических соединений,в том числе полимеров. Содержание примесей в полученном углероде, его структура, механическая прочность и другие свойства очен . сильно зависят от исходного вещества и технологии термической обработки. Продукты пиролиза, представляющие по составу почти чистый углерод, но полученные в разных условиях, сильно отличаются друг от друга — это различные углеграфитовые материалы. [c.354]


    К пекам, применяемым в качестве сырья для получения углеродных волокон, предъявляется ряд требований (высокая механическая прочность, эластичность и др.). В тех случаях, когда состав и молекулярная структура пека не соответствует этим требованиям, использую компаундирование пека с синтетическими волокнообразующими полимерами. [c.256]

    Характерной особенностью высокомолекулярных веществ с линейными молекулами является волокнистая структура, обусловливающая анизотропию свойств и высокую механическую прочность. Поэтому такие вещества обладают способностью образовывать волокна и пленки. Некоторые полимеры обладают ценнейшим свойством — высокой эластичностью. [c.418]

    Большое значение прочности как важнейшей характеристики механических свойств полимеров требует выяснения закономерностей влияния структуры полимера и внешних факторов на прочность. [c.206]

    Сшивание макромолекул при облучении облегчается тем, что возникший при отрыве водорода свободный радикал может передавать неспаренный электрон вдоль цепи, отчего увеличивается вероятность его нахождения по соседству с таким же свободным радикалом другой макромолекулы. На определенной стадии облучения молекулы полимера оказываются химически связанными (сшитыми) в общую сетчатую структуру. Полимер теряет способность растворяться в обычных для него растворителях, резко возрастают его механические свойства (модуль, твердость, прочность и др.). [c.248]

    Для полимеров характерны некоторые особенности, такие, как высокоэластическое состояние в определенных условиях, механическое стеклование, способность термореактивных макромолекул образовывать жесткие сетчатые структуры. Механическая прочность полимеров возрастает с увеличением их молекулярной массы, при переходе от линейных к разветвленным и далее сетчатым структурам. Стереорегулярные структуры имеют более. высокую прочность, чем полимеры с разупорядоченной структурой. Дальнейшее увеличение механической прочности полимеров наблюдается при их переходе в кристаллическое состояние. Например, разрывная прочность кристаллического полиэтилена на 1,5—2,0 порядка выше, чем прочность аморфного полиэтилена. Удельная прочность на единицу площади сечения кристаллических полимеров соизмерима, а на единицу массы на порядок превышает прочность легированных сталей. [c.361]

    Уже отмечалось, что важнейшая особенность полимеров— способность к пленкообразованию. Это свойство используется в производстве лаков и клеев. Производство синтетических лаков и клеев основано на растворимости полимеров в органических растворителях. Высыхание пленки и образование блестящего эластичного покрытия (лаки) или прочного шва (клеи) происходит либо только в результате испарения растворителя, либо может быть связано с превращением линейной структуры макромолекул в трехмерную. Последние превращения протекают при нагревании, под действием света, кислорода воздуха, а также в присутствии катализаторов. Выбор синтетических смол для покрытия и склеивания различных материалов определяется рядом свойств полимера адгезией (прилипаемость к покрываемому или склеиваемому материалу), эластичностью, механической прочностью, нерастворимостью, термостойкостью и т. д. [c.501]

    МЕХАНИЧЕСКАЯ ПРОЧНОСТЬ И СТРУКТУРА ПОЛИМЕРОВ [c.230]

    Полиэтилен высокой плотности получают полимеризацией этилена при 60 °С и давлении 0,4—0,5 МПа в присутствии металлоорганического катализатора в среде органического растворителя. Молекулярная масса полимера около 1 ООО ООО. Он имеет менее разветвленную молекулярную структуру, чем ПНП (5—15 метильных групп на каждые 1000 атомов в линейной молекуле содержание кристаллической фазы составляет около 90%. Аморфные участки в полиэтилене обусловливают его гибкость, эластичность и высокую морозостойкость. Наличие кристаллической фазы способствует повышению химической стойкости, механической прочности и теплостойкости. [c.85]

