Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные типы необратимых реакций

    Приступая к решению задач по неорганической химии, необходимо прежде всего обратить внимание на связь и взаимные превращения между различными классами соединений. Поэтому так важна классификация химических соединений, под которой понимают объединение разнообразных соединений в определенные классы, обладающие сходными свойствами (оксиды, соли и т. д.). Классификация естественным образом связана с проблемой номенклатуры, т. е. системой названий веществ. Химические свойства веществ проявляются в разнообразных химических реакциях, которые также классифицируются по различным признакам. Нужно уметь распознавать основные типы химических реакций соединения, разложения, обмена, замещения, окислительно-восстановительные, обратимые, необратимые и т. д. Как номенклатура, так и классификация соединений (а также химических реакций) складывались на протяжении столетий, поэтому они не всегда являются логическими и требуют вдумчивого осмысливания. [c.151]


    Многие из перечисленных реакций являются необратимыми и к ним не применим классический термодинамический подход. Однако такие важнейшие типы химических реакций, как протонирование и депротонирование (кислотная ионизация), этерификация карбоновых кислот, гидролиз сложных эфиров, водородный обмен, сульфирование, кето-енольная таутомерия являются обратимыми. Рассмотрим основные типы обратимых реакций органических соединений. [c.134]

    Особенностью большинства реакций органических соединений в отличие от неорганических является их необратимость и низкие скорости взаимодействия. Вследствие этого в органической химии ведущее место занимает химическая кинетика, теория реакционной способности и механизмов реакций, Тем не менее существуют типы химических реакций с участием органических соединений, которые являются обратимыми. Химические реакции целесообразно классифицировать на 1) реакции переноса единичных электронов с изменением окислительных состояний атомов (окислительновосстановительные реакции) 2) реакции переноса электронных пар с образованием комплексных соединений 3) реакции переноса протонов с изменением кислотных и основных свойств частиц (реакции кислотно-основного взаимодействия) 4) реакции переноса атомно-молекулярных частиц без изменения числа связей (реакции атомно-молекулярного обмена) 5) реакции переноса атомно-молекулярных частиц с изменением числа связей (реакции диссоциации, ассоциации и агрегации). Сложные химические реакции могут включать сразу несколько типов простых реакций. [c.133]

    По теории П. А. Ребиндера существует два основных типа структур коагуляционные и конденсационно-кристаллические. Коагуляционные структуры образуются в результате сцепления коллоидных частиц под действием сил межмолекулярного воздействия в цепочки, трехмерные сетки с образованием рыхлого каркаса. Конденсационно-кристаллические структуры возникают в результате реакций полимеризации и поликонденсации, при кристаллизации из растворов (твердение цемента). Коагуляционные структуры могут быть обратимыми. Конденсационно-кристаллические необратимы. К коагуляционным структурам относятся гели, образованные коллоидными частицами или молекулами ВМС (студни). В гидрогелях частицы дисперсной фазы, сцепляясь друг с другом, образуют трехмерную сетку, промежутки которой заполнены водой. Близки по свойствам к гелям осадки, образующиеся при коагуляции сильно гидратированных золей,— коагели. Их тоже рассматривают как отдельный вид коагуляционных структурирован, ных систем. В гелях дисперсионная среда неподвижна, они обладают упругостью формы. Гелевую структуру имеют синтетические ионообменные материалы и ионитовые мембраны. [c.121]


    Каталитические реакции имеют сходные черты с сопряженными химическими реакциями. Однако основное их различие заключается в том, что для сопряженных реакций характерно необратимое химическое превращение вещества, ускоряющего взаимодействие. Нередко один из продуктов реакции служит катализатором, ускоряющим эту реакцию. Например, сухой фтористый водород практически не действует на металлы и оксиды. Но в процессах типа МеО + 2НР = Мер2 + Н20 появление молекул воды (катализатор) резко ускоряет скорость реакции слева направо. Такого рода каталитические реакции, когда катализатор не вводится в систему извне, а является продуктом самой реакции, называются автокйталитиче-скими. Типичные и кинетические кривые изменения скорости и накопления продуктов реакции приведены на рис. 112. Скорость автока-талитических реакций проходит через максимум в некоторый момент времени tQ, которому на кривой накопления продуктов реакции соответствует точка перегиба. [c.233]

