Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фториды катионов II группы

    Одно из главных преимуществ ИХ — быстрое одновременное определение многокомпонентных смесей катионов или анионов (до 10 и более) в течение 2-15 мин. Основные анионы (фторид, хлорид, нитрат, сульфат, фосфат) можно разделить на хороших ионообменниках за 2-5 мин., за 15-20 мин. можно разделить все катионы группы лантанидов. ИХ способна разделить и определить катионы в разных валентных состояниях, например, Ге " чего не может сделать атомно-адсорбционная спектрометрия. [c.327]


    Рассмотрим теперь, какова же причина поведения катионов металлов в растворе как катионов группы а или группы б . На основании тщательного анализа имеющихся термодинамических данных высказано предположение, что основной вклад в свободную энергию комплексообразования а -катионов вносит энтропийный член, тогда как в случае образования комплексов катионами группы б большее значение имеет энтальпия комплексообразования [34]. Рассмотрим сначала взаимодействие а -катиона, железа (III), с фторид- и хлорид-ионами [35,36].  [c.258]

    Осаждение фторидов катионов третьей аналитической группы. К 10—15 каплям раствора, содержащего катионы третьей аналитической группы, прибавляют насыщенный раствор NaP. Выделяется осадок белого цвета. [c.113]

    Изучение реакций катионов I аналитической группы представляет одну из возможностей научиться составлять уравнения и понимать их сущность. В связи с этим рекомендуется учащимся самостоятельно составить уравнения реакций на все катионы I аналитической группы со следующими реактивами едким натром, карбонатом, фосфатом, дигидроантимонатом, гидротартратом, гексанитро-кобальтатом (III) натрия, винной кислотой (и присутствии ацетата натрия), ацетатом уранила, фторидом аммония и оксихинолином. [c.98]

    Отличительной чертой катионов I аналитической группы является то, что большинство их солей хорошо растворимо в воде. Наиболее растворимыми являются соединения натрия и калия. Так, например, хорошо растворяются в воде хлориды, фториды, сульфиды, карбонаты, сульфаты, фосфаты, гидроокиси и многие другие соединения калия и натрия. [c.98]

    Необходимым условием для этого является наличие у винилкетона трифторметильной группы в р-положении к карбонильной группе. Реакция, очевидно, начинается с отщепления аниона фтора, а возникающий катион Ц внутримолекулярно атакует атом кислорода карбонильной группы с образованием циклического катиона Ч, который при стабилизации фторид-ионом превращается в соединение 131. Аналогично нагревание перфтор-4,6-диметил-гепт-4-ен-З-она 132 в 8Ь 5 приводит к образованию перфтор-2,2,4-триме-тил-5-этил-2,5-дигидрофурана 133, который далее превращается в термодинамически более стабильный перфтор-2-этил-3,5,5-триметил-4,5-дигидрофуран 134. [c.259]

    Акрилонитрил Полимер Се + в водной среде, в присутствии фторидов, хлоридов, бромидов, иодидов, нитратов, сульфатов катионов I и И аналитических групп [62] (1 Н4)зСе(ЫОз)в в водном растворе КС1, 1 ч. Выход 98,8% [631 [c.303]


    У читателя этой главы может создаться впечатление, что многие элементы существуют в виде простых катионов и анионов в твердом состоянии и в растворах. Это не совсем так. Полностью ионных кристаллов не. существует даже во фториде цезия — соединении самого электроположительного металла с наиболее электроотрицательным неметаллом — имеется небольшая доля ковалентной связи. Ион в любом твердом кристалле окружен координационной группой из других атомов или ионов и всегда существует некоторое взаимодействие между ними, тогда как в растворе ион всегда окружен более или менее определенным слоем молекул растворителя. Несмотря на это, полезно, как уже сделано в этой главе, говорить об ионах , так как из этого приближения можно извлечь ряд ценных выводов. Более подробно типы связи будут рассмотрены в главах 6 и 8. [c.92]