    Стеклоуглерод, получаемый на основе синтетических полимеров, имеет более высокую плотность, чем обычные углеродные материалы, улучшенную структуру и обладает комплексом свойств, присущих как углероду, так и стеклу. Его отличает высокая механическая прочность, непроницаемость, высокая твердость, химическая стойкость, небольшая масса. В зависимости от функционального назначения вьшускают три типа стеклоуглерода плотный, пористый и расширенный. Стеклоуглерод применяется для изготовления тиглей, нафевателей, токоприемников, различных видов электродных фильтров, носителей катализаторов, композитов на металлической и стеклянной матрице, огнеупоров и биосовместимых устройств. [c.10]


    Для изготовления мембран применяют различные полимеры (ацетаты целлюлозы, полиамиды, полисульфон и др.), керамику, стекло, металлическую фольгу и др. В зависимости от механической прочности используемых материалов мембраны подразделяют на уплотняющиеся (полимерные) и с жесткой структурой, а также на пористые и непористые (диффузионные). [c.315]

    В присутствии инертного разбавителя получают полимеры с макропористой структурой, существенно отличной от структуры гомогенных гелей [20], имеющие хорошую термическую стойкость, высокую механическую прочность и развитую внутреннюю поверхность от нескольких десятков до нескольких сотен квадратных метров на грамм. Пористые полимеры получают в виде шариков, которыми удобно заполнять хроматографические колонки. [c.7]

    Эти реакции используются при отверждении эпоксидных олигомеров. Полимеры приобретают ценные для практического применения свойства (механическую прочность, химическую стойкость, диэлектрические свойства и т.д.) лишь после образования пространственной структуры. [c.95]

    Надмолекулярная структура, являясь одним из наиболее сложных и противоречивых вопросов физики полимеров, имеет очень важное значение для теории и практики. От надмолекулярной структуры зависят физические свойства полимеров (плотность, механическая прочность, температуры переходов и др.), физико-химические (растворимость) и химические (химическая реакционная способность). С особенностями надмолекулярной структуры связана и переработка полимеров в изделия (получение пластмасс, волокон, пленок, бумаги и т.д.). [c.130]

    Ионообменные смолы представляют собой поперечно-сшитые полимерные матрицы, к которым присоединены ионизованные или способные к ионизации группы. Большинство ионообменных смол получают на основе полистирольных (далее обозначены буквой S) или мета-крилатных (А) матриц, поперечно-сшиваемых дивинилбензолом. Смола получается в виде сферических зерен или в некоторых случаях в виде гранул неопределенной формы и обладает довольно жесткой гелевой структурой. Размер пор в гелевых смолах, а значит, и размер молекул, способных диффундировать внутрь зерен смолы, зависят от степени поперечной сшивки смолы, которая в свою очередь зависит от содержания дивинилбензола. Смолы с относительно высокой степенью сшивки (8-12%) пригодны для хроматографии малых ионов, а смолы с низкой степенью сшивки (2-4%) пригодны для хроматографии больших молекул. Смолы с низкой степенью сшивки сильнее набухают в воде и обладают более низкой механической прочностью, чем полимеры с высокой степенью сшивки. [c.427]

    Полиэтилен (—СНг—СНг—)п- Техническое применение нашел полиэтилен трех видов полиэтилен низкой плотности, получаемый при высоком давлении1500 ат (полиэтилен высокого давления), полиэтилен, получаемый при среднем давлении 50 ат (полиэтилен среднего давления) и полиэтилен высокой плотности, получаемый при низком давлении 5—6 ат (полиэтилен низкого давления). Полимеризация этилена при высоком давлении и температуре около 200° С протекает в газовой фазе в присутствии небольшого количества кислорода. Образующиеся перекисные соединения распадаются при повышенной температуре с образованием свободных радикалов, инициирующих полимеризацию этилена. Для полиэтилена низкой плотности характерна разветвленность структуры, в результате чего снижается степень кристалличности, теплостойкость и механическая прочность этого полимера по сравнению с аналогичными полимерами линейной структуры. [c.11]