    Тип протекающих в реакционно-ректификационной колонне реакций влияет на показатели процесса, определяет выбор способа управления процессом и метод его расчета. К первой группе относятся РРП с простыми реакциями. Эта группа подразделяется на две подгруппы РРП с необратимыми реакциями [5, 29] и РРП с обратимыми реакциями [3]. Основным назначением использования РРП с простыми реакциями является увеличение скорости реакций и повышение конверсии исходных реактантов. РРП со сложными реакциями составляют вторую группу. Назначение таких процессов часто не ограничивается увеличением скорости и конверсии, но служит задаче повышения селективности реакции. Примеры РРП с параллельными реакциями представлены в [17, 29] и с последовательными в [12]. В [9] описан РРП со сложной последовательно-обратимой реакцией. Наибольшее число публикаций по РРП касается обратимых реакций вида А+Вч=ьС- -Д. Связано это, в первую очередь, с очевидностью преимуществ РРП в сравнении с обычными реакторами по возможности смещения равновесия за счет использования эффекта ректификации. Между тем, возможности РРП по повышению селективности сложных реакций выявлены еще недостаточно. [c.118]

    Элементы расчета абсорбционных и хемосорбциониых процессов и типы применяемых реакторов рассмотрены в ч. I, гл. VI. Основные технологические показатели абсорбционной очистки степень очистки (КПД) г) и коэффициент массопередачи А определяются растворимостью газа, гидродинамическим режимом в реакторе Т, Р,ю) и другими факторами, в частности равновесием и скоростью реакции при хемосорбции. При протекании реакции в жидкой фазе величина к выше, чем при физической абсорбции. При хемосорбции резко меняются равновесные соотношения, в частности влияние равновесия на движущую силу абсорбции. В предельном случае для необратимых реакций в жидкой фазе (нейтрализация) образующееся соединение и еет практически нулевое давление паров над раствором. Однако такие хемосорбционные процессы нецикличны (поглотительный раствор не может быть вновь возвращен на очистку) и целесообразны лишь при возможности использования полученных растворов иным путем. Большинство хемосорбциониых процессов, применяемых в промышленности, обратимы и экзотермичны, поэтому при повышении температуры раствора новое соединение разлагается с выделением исходных компонентов. Этот прием положен в основу регенерации хемосорбентов в циклической схеме, тем более, что их химическая емкость мало зависит от давления. Хемосорбционные процессы особенно целесообразны таким образом для тонкой очистки газов, содержащих сравнительно малые концентрации примесей. [c.234]

    Кинетические уравнения основных типов необратимых каталитических реакций для адиабатических условий при Д = 25  [c.152]

    В данной главе изложены методы расчета степени извлечения и высоты прямо- и противоточных колонн при протекании необратимых и обратимых химических реакций в сплошной фазе с учетом продольного перемешивания. Методы разработаны в основном дпя потока сферических частиц, применительно к барботажным, распылительным и тарельчатым колоннам. Исключение составляет раздел 7.1, в котором рассматриваются методы расчета процессов в кинетической области, применимые дпя любого типа колонных аппаратов. [c.286]

    Кинетические уравнения основных типов необратимых гетерогенных реакций в случае теплообменной поверхности, имеющей постоянную температуру по высоте катализаторного слоя [c.153]

    Кинетические уравнения основных типов необратимых каталитических реакций в случае теплообменной поверхности, обогреваемой или охлаждаемой движущимся внешним теплоносителем [c.154]


    Электрохимические реакции могут быть обратимыми или необратимыми. На рйс. 13, 14 приведены основные типы осциллополярограмм, построенные по безразмерным параметрам функция тока Ф — функция потенциала Е-Е,о)п. [c.28]