    Термодинамический подход к теории Пирсона. Особый интерес представляют результаты, полученные Арландом при изучении равновесий, соответствующих образованию галогенидных и цианидных комплексов с катионами главных и побочных групп периодической системы. В соответствии с законами термодинамики отрицательное значение свободной энтальпии реакции А0 = Д//-7Т Д5 отвечает образованию устойчивого комплекса. Изучение экспериментальных данных показывает, что при образовании соединений в комбинации жесткая кислота — жесткое основание Д0<0 вследствие увеличения энтропии при образовании комплекса. Так, например, образование фторид  [c.401]

    Фториды калия и натрия растворимы в воде, поэтому реакция образовании мпл0раств0рим010 LIF можеп быть использована для обнаружения ионов Li+ в присутствии ионов Na+ и К . Из катионов I аналитической группы реакции обнаружения ионов Li " мешают линИ) ионы Mg , образуюн.ии> с фторид-ионами малорастворимый MgI-2 (ПР = 6,5 10 "). [c.243]

    Структура неорганических веществ отличается большим многообразием в зависимости от природы и числа частиц, входящих в кристаллическую решетку. При этом частицы одного вида соединяются друг с другом посредством металлической связи (элементы левой части таблицы Д. И. Менделеева), ковалентной связи с образованием полимерного каркаса (элементы середины таблицы), связи частично ионной и частично ковалентной (некоторые элементы П1, IV и V групп таблицы Д. И. Менделеева), ковалентной связи с образованием отдельных молекул и ван-дер-ваальсовых сил между этими молекулами. При наличии в составе соединения частиц двух видов связь между ними может быть ионной или близкой к ней при значительной разности электроотрицательностей между элементами (фториды, хлориды, ряд оксидов) при малой разности электроотрицательностей — преимущественно ковалентной (SO2, СО т. д.), а также связью, сочетающей признаки и ионной, и ковалентной (большинство оксидов, карбиды, нитриды, бо-риды, силициды). При наличии же в составе соединения трех и более элементов картина может быть еще более сложной. Отдельные элементы за счет преимущественно ковалентной связи между ними могут образовать самостоятельные структурные группировки — радикалы типа SO42-, Si04 -, А104 и т. д., остальные же элементы вследствие передачи своих электронов этим радикалам могут связываться с ними посредством преимущественно ионной связи (Na+, Са2+, АР+ и т. д.). Более того, могут возникать группировки в виде цепей, лент, слоев и даже каркасов, имеющих заряды, равномерно локализованные по фрагментам этих группировок, связанных друг с другом через катионы металлов. Б случае же незаряженных структурных единиц, например слоев у некоторых глинистых минералов, связь между слоями является ван-дер-ваальсо-вой, или водородной. [c.25]

    Катионы элементов IVA группы, подвергаются гидролизу. Из всех соединений элементов в степени окисления +4 наибольшее значение имеют галогениды ЭГ4. Они известны для всех элементов (РЫ4 и РЬВг4 не получены). По физическим свойствам ЭГ4, кроме фторидов олова и свинца, похожи на галогениды кремния, например ЗпСЦ, как и Si U, бесцветная жидкость. [c.470]

    Хлориды металлов. Для металлов I—IV групп периодической системы максимальная степень окисления в хлоридах совпадает с номером группы. Только металлы подгруппы меди, некоторые лантаноиды и актиноиды дают наряду с характеристическими хлориды более высокой и низкой степеней окисления. Но обусловлено это не образованием катионо- или анионоизбыточных фаз, а проявлением переменных степеней окисления указанных металлов. В случае металлов V—VIII групп максимальная степень окисления по хлору, отвечающая номеру группы, как правило, не достигается. Главная причина этому — недостаточная окислительная активность хлора. Даже фтор не дает многие теоретически возможные высшие фториды. Кроме того, атомы металла не могут координировать вокруг себя много атомов хлора из-за пространственных затруднений (стеричес-кий фактор). [c.363]