    Агрегативная устойчивость характеризует стабильность во времени незафиксированпой жидкой полимерной пены, т. е. устойчивость жидких стенок и ребер (тяжей) только что сформированной ячеистой структуры к коалесценции (опаданию) и характеризуется механической прочностью расплава полимера. [c.62]

    Физико-механические свойства высокомолекулярных материалов также связаны с химической природой, структурой и величиной макромолекул. Так,, например, сополимер винилиденхлорида с хлорвинилом (совиден) обладает большей механической прочностью, чем полимеры каждого из них в отдельности. [c.306]

    В литературе обсуждалось [423] влияние надмолекулярной структуры на прочность пленок линейного полиэтилена с различной степенью вытяжки. Различные надмолекулярные структуры формировали при кристаллизации полимера из расплава в вакууме при 123 °С и быстрым охлаждением расплава до —95 °С. При увеличении степени вытяжки прочность пленок, закристаллизованных при 123 °С, растет медленнее, чем прочность закристаллизованных при быстром охлаждении пленок. Размер микрофибрилл не зависит от исходной морфологии и степени вытяжки. Позднее было установлено, что степень ориентации аморфных сегментов в микрофибриллах определяет механическую прочность вытянутого полимера. Более того, надмолекулярная структура влияет на число разрывов цепей при вытяжке, которое в свою очередь оказывает влияние на механическую прочность. Сделано заключение [423], что слабокристаллическая структура с большим числом проходных молекул наиболее восприимчива к вытяжке. [c.329]

    Химическая стойкость, значение обменной емкости, селективность, механическая прочность и другие свойства иопитов зависят от природы и концентрации ионогенных групп, структуры макромолекул, прочности связи между полимером и ионогенной группой. Поскольку макромолекулы ионитов имеют пространственное строение, растворитель вызывает только набухание ионита, степень которого определяется структурой полимера, природой и концентрацией ионогенных групп и составом раствора электролита. Как правило, иониты поликонденсационного тина имеют худшие показатели химической стойкости, чем иониты полимеризационного типа. [c.96]

    Кристаллическая структура полиэтилена является иричино11 его плохой растворимости, повышенной механической прочности и твердости. Присутствие аморфной фазы придает полимеру [c.213]

    Ароматические амины реагируют с полпэноксидами с заметной скоростью только прн повышеиной температуре и образуют полимеры простраистненной структуры, отличающиеся более высокой термической стойкостью и механической прочностью. [c.413]

    Высокополимерные соединения, пригодные для изготовления эластичных и термостабильных резин, получают преимущественно поликонденсацней диметилсиландиола, тщательно очищенного от различных примесей (чтобы предотвратить образование циклических соединений). Полученный полимер смешивают с наполнителем (окись титана или кремния), повышающим механическую прочность полимера, и вводятвсмесь перекись (например перекись бензоила), при помощи которой производится последующая вулканизация полисилоксана, т. е. образование полимера сетчатой структуры. Вулканизация начинается в процессе формования изделия и заканчивается прогреванием изделий в термошкафах при 160—200°. [c.484]

