Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические полимеры углеводороды

    Область применения ультрафиолетовой спектроскопии, ограниченная в основном ароматическими углеводородами, за последние годы расширяется в связи с развитием синтеза новых ароматических полимеров и полимеров, содержащих двойные связи. Основные достоинства метода ультрафиолетовой спектроскопии при решении аналитических задач и при идентификации углеводородов заключаются в высокой чувствительности, точности и быстроте анализа, а также в простоте экспериментальной методики и аппаратуры и достаточно малом количестве вещества, требуемого для исследования. К числу недостатков метода, в некоторых случаях ограничивающих возможность его аналитического использования, следует отнести наложение спектров и их недостаточную избирательность. В этом отношении колебательные спектры (инфракрасные и комбинационного рассеяния) обладают более широкими возможностями, однако во многих случаях целесообразно использовать одновременно несколько спектральных методов. [c.3]


    НОМ СОСТОЯНИИ. По данным Рассела [17—19], аналогичную избирательность атомы хлора приобретают в присутствии сероуглерода и некоторых ароматических растворителей. Известно, что при хлорировании смеси алифатических и ароматических углеводородов преимущественно хлорируются первые [20]. В качестве примера можно привести хлорирование полиэтилена в растворе дифенила [21]. Однако при галогенировании винил ароматических полимеров преимущественного галогенирования боковых цепей полимера не происходит. [c.227]

    Широкое развитие получили различные поликонденсационные процессы для синтеза серосодержащих ароматических полимеров. Высокая реакционная способность серы и ее производных в отношении ароматических углеводородов создала перспективы для успешной реализации поликонденсационных процессов на этой основе [1-37]. [c.189]

    Этилен (I) Парафины, ароматические углеводороды, алифатические и ароматические полимеры Цеолиты типа X с катионами редкоземельных элементов проток, 1 бар, 12 мл 1/мин, при 177 С — 390 мин, 149° С— 345 мин, 213° С —210 мин, 121° С — 360 мин, 93° С — 405 мин. Состав и соотношение продуктов зависят от температуры [107] [c.478]

    SP-525 Углеводород (ароматический полимер) 60 275—330 X [c.331]

    Углеводороды, образующиеся при каталитической полимеризации в присутствии ортофосфорной кислоты, как правило, состояли из смеси полимеров и содержали 15% парафинов, 63% олефинов, 10% циклопарафинов, 6"% циклоолефинов и 6% ароматических углеводородов. [c.194]

    Ароматические полимеры способны к образованию л-комплексов, т. е. комплексов, образованных подвижными л-электронами ароматических колец и свободными орбиталями молекул растворителя, в том числе и молекул ароматических растворителей. Этим объясняется хорошая растворимость полистирола в ароматических. углеводородах и в некоторых хлорпроизводных (тетрахлорэтане, хлороформе). [c.275]

    Исходными веществами для синтеза полимеров путем рекомбинации радикалов являются алифатические и ароматические насыщенные углеводороды (что отличает этот способ синтеза от всех других). Принцип синтеза полимеров путем рекомбинации состоит в превращении углеводородов в свободные радикалы с последующей их рекомбинацией. Это может быть достигнуто, например, при пиролизе углеводородов или путем передачи цепи на углеводород радикалом, полученным при распаде перекисных инициаторов. Последний метод был разработан В. В. Коршаком с сотрудниками. Реакция протекает по следующей схеме (на примере га-диизопропил-бензола)  [c.133]

    Углеводороды. Углеводороды как класс органических соединений обладают низкой полярностью и сильной гидрофобностью. Поэтому они являются растворителями для неполярных или слабополярных материалов, к которым относятся масла, битумы, пеки, кремнийорганические полимеры. Углеводороды широко используют в качестве разбавителей в лаках, предназначенных для эмалирования проводов. Существует много углеводородных растворителей, получаемых из нефти или каменноугольной смолы они могут быть от исключительно алифатических до полностью ароматических и имеют довольно широкий интервал температур кипения. Свойства наиболее распространенных индивидуальных углеводородов, применяемых в качестве растворителей, приведены в табл. 1. [c.195]