    К первой группе относят анионы, образующие малорастворимые в воде (в нейтральной или слабо щелочной среде) соли с катионами бария Ва ". Групповым реагентом является обычно водный раствор хлорида бария ВаСЬ. В табл. 16.1 в эту первую группу включены 10 анионов сульфат-анион ЗО , сульфит-анион ЗО ", тиосульфа -анион З Оз , оксалат-анион С2О4, карбонат-анион СО, , тетраборат-анион В4О5", (сюда же относятся анионы и метаборрюй кислоты ВО ), фосфат-анион (ортофосфат-анион) РО ", арсенат-анион АзО , арсенит-анион АзО ", фторид-анион Р . Иногда в эт) группу включают хромат-анион СгО , дихромат-анион Сг, , иодат-анион Ю,, периодат-анион I0 , тар- [c.419]

    Многие реакции в качественном анализе и титриметрическом методе осаждения (аргентометрия, меркурометрия) основаны на образовании мало растворимых соединений ( 19, 21). Повышенная растворимость галогенидов щелочных металлов объясняется ослаблением сил взаимодействия между ионами в кристаллической решетке. С этим связано отсутствие группового реагента на щелочные металлы. Вещества со слоистыми или молекулярными решетками растворяются лучше, чем вещества с решеткой координационной структуры. Это используют в химическом анализе для разделения катионов подгруппы соляной кислоты от катионов подгруппы сероводорода. Катионы серебра и свинца (II) образуют хлориды, имеющие решетки координационной структуры и поэтому менее растворимы. Хлориды СиС и СсЮЦ имеют слоистые решетки и поэтому хорошо растворимы, как и близкий к ним по строению решетки 2пС 2. Растворимость солеи связана также с радиусами их ионов. Соли с большими катионами и малыми анионами хорошо растворимы, а соли с малыми катионами и большими анионами — плохо (Яцимирский). Растворимость вещества зависит от соотношения полярностей растворенного вещества и растворителя. Установлено также, что растворимость солей зависит от их химической природы, например, для гидроокисей, сульфатов, хлоридов, фторидов элементов 1-й и 2-й групп периодической системы  [c.69]

    Специфичность реакции можно повысить путем маскировки сопутствующих ионов. Маскировка заключается в связывании мешающих ионов в достаточно прочные комплексы добавлением в раствор соответствующих веществ. Например, медь и свинец можно маскировать, переведя их в тартраты в таком растворе можно обнаружить те ионы, которые не образуют тартратные комплексы. Маскировка мешающих ионов часто используется и имеет большое практическое значение. Например, если в ходе анализа катионов 4-й группы к раствору, содержащему медь, кадмий, висмут, свинец, прибавить глицерин, с которым все катионы, кроме кадмия, образуют прочные комплексы, не осаждаемые щелочами, а затем подействовать гидроокисью натрия, то кадмий оседает в виде гидроокиси, а остальные катионы останутся в растЕоре и могут быть затем обнаружены. Ион Ре " мешает обнаружению Со + в виде синего роданидного комплекса, так как образует темно-красный комплекс ( 81, 82), что мешает определению кобальта. Если же железо предварительно перевести во фторидный комплекс 1РеРйР или [РеРа]-, добавляя фторид натрия, то оно не помешает определению кобальта, так как комплекс железа с фторид-ионами значительно устойчивее, чем железороданидный комплекс. Кадмий можно осадить в виде желтого сульфида в присутствии меди (И), связывая медь в цианидный комплекс [Си (СЫ) , более прочный, чем цианид-ный комплекс кадмия. /Снест для комплекса кадмия 1,4-10" , а для комплекса меди (I) 5-10 , т. е. значительно меньше. [c.100]

    По своим аналитическим свойствам Li -ионы отличаются двойственным характером. С одной стороны, Li -ионы образуют аналогично ионам щелочных металлов умеренно растворимое в воде сильное основание LiOH. В этом отношении Li -ионы напоминают Na -ионы. С другой стороны, подобно ионам магния и катионам II аналитической группы, Li -ионы образуют малорастворимые карбонат, фосфат и фторид, отличаясь этим от Na -ионов. Таким образом, литий является переходным элементом от группы щелочных к группе щелочноземельных металлов. [c.100]

    Реакцию С Na Og или К2СО3 применяют для отделения Li - и Mg -иоиоз от других катионов 1 аналитической группы. Кроме того, имеет большое значение реакция образования фторида лития. [c.468]