    Учет влияния степени перемешивания жидкости на скорость протекания параллельных и последовательно-параллельных газожидкостных реакций является весьма сложной операцией. Даже для необратимых реакций типа А + В р1 и С + В р2, протекающих в пограничном слое, удалось получить расчетные уравнения для скорости массопередачи только при предельных гидродинамических режимах. Трудность увеличивается, если некоторые реакции протекают и в основной массе жидкости. В этом случае скорость массопередачи в значительной степени определяет величину концентрации реагентов. [c.157]

    Примем следующую модель реакции. Пусть звенья А превращаются в звенья В по необратимой реакции первого порядка, протекающей в гомогенных условиях при достаточном избытке низкомолекулярного реагента, и реакционноспособность группы А зависит только от природы ближайших соседей. Именно таковыми являются, как мы уже указывали, реакции гидролиза и этерификации по боковым группам полимеров акрилового ряда, галогенирование полиэтилена и т. п. Будем считать, что ко, я к2 — константы скорости реакции для звеньев А, имеющих О, 1 и 2 соседних звеньев В, и эти константы не зависят от концентрации реагентов и степени конверсии. Общая теория таких реакций должна включать три основных раздела описание кинетики процесса, соответствующего данной модели, распределения звеньев обоих типов в цепи и композиционной неоднородности образующихся продуктов. [c.68]

    При классификации химико-технологических процессов учитывают деление химических реакций на простые, сложные-парал-лельные и сложные-последовательные. При описании отдельных классов химико-технологических процессов реакции подразделяют по типу взаимодействия реагентов на окислительно-восстановительное (гомолитическое) и кислотно-основное (гетеролитиче-ское). Химические реакции и процессы массопередачи могут быть обратимыми или необратимыми, соответственно различают и технологические процессы в целом. [c.35]

    В органической химии, так же, как в неорганической, большинство окислительно-восстановительных реакций необратимо. Имеются в виду реакции окисления углеводородов до спиртов, альдегидов и карбоновых кислот, а также реакций, идущих с окислительным расщеплением С-С-, С=С-и С- С-связей. К таким реакциям закон действующих масс — основной закон химической термодинамики — неприменим. Обратимыми реакциями этого типа могут быть окислительно-восстановительные реакции функциональных групп (-8Н, -8=0, -80г-, -N0, -ЫОз и т. п.), которые, в принципе, мало отличаются от реакций соответствующих неорганических соединений и здесь не рассматриваются. [c.133]

    Влияние температуры на протекание химических процессов зависит от типа реакций. В необратимых реакциях при достижении определенного температурного интервала скорость реакций начинает прогрессивно возрастать и приводит к полному превращению реагентов. В области высоких степеней превращения скорость снова снижается вследствие уменьшения концентрации основного реагента. Увеличение времени пребывания исходных материалов в рабочей камере печи позволяет при данной температуре обеспечить более высокую степень превращения. [c.116]

    Обобщая поведение кислот и оснований, следует отметить, что необходимо учитывать, во-первых, кислотность и основность, присущие растворителю, во-вторых, кислотность и основность, присущие растворенному веществу, и. в-третьих, зависящий от этого тип взаимодействия между ними либо прото-литическое равновесие между растворенным веществом и растворителем (для слабых кислот пли оснований), либо необратимая протолитическая реакция (для сильных кислот и оснований). Наконец, надо помнить, что растворы электролитов получаются только в растворителях с высокой диэлектрической проницаемостью. Растворители с низкими значениями е образуют растворы слабых электролитов независимо от кислотности и основности обоих компонентов раствора. [c.231]

    При изготовлении изделий из пластмасс методом горячего прессования таблетки из пресс-порошка загружают в формы, подогревают до температуры размягчения, соответствующей типу пластмассы, и прессуют под большим давлением. Этим методом в основном изготовляют изделия из термореактивных пластмасс. Прессование при высокой температуре сопровождается химическими реакциями. Материал необратимо отверждается и принимает форму, заданную матрицей и пуансоном. При изготовлении изделий из термопластичных полимеров химических реакций не протекает пресс порошок размягчается, переходит в текучее состояние, заполняет матрицу и приобретает заданную форму, ко- [c.119]