    При использовании смеси полимеров очень важно, чтобы она была гомогенной. Это трудно обеспечить, в частности, при смешении эластомеров и полимеров с различными полярностью и взаимной растворимостью. В таком случае в состав клея вводят специальные гомогенизирующие агенты — в основном смеси алифатических и ароматических полимеров, а также нафтеновых углеводородов [12]. Эти соединения одновременно являются и смачивающими веществами, облегчающими введение в композицию наполнителей. Гомогенизирующее вещество не только улучшает дисперсность композиции, но и ускоряет достижение равновесия и формирование непрерывной фазы. [c.9]

    Оптимальное соответствие между термостойкостью, перерабатываемостью и свойствами полимерных материалов достигается для карбоциклических ароматических полимеров посредством введения таких атомов или атомных группировок между ароматическими кольцами, как —О—, —СО—, —NH—, —5—, —ЗОг—. Это приводит к снижению сопряжения между ароматическими кольцами и повышению гибкости цепей макромолекул. Полимеры, построенные таким образом, плавки и растворимы в полярных растворителях. Гибкие связи имеют достаточную стойкость к термической и термоокислительной деструкции, поэто.му термостойкость ароматических полимерных углеводородов большей частью при этом не ухудшается. Из значений энергии диссоциации (см. табл. 2.4) и температур разложения ароматических двухъядерных соединений как модельных соединений для ароматических полимеров с алифатическими мостиковыми группами (табл. 2.5) можно сделать вывод, что при создании термостойких полимеров для [c.35]

    Качественные исследования реологических свойств полимеров, образованных низкомолекулярными ароматическими углеводородами, показали, что эти полимеры обладают тиксотропией. Они концентрируются преимущественно с той стороны пятна износа, где верхний шар входит в контакт с нижним. Поглощенный полимером углеводород быстро испаряется, оставляя коричневый рыхлый осадок. [c.103]

    Ароматические углеводороды окисляются несколько труднее, чем нафтены, но стойкость их против окисления падает по мере усложнения молекул, в частности с увеличением числа колец. При этом в случае наличия у ароматических колец коротких боковых цепей (или коротких цепей, связывающих между собой ароматические радикалы) окисление сопровождается образованием высокомолекулярных продуктов— смол, асфальтенов и карбенов, часто выпадающих в осадок. Если даже у ароматических колец имеются длинные алкильные цепи, то в результате окисления образуется меньше полимеров, но больше органических кислот и подобных продуктов, не выпадающих в осадок. [c.142]

    Истинной полимеризацией, предложенной Ипатьевым и Пинесом [27], называется полимеризация, в которой продуктами реакции являются моноолефины более высокого молекулярного веса, кратного молекулярному весу мономера под смешанной же полимеризацией понимают такую полимеризацию, в которой продукт реакции представляет сложную смесь олефинов, диолефинов, парафинов, циклопарафинов, циклоолефинов и ароматических углеводородов. Наконец, третий термин гетерополимеризация употребляется в тех случаях, когда получающийся полимер состоит только из моноолефинов с молекулярными весами, не кратными молекулярному весу мономера. [c.187]

    А — регенерировано этилена 13,7 %, бутилена 0,7%, изобутана 11,6 % и жидкого полимера 73,7% В — регенерировано этилена 18,0%, бутилена 0,8%, изобутана 6,4 % и жидкого полимера 74,5%. Жидкий полимер содержат парафины, циклопарафины, олефины и ароматические углеводороды. Присутствие этих различных классов углеводородов указывает на то, что шла смешанная полимеризация. [c.196]

    Продукт полимеризации имел следующие свойства средний молекулярный вес 156, среднее бромное число 43, октановое число 84,9 и приблизительно такой групповой состав — 41 % непредельных, 29 % предельных и 30% ароматических углеводородов. Суммарный полимер, выкипавший в пределах 40—350°, имел плотность 0,769 при 20°, а выделенные из него фракции характеризовались следующими пределами выкипания и плотностями..  [c.203]

    Мономерная фракция ля в одном опыте не содержала продуктов, более бедных водородом (ароматические, диеновые углеводороды и т. п.), нежели исходные углеводороды. Следовательно, реакций типа необратимого катализа Зелинского на алюмосиликатах не протекает и источников водорода в мономерной фракции не содержится. Полимерная фракция, особенно в опытах с оле( инами, представляет собой продукт с весьма широкими пределами выкипания. В высококипящпх частях ее определенно грисутствует некоторое количество ароматических углеводородов. Однако основное количество полимеров содержит столько же предельных Цродуктов, сколько содержит их и мономерная фракция, присутствие же в высококипящих фракциях некоторых количеств ароматических углеводородов является, вероятнее всего, результатом вторичных процессов. [c.20]