    Для обеспечения прочного адгезионного соединения необходимо по возможности увеличить площадь контакта. Однако следует иметь в виду, что одного этого часто бывает недостаточно, если поверхностный слой одного из соединяемых тел обладает низкой механической прочностью. Так, в случае кристаллизующихся полимеров, у которых рост сферолитов сопровождается вытеснением низкомолекулярных фракций на периферию, поверхностный слой, если не принять специальных мер, обеспечивающих интенсивное зародышеобразование на поверхности, будет обладать меньшей прочностью. Увеличения прочности поверхностного слоя удается добиться, инициируя формирование сетчатых структур на поверхности твердого тела [6]. Плавление кристаллизующихся полимеров на поверхности подложки, обладающей высоким уровнем свободной поверхностной энергии (например, полиэтилена на поверхности алюминия), обеспечивает формование прочных адгезионных соединений. В тоже время адгезия к поверхности алюминия полиэтиленовой пленки, охлаждение которой происходило на воздухе, оказывается невелика. Известны экспериментальные данные, свидетельствующие о том, что интенсивное зародьппеобразование, возникающее на поверхности с высокой поверхностной энергией, сопровождается вытеснением с поверхности низкомолекулярных фракций. Одновременно в поверхностном слое возникает большое число межмолекулярных и внутрикристаллических зацеплений. Оба эти эффекта приводят к упрочнению поверхностного слоя и способствуют увеличению прочности адгезионного соединения. [c.83]

    О влиянии длины цепей и их распределения на механические свойства изотропных и подвергшихся ориентационной вытяжке полимеров в литературе имеются весьма противоречивые сведения. Имеются данные о линейной зависимости между прочностью капронового волокна и величиной обратной молекулярной массы , но это — кристаллизующийся полимер и поэтому к подобным корреляциям следует отнестись осторожно. Наиболее существенные изменения прочности связываются с областью молекулярных масс З-Ю —15 10 т. е. там, где резко меняется прочность изотропного полимера. Обнаруживается также линейная зависимость между логарифмом прочности волокна и обратной величиной молекулярной массы полимеров, однако, в случае волокон, которые всегда кристалличны, тип зависимости любого параметра от М связан не с готовой структурой, а с технологической предысторией, где доминируют реологические факторы. Для ориентированных пленок поливинилацетата наблюдается линейное увеличение прочности с молекулярной массой. Однако эта зависимость четко проявляется лишь по достижении молекулярных масс, при которых прочность изотропного поливинилацетата становится неизменной. При изучении аморфных полиметилметакрилата, полистирола и поливинилацетат, получаются близкие результаты, хотя соответствующие зависимости не являются строго линейными. На механические свойства ориентированных полимерных материалов гораздо больше влияют условия формован 1я и вытяжки волокон и пленок [22].-Влияние молекулярной массы на механические свойства линейных аморфных полимеров следует оценивать с учетом изложенных представлений об их квазисетчатом строении. Прочность и другие механические свойства полимеров определяются их строением, однако при формовании и вытяжке волокон молекулярная масса полимера регулирует протекание процессов ориентации макромолекул, определяя структурные особенности и свойства получаемых полимерных материалов. [c.197]

    Среди прочих удалось синтезировать антранилы, содержащие разнообразные галогены в различных положениях молекул, которые служат исходными соединениями в производстве бензодиазепиновых транквилизаторов. Получены данные по влиянию структуры субстрата и реагента на протекание реакции нуклеофильного замещения водорода, что позволило разработать количественный критерий, дающий возможность оценить границы применимости данного процесса для целей органического синтеза. Этот критерий имеет характер индекса реакционной способности, устанавливающий связь структуры субстрата и реагента со скоростью образования целевого продукта. Получаемые антранилы являются также полупродуктами при получении полихинолинов - полимеров, обладающих уникальным комплексом свойств, связанных с термостойкостью и механической прочность. [c.156]

    Специфической особенностью полимеров линейной и разветвленной структуры является их высокая степень молекулярной нолидиснерсности. В процессе синтеза полимерного соединения обрыв роста каждой макромолекулы происходит на различной стадии, поэтому они различаются по величине, т. е. по степени нолимеризации. Следовательно, линейный или разветвленный полимер представляет собой весьма сложную смесь макромолекул, отличных по степени разветвленности, длине боковых ответвлений и размеру основной цепи. Степень полидисперсности полимера возрастает, когда синтез го проводится в присутствии растворителей, при увеличении количества инициатора или катализатора, вводимого в мономер, и при повышении температуры. Полимеры, в которых содержится большое количество фракций низкого молекулярного веса, имеют низкую температуру размягчения, высокую пластичность в размягченном состоянии, более низкую механическую прочность. [c.763]