    Выше мы касались вопроса о физической или химической природе сил, определяющих адсорбцию (ср. теории Лангмюра и Поляни). Следует отметить, что это различие далеко не всегда может быть четко проведено. В крайних случаях физическая адсорбция, определяемая лишь Ван-дер-Ваальсовыми силами, характеризуется хорошей обратимостью, отсутствием стехиометрических соотношений, уменьшением адсорбции при повышении температуры, близостью тепловых эффектов адсорбции к теплотам сжижения или испарения такова адсорбция инертных газов или гексана на угле. В других крайних случаях химическая адсорбция осуществляется только путем химического взаимодействия, например, между кислородом и вольфрамом или кислородом и серебром при повышенных температурах здесь адсорбция почти необратима, тепловой эффект близок к энергии образования химических соединений (около 100 ккалЫоль и выше) и др. Обычно осуществляются промежуточные варианты, когда основная масса адсорбированного вещества связывается сравнительно слабо, а следы его связаны прочно и могут быть удалены лишь путем длительного прогревания и откачивания. Кислород на металлах или водород на никеле адсорбируется при низких температурах физически, ввиду малой скорости химической реакции при этих температурах, но при повышении температуры начинает протекать адсорбция с заметной энергией активации (активированная адсорбция) по типу химических реакций. В определенном интервале повышения температур прирост химической адсорбции (или хемосорбции) перекрывает падение физической адсорбции и на кривой температурной зависимости адсорбции возникает промежуточный максимум (рис. 41), характерный для наличия активированной адсорбции. [c.97]

    Изменение концентрации основного исходного вещества и продукта реакции в течение процесса характеризуется кривыми, которые различны для простых и сложных реакций, а также для процессов, протекающих по типу идеального вытеснения и полного смешения. Для простых процессов, протекающих по типу идеального вытеснения без изменения объема по схеме А—>-D, концентрация основного исходного вещества Сд уменьшается во времени (рис. 3) от начальной до нулевой для необратимых процессов и до равновесной Сд для обратимых. Соответственно концентрация продукта Сц увеличивается для обратимых процессов от нуля до концентрации С , соответствующей равновесной степени превращения, т. е. Хр, а для необратимых до х—.  [c.48]

    Кинетические измерения часто указывают на то, что реакции окисления, в присутствии энзимов, являются цепными процессами . Так, при малых концентрациях реакция обычно псевдомо-номолекулярна и идет со скоростью, пропорциональной концентрации окисляющегося метаболита. Но при высоких концентрациях достигается максимальная скорость, не зависящая от концентрации метаболита и постепенно падающая со временем но мере того, как коэнзим подвергается необратимому разрушению. Поскольку цепные реакции принадлежат в основном к гемолитическому типу (стр. 23), имеет смысл рассмотреть вопрос о возможности реакций со свободными радикалами в энзиматических системах. Свыше тридцати лет назад Дэкин указал, что перекись водорода является единственным из всех химических окислителей, который вызывает в жирах, углеводах и аминокислотах такие же процессы окислительного распада, как и энзимы. Поэтому он считал что перекисная теория окисления, выдвинутая Бахом и Энглером, применима к живым клеткам так же, как и к другим областям химии. [c.291]

    При хранении и переработке полимерных материалов, а также при эксплуатации изделий из них полимеры подвергаются воздействию различных факторов — тепла, света, проникающей радиации, кислорода, влаги, агрессивных химических агентов, механических нагрузок. Эти факторы, действуя раздельно или в совокупности, вызывают в полимерах развитие необратимых химических реакций двух типов деструкции, когда происходит разрыв связей в основной цепи макромолекул, и структурирования, когда происходит сшивание цепей. Изменение молекулярной структуры приводит к изменениям в эксплуатационных свойствах полимерного материала теряется эластичность, повышается жесткость и хрупкость, снижается механическая прочность, ухудшаются диэлектрические показатели, изменяется цвет, гладкая поверхность становится шероховатой, а иногда на ней появляется налет порошкообразного вещества. Изменения во времени свойств полимеров и изделий из них называют старением. [c.66]