    Анионы элементов одной группы при перемещении сверху вниз вдоль нее приобретают все большие размеры и все большую поляризуемость. Хотя в рядах такого типа ионный заряд остается постоянным, увеличение поляризуемости обусловливается тем, что этот заряд оказывается распределенным в последовательно возрастающем объеме. Например, I поляризуется значительно легче, чем F , так как первый из этих ионов намного больше второго. Эта закономерность изменения поляризуемости и ее влияние на характер образуемых элементами химических связей очень хорошо иллюстрируются на примере соединений AgF, Ag l и Agi AgF является соединением преимущественно ионного типа (степень ионности связи в нем достигает 55%), Ag l лишь на 40% ионное соединение, а Agi — всего на 13%. Электрическое поле катиона Ag поляризует иодид-ион в гораздо большей степени по сравнению с тем, как оно поляризует намного меньшие по размерам хлорид- и фто-рид-ионы. Многие иодиды других элементов также обладают преимущественно-ковалентным характером, в то время как фториды и хлориды соответствующих элементов оказываются гораздо более ионными соединениями. [c.326]

    Другой предельный случай (2) дожен осуществляться при взаимодействии очень малых по размеру катионов и очень больших анионов, как, например, Lil и MgTe среди галогенидов элементов I группы и халькогенидов элементов II группы соответственно. В действительности же структурный тип Na l характерен для большинства соединений этих двух семейств. Для них отношение ионных радиусов га Гх изменяется в очень широких пределах, и сюда входят даже такие соединения, как KF и ВаО, которые построены из катионов и анионов приблизительно одинакового размера. Концепция ионных радиусов обсуждается в гл. 7. Расстояния между атомами X во фторидах щелочных металлов составляют [c.288]

    Коагуляция при воздействии фторид-иона при низких значениях рн представляется уникальным явлением, очевидно не связанным с процессом коагуляции под действием катионов. Теоретически это объясняется тем, что группы SiOH на поверхности по крайней мере частично замещаются группами SiF, в результате чего поверхность становится гидрофобной. Подобные кремнеземы частицы затем подвергаются флокуляции под воздействием гидрофобных связей. [c.779]

    Для блокирования реакционноспособной тиольной группы цистеина используют больщой набор аралкильных групп. Для этой цели используют бензильную [53] и более кислотолабильные п-ме-токси- [54] и п-метилзамещенные [55] бензильные, а также дифе-нилметильную [56] и трифенилметильную (тритильную) группы [56, 57]. С первой из этих групп образуется очень устойчивое защищенное производное, удаление из которого блокирующей группы требует либо восстановления натрием в жидком аммиаке, либо обработки жидким фторидом водорода. С другой стороны, 5-три-тильные производные расщепляются в сравнительно мягких условиях (H I/ H I3), что связано с высокой устойчивостью трифенилметил-катиона. [c.388]

    Остальные элементы 1-й группы подобны натрию. Тяжелые элементы еще более химически активны и в своих соединениях существуют только в форме катионов М . Литий заметно отличается от других тем, что в ряде литийорганических соединений, например Li Hs, может образовывать связи, по характеру приближающиеся к ковалентным. Его аквакатион [Li(H20)4] более устойчив, чем аквакатион натрия, и обычно переходит в твердые соли (кристаллогидраты). Некоторые соли лития (карбонат, фторид) малорастворимы. Литий - единственный из металлов, который реагирует с азотом при стандартных условиях с образованием нитрида LigN. [c.246]

    Структуры типа СаРг. Эти структуры характерны для фторидов многих катионов, а также для ЗгСЬ, ВаСЬ и оксидов четырехзарядных ионов (Се, Рг, Н , ТЬ, и). В этих случаях правило отношения радиусов г+/г >0,7, применимое и для катиона с координационным числом 8 гранецентрированной кубической решетки, почти всегда выполняется. Сумма ионных радиусов почти не отличается от экспериментально определенного расстояния между ионами, что характерно для чисто ионных структур. С другой стороны, соединения элементов У1В-под-группы со щелочными металлами относятся к инвертированной структуре типа СаРз, но и для них выполняется правило отношения радиусов г+/г- > 0,7. Однако правило отношения радиусов г+/г 0,4 для тетраэдрической конфигурации X не выполняется. Для этих соединений одна лишь модель локальной упаковки с учетом только геометрических факторов недостаточна. [c.191]