    Эта реакция представляет практический интерес [84], так как может служить методом прямой переработки асфаль-тенсодержащих остатков с получением низкокипящих углеводородов. Переработка асфальтенов может быть осуществлена в присутствии водорододонорных веществ, например, нафтеновой фракции (Гкип 130—225 °С), которая в присутствии катализаторов (тптан, торий, цирконий) выделяет водород. Гидрирование проводят также в присутствии ароматических полимеров при 400 °С и давлении 300 ат в течение 42 часов [84]. [c.21]

    Перекиси (в частности, перекись бензоила), 2,2-азобисизобути-ронитрил и геминальные хлор- и бромнитрозосоединения при фотовозбуждении распадаются с образованием соответственно алкоксильных, алкильных и галоген-радикалов. В результате происходит свободнорадикальное инициирование деструкции полимеров за счет отрыва возникшими радикалами водородного атома от макромолекул. Так, в частности, сенсибилизируется фотодеструкция цис-1,4-полиизопрена. Многие ароматические конденсированные углеводороды (нафталин, антрацен и т. п.) являются сенсибилизаторами деструкции полимеров вследствие образования синглетного кислорода. Так, нафталин ускоряет фотоокисление полиметилметакрилата, а антрацен — полистирола и 1,4-полибутадиена. Эти же сенсибилизаторы могут действовать и по механизму переноса энергии от их высших возбужденных состояний к полимеру эффективная фотодеструкция полиэтилена в присутствии фенаитрена, например, объясняется Т—Г-поглощением последнего (время жизни -состояний около 3 с) и переносом избыточной [c.183]

    Реакции присоединения. Образование новых связей металл — углерод в результате присоединения к ненасынгенному углеводороду металлалкила или металларила также ограничивается более или менее сильно электроположительными элементами, включая бериллий и алюминий. Алкильные производные щелочных металлов легко присоединяются к ненасыщенной углерод-углеродной связи в сопряженных системах или в олефинах, имеющих у двойной связи ароматическую группу. С сопряженными диолефинами алкильные производные щелочных металлов реагируют как катализаторы полимеризации и образуют полимеры углеводородов с большим молекулярным весом. (Так как на концах цепи остаются атомы металла, то эти полимеры являются металлалкилами, в которых алкильная группа чрезвычайно велика.) Алкильные производные сильно электроноакцепторных элементов бериллия и алюминия могут присоединяться к простым олефинам, например к этилену, но процесс повторяется и в результате реакции получаются полимеры углеводородов. Например, при 80° бериллийалкилы вызывают полимеризацию этилена, а алюминийалкилы и их производные используются в промышленности как катализаторы полимеризации олефинов [20, 21]. [c.70]

    Рационально используя методики синтеза, можно приготавливать сорбенты по мерке , т. е. специально для требуемого разделения. Большое внимание уделялось поиску асимметричных сорбентов с активными группами, пригодными для разделения оптических изомеров. В литературе описан ряд таких попыток, но в большинстве случаев авторам удалось добиться лишь частичного успеха [24] . Для сорбции соединений с тиольными группами приготавливали меркурированные полимеры, на которых были, в частности, разделены цистеин и глутатион [124]. Сорбенты на основе нитрованных ароматических полимеров применяли для разделения ароматических углеводородов (рис. 5.24), Успешные хроматографические разделения проведены на крупнопористых сополимерах стирола и дивинилбензола, не содержащих функциональных групп. С помощью этих сополимеров можно успешно отделить, например, нафталинмоносульфонат от дисульфоната (рис. 5.25). В работе [56а] описано разделе- [c.303]

    На основании рассмотренных данных о строении высоконлав-ких и стойких к термической или термоокислительной деструкции полимеров можно сделать вывод о том, что карбоциклические полиароматнческие углеводороды должны обладать более высокой термостойкостью, чем алифатические полимеры, включая поли-фторолефины. Вследствие высокой жесткости цепей ароматические полимерные углеводороды имеют очень высокую температуру плавления или вообще являются неплавкими продуктами. Энергия диссоциации ароматических С—С-связей составляет 120 ккал/моль, что примерно на 30 ккал/моль больше энергии диссоциации связей С—С в алифатических соединениях, которая близка энергпи диссоциации С—Н-связей в ароматических углеводородах (Ео — 102 ккал/моль по сравнению с 89—94 ккал/моль для третичных или вторичных алифатических С—Н-связей). Атомы водорода в ароматических соединениях в противоположность алифатическим не могут отщепляться под действием свободных радикалов (термоокислительная деструкция). Как следует из значений энергии диссоциации, в карбоциклических ароматических углеводородах С—Н-связи разрушаются раньше С—С-связей. Дальнейшее повышение термической стойкости можно осуществить посредством замены слабых С—Н-связей С—Р-связями, например поли-п-ксилилен (5.2) — политетрафтор-л-кснлилен (5.2.8). [c.35]