    Все изложенные соображения основаны на предположении о необратимости реакций, т. е. незначимости протекания обратных процессов. Однако большинство химических реакций обратимы, и в ходе реакции скорость прямого процесса уменьшается, а скорость обратного возрастает до момента достижения равновесия в системе. В равновесии суммарная скорость процесса равна нулю. В результате обработка кинетических данных усложняется. Описание еще более затрудняется прн наличии последовательных (А — В — Р), конкурирующих (А- -В — Р и А-ЬС — РО и цепных реакций. Гетерогенные реакции, протекающие в системах, состояпщх из двух или более фаз, также весьма трудно описать прн помощи простых математических выражений. Рассмотрение всех этих сложных типов реакций выходит за рамки этой главы. Далее речь пойдет в основном о необратимых гомогенных бимолекулярных реакциях. [c.321]

    Любая классификация реакций растворения не может исчерпать всего многообразия межфазных реакций этого типа. Можно, однако пользуясь систематизацией, предложенной А. А. Равделем [23], выделить два основных класса реакций растворения 1) обратимое растворение и 2) необратимое растворение. [c.45]

    Обратимый характер реакции конденсации -бути-ролактона с этилацетатом подтвержден расщеплением АБЛ па исходные карбонильные соединения в среде этанола при участии этилата натрия. На распределение продуктов конденсации -бутиролактона с этилацетатом большое влияние оказывает этанол, выделяющийся по ходу реакции. При этом не только резко снижается выход АБЛ, но и ускоряется алкоголиз -бутиролактона. Отсюда следует, что удаление этанола из зоны реакции должно смещать равновесие в сторону увеличения выхода АБЛ и соответственно повышать конверсию сырья. Конденсация -бутиролактона с этилацетатом протекает в две макростадии, где первая — быстрая, когда с большой скоростью образуется основная масса продуктов реакции, а вторая — медленная, по ходу которой система постепенно приближается к состоянию равновесия. Быстрая стадия, по-видимому, протекает по ион-дипольному механизму, а медленная — корректно описывается кинетическим уравнением обратимой реакции второго порядка. При контакте с водой натриевая соль енольной формы АБЛ гидролизуется до АПС. Гидролиз протекает по типу необратимой реакции первого порядка. [c.258]

    Кислотно-основной характер системы определяется типом заместителей и электроноакцепторные группы усиливают кислотность соли или основность соответствующего илида. В этих случаях для отрыва а-протона пригодны слабые основания, например карбонат калия. В более общем случае, когда заместителей, сильно повышающих кислотность, мало или они отсутствуют, используют, как правило, сильные щелочи литий-органические соединения, амид натрия в жидком аммиаке, ал-ко сиды щелочных металлов в гидроксильных растворителях или в диметилсульфоксиде либо димсильный анион в ДМСО. Стабилизованные (наличием групп Р = СООР, СМ и др.) илиды можно выделить. В то же время хорошо известно, что обычные фосфониевые илиды чувствительны и к воде, и к кислороду, поэтому стандартная методика требует применения тщательно высушенных растворителей и инертной атмосферы. Под действием воды происходит необратимый распад с образованием ал-килдифенилфосфина и бензола. На воздухе протекают следующие реакции  [c.251]

    Мономерная фракция ля в одном опыте не содержала продуктов, более бедных водородом (ароматические, диеновые углеводороды и т. п.), нежели исходные углеводороды. Следовательно, реакций типа необратимого катализа Зелинского на алюмосиликатах не протекает и источников водорода в мономерной фракции не содержится. Полимерная фракция, особенно в опытах с оле( инами, представляет собой продукт с весьма широкими пределами выкипания. В высококипящпх частях ее определенно грисутствует некоторое количество ароматических углеводородов. Однако основное количество полимеров содержит столько же предельных Цродуктов, сколько содержит их и мономерная фракция, присутствие же в высококипящих фракциях некоторых количеств ароматических углеводородов является, вероятнее всего, результатом вторичных процессов. [c.20]