    Новый полимер в настоящее время вырабатывается на полузаводской установке фирмы Геркулес и выпускается под маркой пептон [92]. Особенность структуры этого нового полимера заключается в том, что хлорметиль-ные группы в нем связаны с атомом углерода, у которого нет незамещенных водородных атомов, поэтому исключается возможность образования хлористого водорода при повышенной температуре. Кроме того, через каждые три углеродных атома в цепи макромолекул пептона имеется атом кислорода. Это заметно повышает гибкость макромолекул, что внешне выражается в повышении эластичности полимера. Одпако это не ухудшает теплостойкости материала, не снижает его механической прочности и не придает ему хладотекучести, так как строго симметричная структура звеньев способствует кристаллизации полимера. Выше температуры плавления полимер приобретает высокую текучесть, позволяющую формовать из него изделия любой сложности. При охлаждении наблюдается сравнительно малая усадка пептона, что облегчает формование изделий строго заданных размеров. [c.800]

    Молекулярный вес целлюлозы лежит в пределах от 300000 до 500 000, что соответствует 3000—5000 структурных единиц Се в полимере. Данные рентгеноструктурного анализа указывают на то, что длина одной структурной ячейки вдоль оси полисахаридной цепи (период идентичности) близка к величине 10,25 А, вычисленной для длины одной целлобиозной единицы следовательно, полисахаридные цепи должны быть приблизительно прямыми, вытянутыми вдоль оси волокна целлюлозы. Тот факт, что в волокнах целлюлозы обнаруживаются кристаллические области, объясняется, по-видимому, наличием кристаллической структурной единицы, построенной из пакета (связки) параллельно ориентированных цепей (мицелл). Ширина мицеллярной единицы составляет около 60 А (100—200 целлюлозных цепей), длина—по крайней мере 200 А (200 глюкозных единиц). Значительная механическая прочность и химическая устойчивость приписыва ется мицеллярной структуре целлюлозы.  [c.565]

    Образующиеся адсорбционные слои играют роль граничной смазки, облегчающей взаимное перемещение надмолекулярных структур в тем большей степени, чем гибче молекулы пластификатора. Увеличивающаяся подвижность структурных образований в ряде случаев способствует их взаимной ориентации, что всегда приводит к возрастанию механической прочности. Поэтому малые добавки пластификатора вызывают не понижение, а повышение проч[[ости некоторых полимеров (см, рис. 199). Для аморфных полимеров это может иметь положительное зР[ачение. Длп кристаллических полимеров увеличение подвижности структур при межструктурной пластиф кации может приводить к резкому ускорению рекристаллизации и возникновению хрупкости, что очень часто наблюдается при пластификации кристаллических полимеров. [c.447]

    Кратковременная прочность определяется преимущественно механическим фактором, поскольку за время действия силы необратимые изменения структуры полимера вследствие протекания мсханохимическил реакций минимальны. На длительную Прочность существенное влияние оказывает и химический фактор. [c.344]

    Такие структуры полимеров напоминают кристаллические образования и обладают высокой механической прочностью. В структуре взаимосвязанных полимерных цепей имеются полости, включающие гидрофЬбные (не [c.42]


Смотреть страницы где упоминается термин Механическая прочность и структура полимеров: [c.138]    [c.155]    [c.250]    [c.250]    [c.4]    [c.445]    [c.24]    [c.518]    [c.432]    [c.348]    [c.251]   
Смотреть главы в:

Физикохимия полимеров Издание второе -> Механическая прочность и структура полимеров

Физико-химия полимеров 1978 -> Механическая прочность и структура полимеров




ПОИСК





Смотрите так же термины и статьи:

Механическая прочность

Структура прочность



© 2025 chem21.info Реклама на сайте