    Более высокую термостойкость по сравнению с карбоциклическими ароматическими полимерами имеют гетероциклические ароматические полимеры. Из сопоставления значений температуры разложения карбоциклических ароматических углеводородов и соответствующих гетероциклических ароматических систем (табл. 2.6) видно, что гетероциклические ароматические углеводороды обладают более высокой термостойкостью. С увеличением количества введенных гетероатомов в ароматические системы число наиболее слабых С—Н-связей снижается. Другим преимуществом данного класса полимеров по сравнению с карбоциклическими полимерами является простота их синтеза. Реакция образования гетероциклов может одновременно служить для связи между собой различных полифункциональных мономеров (циклополиконденсация). В отличие от получения незамещенных карбоциклических ароматических полимерных углеводородов синтез указанных полимеров включает несколько стадий. Например, [c.36]

    Полимер имеет исключительно низкую, близкую к полиэтилен-терефталату газопроницаемость для кислорода и диоксида углерода. Этерификация вторичных гидроксильных групп приводит к повышению проницаемости [518]. Химическая стойкость и стойкость к действию погодных факторов хуже, чем у поликарбоната. Полигидроксиэфир стоек к действию 10 %-ного гидроксида натрия, 10 %-ной серной кислоты, 10 %-ной азотной кислоты, 10 %-ного аммиака, глицерина, минеральных и растительных масел. Полимер набухает и даже растворяется в бензине, кетонах, сложных эфирах, ароматических хлорированных углеводородах. При эте-рификации вторичных гидроксильных групп происходит увеличение стойкости полимера к действию полярных растворителей. Двухосно-ориентированные пленки склонны к растрескиванию под нагрузкой только при контакте с диэтиловым эфиром и хлорбензолом [473]. Воздействие внешних погодных факторов приводит к пожелтению и появлению хрупкости. Термическая деструкция незначительна до 200 °С. Этерификация полигидроксиэфира вызывает снижение эластичности при одновременном улучшении химической и термостойкости. [c.244]

    Растворимость. Полиариленсульфоноксиды на основе дихлордифенилсульфона и дифенилолпропана при комнатной температуре растворяются в кетонах, например в ацетофеноне и циклогексаноне, хлорированных углеводородах, таких, как метиленхлорид, хлороформ, тетрахлорэтан, циклических эфирах типа диоксана и тетрагидрофурана, полярных ароматических углеводородах — хлорбензоле и дихлорбензоле, диметилформамиде, диметилацетамиде и Н-метилпирролидоне. В процессе выдержки растворов таких полимеров в некоторых растворителях происходит их помутнение за счет выпадения кристаллических олигосульфонов. Высокомолекулярные полиариленсульфоноксиды аморфны [535]. Полностью ароматические полимеры растворяются в диметилформамиде, диметилацетамиде, диметилсульфоксиде, у-бутиролактоне, л-крезоле, Н-метилпирролидоне, анилине и пиридине [561]. Осадительной [c.251]

    В противоположность полибензоксазинонам полибензоксазиндионы плавятся и растворяются. Температура плавления ароматических полимеров находится в интервале 300—400 °С. Термическая деструкция происходит при температурах выше 400°С. Полибензоксазиндионы растворяются в хлорированных углеводородах, например метиленхлориде и трихлорзтилене, а также в диметилформамиде, диметилацетамиде, N-метилпирролидоне и крезоле. [c.992]