    В предложенной концепции есть несколько уязвимых мест. Прежде всего, для допущения медленной реакции инициирования полимеризации акрилонитрила под действием литийбутила и его комплексов с агентами, использованными в работе [72], нет каких-либо оснований. Этому противоречат данные Цуруты [1, 2] и других авторов. Далее, в частных случаях применения в качестве оснований Льюиса таких соединений, как диметилформамнд и диметилацетамид, следовало бы считаться с достаточно быстрым взаимодействием между инициатором и вышеуказанными веществами. Основные направления этих реакций приводят к образованию алкоксидов лития, и в системе возможно одновременное присутствие различных литиевых производных соотношение между ними зависит от продолжительности выдерживания реакционной смеси до введения люпомера. Сведения об этой стороне методики постановки опытов в цитированной работе не приведены. Таким образом, не исключено, что при относительно невысоком отношении [КА]/[С] в реакционной смеси одновременно присутствуют свободный литийбутил, его комплекс с основанием Льюиса и продукты необратимого взаимодействия этих соединений (алкоксиды и металлированные производные). По своему поведению в присутствии мономера они могут различаться. Исходя из этих соображений, можно было бы также объяснить характер зависимости М—[КА]/[С]. То обстоятельство, что с другими из исследованных оснований Льюиса необратимые превращения указанного типа в условиях проведения эксперимента имеют малое значение (тетрагидрофуран) или вообще отсутствуют (диоксан), вряд ли существенно, так как наличие этих соединений в системе также может обусловить сосуществование разных форм инициа- [c.157]

    Стабилизация. Для получения высококачественных материалов и изделий из них П. необходимо стабилизировать. Принцип стабилизации П. заключается в устранении или значительном ослаблении вредного влияния химич., энергетич. и (или) механич. воздействий. Необратимые изменения, из-за к-рых дальнейшее практич использование П. или материалов на его основе становится невозможным, в основном связаны с реакцией дегидрохлорирования. Поэтому при приготовлении композиций на стадии смешения непосредственно перед получением материалов или формованием изделий в П. вводят смесь из нескольких стабилизаторов (обычно более четырех) и смазок (лубрикантов), к-рые подбирают эмпирически в зависимости от сорта П., вида переработки, типа материала и конструкции перерабатывающих машин. В качестве первичных стабилизаторов (термостабилизаторов), основное назначение к-рых связывать H I, используют различные основные и средние соли свинца, оловоорганич. соедихсетгия [преимущественно [c.221]

    Приведенное выше сравнение основных групп реакционной аппаратуры справедливо для реакций всех типов (кроме автока-талитических) при оценке относительной скорости превращения исходных веществ и относительной скорости образования продукта одностадийных необратимых реакций. [c.283]

    Различают два основных типа реакции поликонденсации обратимая равновесная) и необратимая неравновесная). Большинство поликонденсациоиных полимеров получается по первому варианту реакции. [c.97]

    Важным моментом в развитии теории поликонденсации было нахождение двух типов превращений, связанных с обратимостью или необратимостью элементарных реакций, что позволило разбить все реакции поликонденсации па два основных типа 1) равновесная пол1г-конденсация, 2) неравновесная поликонденсация. [c.254]

    Производилось много исследований процесса вулканизации серой, но точных выводов о механизме этой реакции получить не удалось. Некоторые из относящихся к вулканизации фактических данных, однако, хорошо обоснованы. Производимая после вулканизации экстракция серы ацетоном или другими ее растворителями не удаляет всю серу, так же как и иные виды более энергично) химического воздействия, нанример нагревание с металлической медью. Другими словами, изменение в значительной степени необратимо. То обстоятельство, что вулканизированный каучук нельзя использовать для вулканизации свежего каучука, указывает на то, что происшедшее изменение не просто каталитический процесс. Выделение сероводорода при вулканизации обычно незначительно отсюда вывод, что в основном мы здесь имеем реакцию присоединения серы. Степень непасыщенпости, определяемая по способности присоединения галоидов, после вулканизации всегда понижается, причем обычно обнаруживается исчезновение одной двойно11 связи на каждый атом присоединенной серы. Впрочем, последние данные говорят о том, что понижение степени ненасы-щенности происходит иногда в несколько меньшей степени. Это исключает объяснение процесса как простой полимеризации у1 ло-водорода по типу [c.415]