    Первый класс первой группы был рассмотрен в предыдущих параграфах, причем оказалось, что индивидуальные свойства очень сильно зависят. от размера ионов. Взаимодействия специфического характера, которые выэы-вают обращение последовательности коэффициентов активности для катионов в присутствии ионов фтора и гидроксила, согласно Скэтчарду и Прентису, также обусловлены очень малыми размерами этих ионов. Хотя точные экспериментальные данные для фторидов почти совершенно отсутствуют, все же можно полагать, что ион фтора является акцептором протонов, так как осмотический коэффициент 1 М раствора фтористоводородной кислоты почти такой же, как осмотический коэффициент муравьиной кислоты при той же концентрации. Если это допущецие правильно, то механизм взаимодействия катионов с растворителем (водой), рассмотренный в 5, может иметь существенное значение. В анионе большого размера, вроде ацетат-иона, заряд расположен, повидимому, на значительном расстоянии от центра иона. С этим обстоятельством может быть связана способность этих анионов соединяться о протонами и явление обращения последовательности коэффициентов активности для различных катионов. [c.372]

    Изучение фотолюминесценции урановых минералов и руд показало, что не все урановые и урансодержащие минералы люминесцируют [155, 738, 1055, 1057 и др.]. Наиболее ярко люминесцируют фосфаты, фториды, арсенаты, карбонаты, сульфаты и суль-фокарбонаты уранила. Слабо люминесцируют ванадаты и силикаты. Цвет люминесценции урановых минералов может быть желто-зеленым, голубовато-зеленым, желтым. Спектральный состав излучения можно установить с помощью карманного спектроскопа. Минералы, в состав которых входят U(IV)), а также U (VI), выступающий в качестве кислотообразующего окисла, не люминесцируют. Люминесцентная способность минералов, содержащих группу уранила, зависит от других катионов и анионов, присутствующих в минералах так, Си , Fe +, РЬ +, Fe" +, Мп , Ag , Со , либо полностью тушат люминесценцию уранилсодер-жащих минералов, либо сильно уменьшают интенсивность свечения. [c.158]

    В некоторых случаях, когда интерес представляет определение только отдельного иона, предварительное разделепие на аналитические группы является излишним. Так, например, можно хроматографически отделить и идентифицировать в горных породах уран наряду с большим числом различных катионов [7], причем сопутствующие ионы этому не мешают. Для этого расплавляют небольшую пробу горной породы в смеси фторида натрия и сернокислого кислого калия на платиновой проволочке, перл растворяют в нескольких каплях 4,7 н. НМОз и наносят на пластинку постепенно увеличиваю-ищеся количества полученного раствора. [c.466]

    Группа титриметрических определений, объединенная применением титрованного раствора фторида натрия, получила название фториметрия [110]. Ионы фторида со многими катионами образуют малорастворимые или [c.80]

    Бария фторид Вар2 Токсическое действие. Протоплазматический яд, действующий на ряд ферментов, блокирующий также сульфгидрильные группы. При остром отравлении на передний план выступает действие на нервную систему и мускулатуру. Ядовитость фторида определяется токсичностью и катиона, и аниона. В частности, гонадо- и эмбриотоксическое действия выражены сильнее, нежели у других соединений Б., из-за наличия в молекуле фтора [c.426]


Смотреть страницы где упоминается термин Фториды катионов II группы: [c.82]    [c.138]    [c.138]    [c.114]    [c.301]    [c.403]    [c.498]    [c.79]    [c.1683]    [c.373]    [c.140]    [c.401]    [c.158]    [c.373]    [c.140]    [c.401]   
Курс аналитической химии Издание 5 (1981) -- [ c.138 ]




ПОИСК





Смотрите так же термины и статьи:

Фторид-ионы действие на катионы II группы

группы фторид



© 2024 chem21.info Реклама на сайте