    В книге уже отмечалось, что развитие техники высоких давлений и расширение доступного экспериментаторам диапазона давлений до сотен тысяч атмосфер способствовали все более широкому развертыванию исследований реакционной способности твердых веществ в этих экстремальных условиях. Некоторые результаты этих работ приведены в главе IV части 1 и главе V части 2 книги. Здесь и реакции, осуществляемые на наковальнях Бриджмена (в том числе с приложением давления, сочетаемого с напряжениями сдвига), и реакции в динамических условиях в ударной волне. Давления, применяемые в этих исследованиях, составляют, как правило, не менее 50—100 кбар. Перечислим кратко некоторые наблюденные химические эффекты восстановление окислов, а также прямой синтез сульфидов и фосфидов некоторых металлов при комнатной температуре химические реакции между компонентами молекулярных комплексов с переносом заряда и реакции уплотнения ароматических полициклических углеводородов синтез нового окисла бора BgO полимеризация в установках сдвиг под давлением и в ударной волне твердых мономеров, не полимеризующихся в иных условиях, а также сшивка полимеров, обладающих ненасыщенными связями, и, напротив, разрыв некоторых химических связей при комнатной температуре. Перечень [c.401]

    Поликоиденсация ароматических углеводородов, содержащих галоген в боковой цепи, или дигалогеналканов с ароматическими углеводородами в присутствии хлористого алюминия или других подобных катализаторов является способом получения карбоцепных высокомолекулярных соединений, содержащих в цепи остатки ароматических углеводородов. Так, к образованию полимеров приводит поликондеисация бензилхлорида [1—8], бензил-бромида [10, ксилилхлорида [6], ге-бромбензилхлорида [7], а-хлорэтилбен-зола [31 и других ароматических углеводородов, содержащих галоген в боковой цепи [11—13]. Давно известны различные случаи взаимодействия ди-галогенпроизводных алифатических углеводородов с ароматически.ми углеводородами в присутствии катализаторов Фриделя —Крафтса [14 — 38]. До недавнего времени эти реакции применялись в основном для нолучения индивидуальных низкомолекулярных веществ. Однако проведение реакции в соответствующих условиях открывает возможность получения этим снособом высокомолекулярных карбоцепных полимеров [39 75]. [c.232]

    Известно, что полимеры с ароматической системой сопряжения и термически обработанные ароматические полиядерные углеводороды являются хорошими высокотемпературными стабилизаторами [112J механизм их действия и причины их высокой антиокислительной активности неизвестны. Возможно, однако, что эти стабилизаторы являются ярким примером внутреннего синергизма благодаря их способности акцептировать и алкильные, и перекисные радикалы. Хилшзм акцептирования можно упрощенно представить следующим образом (на примере замещенного фенильного кольца)  [c.292]

    Для предотвращения образования перекисных соединений и их разрушения при хранении диеновых углеводородов применяют различные соединения. Для стабилизации бутадиена при хранении в качестве ингибитора используют алифатические меркаптаны, содержащие от 6 до 10 атомов углерода. Представителем этих соединений является н-гептилмеркаптан. Для предотвращения образования полимера при хранении бутадиен обрабатывают азотсодержащими соединениями. Из ароматических аминов применяют анилин и аминофенолы. [c.297]

    В отдельных работах указывается, что реакции эти можно заметно ускорит , применением высокого давления (1000—5000 ат) [38]. Температуры, при которых конденсации идут с подходящей скоростью, варьируют в очень широких пределах — от комнатной до 200°. Наиболее общим условием, рекомендуемым для синтетических работ, является нагревание в течение 10—30 час. при 100—170° в растворителе ароматического характера, например в ксилоле. Важно помнить, что во многих случаях с реакцией Дильса-Альдера конкурирует реакция свободно-радикальной сополимеризации олефинов и диолефинов, поэтому часто желательно добавление в такие системы антиокислителей. В качестве примера такой конкурирующей реакции (при соответствующим образом подобранных условиях) может служить реакция бутадиена и акрилонитрила, приводящая к образованию каучукоподобного полимера или тетрагидробензо-нитрила. Кроме того, как будет показано, конденсации по Дильсу-Аль-деру — практически обратимые реакции, поэтому продукты конденсации могут распадаться при более высоких температурах. По этой причине образование и пиролиз таких продуктов присоединения иногда оказываются удобным путем для проведения химического выделения, как, например, при очистке полициклических углеводородов [9, 20]. Однако температура, при которой происходит пиролиз, и выход регенерированного исходного вещества колеблются в широких пределах для разных систем. Некоторые из факторов, влияющих на это, будут обсуждены ниже более детально. [c.176]