    Относительно редко УФ-свет стимулирует каталитическую активность ферментов. Все известные к настоящему времени эффекты стимулирующего действия света можно подразделить на два основных типа. 1. Обратимая активация каталитической реакции. При этом диссипи-рующая в тепло энергия используется для создания каталитически благоприятных мгновенных стерических деформаций в области активного центра. 2. Необратимая активация фермента, связанная с фотохимическим разрывом (или образованием) ковалентных связей. [c.270]

    Основной реакцией увода атомов водорода является рекомбинация, благодаря которой и устанавливается стационарный уровень концентрации атомов водорода. Наоборот, каждому типу реакции инциирования можно эффективно противодействовать и таким образом понижать концентрацию активных частиц (в нашем случае атомов водорода) с помощью необратимых процессов, подбирая, например, окисляющую поверхность реакционного сосуда, которая препятствует образованию других активных центров и не сдвигает каталитического равновесия реакции На 2Н. Несомненно, в смеси изотопных молекул водорода реакции диссоциации и рекомбинации очень слабо влияют на обменную реакцию. [c.112]

    Легкость протекания реакции даже в таких очень мягких основных условиях уществеяно зависит от способности циклической системы стабилизировать промежуточно образующийся анион путем делокализации заряда на электроотрицательных атомах и от наличия групп, которые могут необратимо отщепляться. Как было найдено, пиримидиновый цикл, сконденсированный с другой циклической системой, которая помогает табилизировать образующийся апион, может подвергаться расщеплению такого типа. [c.141]

    В спектре системы пропилен—бром без разбавления пропаном имеется и ряд других полос. Наибольший интерес представляет широкая сложная полоса в области 500—1000 нм (рис. 6.4, кривая 3). Надо отметить, что выдерживание смеси при температурах, близких к 77 К, в течение определенного времени приводит к увеличению интенсивности этой полосы (кривая 4). Если же температуру смеси повысить до 100 К, т. е. выше температуры плавления пропилена, равной 87 К, то поглощение в области 500—1000 нм необратимо исчезает (кривая 5). Отмеченные изменения в спектрах сопровождаются и одновременно идущей реакцией. Полоса в области 278 нм частично сохраняется. Эти результаты показывают, что за реакцию низкотемпературного бромиро-вания в основном ответственны промежуточные соединения, поглощающие в области 800—1000 нм. Широкая полоса в области 500—1000 нм приписана комплексам состава Вг2-СзН6-Вг2 или ассоциатам типа (Вг2-С3Н6)п, где п 2, находящимся в равновесии с комплексами состава 1 1. Существование аналогичных соединений, имеющих цепочечную структуру при пониженных температурах, описано в [414]. При низких температурах образование подобных ассоциатов энергетически более выгодно, чем существование бинарных соединений. В ассоциированных комплексах, поглощающих в области 500—1000 нм, вероятно, происходит сильное изменение внутри- и межмолекулярных расстояний, сопровождающееся разрыхлением двойной связи и сильной поляризацией ее. В ИК-спектрах твердых замороженных смесей брома и пропилена в области валентного колебания двойной связи (1632 см-1) обнаружены полосы с более низкими частотами [415, 416], что, по-видимому, подтверждает сделанный вывод. [c.127]


Смотреть страницы где упоминается термин Основные типы необратимых реакций: [c.152]    [c.218]    [c.308]    [c.527]    [c.247]    [c.51]   
Смотреть главы в:

Метод физико-химического анализа в неорганическом синтезе -> Основные типы необратимых реакций




ПОИСК





Смотрите так же термины и статьи:

ЕСЕ-типа необратимая

Реакции необратимость

Реакции необратимые



© 2024 chem21.info Реклама на сайте