    В результате реакции было получено 5 г газа, конденсировавшегося при —78°, состоявшего из 70% бутанов и бутиленов, 25% пропана и пропилепа и 5% более высокомолекулярных углеводородов. Было получено также 75 л газа, ие сконденсировавшегося нри —78°, состоявшего из 92% этилена, 6,5% парафинов и 1,5% водорода. Полимеры выкипали в пределах 36—390° и выше и наноминали полимеры, полученные Ипатьевым [23]. Продукт термической полимеризации этилена содержал 8% парафинов, 68% олефинов и 24% циклопарафинов. Соверщенно отсутствовали ароматические углеводороды. В продукте реакции содержались очень большие количества высококиняш,их фракций, только 24% его выкипало до 225°. Отсутствие ароматических углеводородов подтверждают цифровые данные, полученные при органическом анализе, а также то, что после обработки фракций 96 %-ной серной кислотой был получен продукт, не реагирующий с нитрующей смесью. Для дальнейшего доказательства фракции 11, 16 и 19 были Прогидрированы при 220° в присутствии окиси никеля. Анализ гидрогенизатов дал следующие данные. [c.188]

    Для алкилирования используются фракции, кипящие в пределах 170—270°. Лучшим сырьем для производства моющих средств является смесь из 60—80% тетрамера и 40—20% пентамера. Димеры и трпмеры, образующиеся в процессе полимеризации, либо используются как компоненты бензинов, либо могут возвращаться на установку полимеризации. Исследовалась возможность использования других полимеров, например из фракций С4, но их нрименение менее эффективно из-за большей разветвлеппости их и склонности к деполимеризации в последующей стадии алкилирования ими ароматических углеводородов. [c.504]

    При неизменио11 степени превращения более высокое давление способствует повышению выхода смол. Из этилена и пропилена прп атмосферном давлении и 600° С получают сильно ароматизированные жидкости и богатые водородом газы. С повьп ением давления выход ароматики и водорода снижается в результате образования полимеров и, возможно, гидрокрекинга продуктов получают самые различные продукты ири нескольких десятках атмосфер давления (и топ же температуре) жидкость полностью свободна от ароматических углеводородов. Неизбежным следствием понижения содержания олефппов п ароматики при увеличенном давлении является снижение октанового числа. [c.314]

    Как указано выше, пропитанная бумага, используемая для изоляции кабелей, содержит тяжелые малоочищенные масляные дистилляты. Такие масла перед использованием обычно тщательно дегидратируют и деаэрируют. Следует обратить внимание на возможность повреждения бумажной изоляции, по-видимому, тихими разрядами. Тихие разряды, происходящие в слабых местах изоляции, вызывают появление пузырьков газа [124—127] и смолистых полимеров, которые (особенно первые) служат признаком дальнейших, более разрушительных разрядов. Интересно заметить, что ароматические и полиароматические углеводороды сами не только не выделяют газа, но и способствуют подавлению газообразования в масляных смесях, содержащих эти углеводороды. Окисляемость описываемых масел тоже имеет практическое значение увеличиваются электропроводность, диэлектрические потери и значительно увеличивается смачиваемость водой пропорционально небольшому увеличению кислотности [128—134]. [c.567]

    Алкилбензосульфонаты с различными алкильными цепями. При получении поверхностно-активных веществ этого типа (кроме тетрамеров пропилена) в качестве агентов алкилирования используют тримеры изобутилена и хлорпроизводные углеводородов из керосиновой фракции нефти, а также полимеры других алкенов, например пентенов. В качестве ароматического компонента иногда вместо бензола используют толуол. [c.342]

    В промышленном производстве используются, как правило, более простые и эффективные катализаторы на основе тетраиоди-да или смешанных иодидхлоридов титана и триизобутилалюминия. При использовании в качестве растворителя ароматических углеводородов эти системы обеспечивают высокую скорость полимеризации и почти количественный выход полибутадиена. Практическое использование таких катализаторов облегчается тем, что зависимость скорости процесса от мольного отношения алюминий титан имеет плато в области отношений 4—6 [38]. Молекулярная масса образующегося полимера определяется температурой процесса, [c.181]


Смотреть страницы где упоминается термин Ароматические полимеры углеводороды: [c.166]    [c.330]    [c.13]    [c.36]    [c.229]    [c.110]    [c.254]    [c.49]    [c.126]    [c.301]    [c.102]   
Основы химии высокомолекулярных соединений (1961) -- [ c.314 ]




ПОИСК





Смотрите так же термины и статьи:

Углеводороды полимеры



© 2025 chem21.info Реклама на сайте