Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализатор окисления ацетилена

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    Реакции глубокого окисления органических веществ катализируются переходными металлами и их окислами. Наиболее активны металлы платиновой группы и окислы железа, меди, хрома и других металлов. Отличительной особенностью процессов термокаталитической очистки яв ляется отсутствие системности в свойствах катализаторов и окисляемых веществ, поэтому можно рассматривать лишь некоторые их харак-те]шые тенденции. В частности, к наиболее трудно окисляемым органическим примесям относятся предельные углеводороды, при этом увеличение молекулярной массы этих веществ позволяет проводить процесс окисления при более низких температурах так, скорость окисления бутана на оксидных катализаторах в 10 раз выше, чем скорость окисления метана [11]. Значительно легче окисляются непредельные и ароматические углеводороды, например в присутствии двуокиси марганца пропилен при 300 °С окисляется в 10 раз, а пропан - почти в 10 раз медленнее, чем ацетилен [12]. При окислении кислородсодержащих органических веществ легче других соединений окисляются спирты, затем следуют альдегиды, кетоны, эфиры, кислоты [13-16]. [c.10]

    Для предотвращения накопления опасных примесей прибегают к сливам жидкого кислорода, удорожающим производство, но и этот прием не исключает возможности взрывов. Наиболее эффективным методом является тщательная очистка разделяемого воздуха от вредных примесей, для чего иногда используют адсорбцию на силикагеле. При этом эффективно извлекается только ацетилен, но не алканы. Весьма эффективной очисткой является окисление ацетилена на катализаторах из окислов металлов при небольшом подогреве (150—180°С). [c.80]

    Окись азота и ацетилен можно окислять кислородом в присутствии катализатора или без него. В качестве окислителя помимо кислорода могут быть использованы такие газы, как озон, двуокись хлора и др. Продукты окисления выводят из системы. [c.434]

    Трубчатые реакторы. Стабильность процесса в трубчатом реакторе определяется в основном величиной внутреннего диаметра трубки (ВДТ), При увеличении ВДТ конструкция реактора становится проще и возможно увеличение его мощности, но при этом ухудшается стабильность аппарата, выражающаяся, например, в увеличении параметрической чувствительности и величины динамического заброса [37, 38]. Решающими факторами при выборе максимального ВДТ для экзотермических процессов являются параметрическая чувствительность, динамические характеристики, допустимое гидравлическое сопротивление слоя катализатора, избирательность процесса п точность стабилизации входных параметров, которые определяются из анализа стационарных и нестационарных процессов в трубках разного диаметра. Для процессов эндотермических и протекающих вблизи равновесия определяющими параметрами являются, как правило, гидравлическое сопротивление и мощность аппарата. Максимальные значения ВДТ для процессов окисления метанола в формальдегид — 25 мм, окислительного дегидрирования н-бутенов — 21 мм, синтеза винилхлорида при концентрированном ацетилене — 55 мм и разбавленном — 80 мм [38], дегидратации <к-окси- [c.14]


    В литературе [160] указывается, что в условиях мягкого окисления из ацетиленида меди образуется диацетилен. Кроме того, результаты, полученные при окислении смеси ацетилен — азот на катализаторах из нитрата серебра, показали, что реакция окисления протекает аналогично реакции, когда в смеси присутствует кислород. [c.253]

    На рис. IV.1 представлена типичная вулканообразная кривая для случая зависимости логарифма скорости полного окисления пропилена от теплоты адсорбции кислорода на окисных катализаторах. Как видно из рисунка, катализаторы максимальной активности располагаются около значения теплоты адсорбции кислорода 105 кДж/моль. В работах [9—12] показано, что для полного окисления целого ряда органических соединений, таких, как метан, пропан, этилен, изобутилен, ацетилен, циклогексан, метанол, бензол, наиболее активными являются окислы кобальта, марганца и меди, теплоты адсорбции кислорода на которых составляют 100—125 кДж/моль. Поскольку теплоты сгорания углеводородов, отнесенные к одному атому углерода, находятся в интервале 200—250 кДж/моль, то оптимальным катализаторам окисления как раз и должна [c.79]

    При осуществлении этой реакции в технике ацетилен пропускают противотоком к движению кислотного раствора ртути. В Германии применявшийся раствор катализатора содержал в 1 л 200 г S0 7 40 г Fe (главным образом Fe3+), 0,5 г Hg + и 10 г NO3 . Процесс проводили при 94—97° в гуммированной колонне. Степень превращения ацетилена равнялась 55%. Оставшийся ацетилен возвращали в процесс, освободив сначала от органических продуктов. Раствор катализатора непрерывно циркулировал в системе часть его периодически отбирали для окисления азотной кислотой Ре + в Fe + [12]. [c.299]

    Продолжительность жизни катализатора имеет большое значение при использовании его в производстве. Однако серебряный катализатор оказывается очень чувствительным к таким соединениям, как сернистые, галоидные, мышьяковые, фосфорные, ацетилен и др. Уже следы этих веществ способны отравить катализатор, а ацетилен, кроме того, представляет еще и опасность с точки зрения возможности образования взрывоопасного ацетиленида серебра. Поэтому необходимо обеспечить полное отсутствие указанных соединений как в этилене, так и в воздухе, поступающих на окисление. [c.294]

    В смесь 44,5 г 30,7%-ного водного раствора формальдегида, меченного с общей активностью 15 мкюри (С Н О получали окислением С НзОН на медной спирали), 200 мл ацетона и 7 г катализатора нагнетали ацетилен до получения давления в 30 атм, нагревали автоклав при 120° С в течение 8—9 ч, периодически добавляя ацетилен (5—6 раз). После охлаждения (остаточное давление 16—18 атж) нагнетали ацетилен до получения давления в 30 атм и нагревали автоклав в течение 4 ч. Если поглощение ацетилена не прекращалось (остаточное давление ниже 28 атм), добавляли ацетилен до 30 атм и нагревали смесь еще в течение [c.163]

    Серебряный катализатор чувствителен к сернистым, фосфорным, мышьяковистым соединеиия М и к ацетилен , способному с серебром образовывать взрывоопасный ацетиленид серебра. Поэтому этилен и воздух, подаваемый на окисление, должны быть тшательно очищены. Присутствие высших олефинов и парафиновых углеводородов нежелательно, так как они избирательно окисляются до СО2. Чистота этилена должна быть 96— 98 7о- Процесс. можно вести с концентрацией этилена в воздушно-этиленовых смесях либо ниже нижнего предела (3 объемн.%), либо выше верхнего предела (29 объемн.%) взрываемости. Технологически процесс оформляется как непрерывный с неподвижным слоем катализатора. Разрабатывается процесс в кипящем слое. [c.189]

    Вышеназванные катализаторы активируют ацетилен не в виде их простых солей, а скорее в виде комплекса с присоединяемыми реагентами (водой, галогеноводородами, синильной кислотой). При этом активирующее действие катализаторов, находящихся в реакционной смеси, строго пропорционально их потенциалу окисления, а также сродству к электрону или силе как кислот Льюиса. Это следует рассматривать как прямое указание на электрофильный характер присоединения. [c.401]

    При исследовании кинетики окисления ацетилена в токе воздуха применялся метод диафрагм, состоящий в том, что реакционный сосуд разделялся диафрагмой-катализатором на две части. По обе стороны мембраны-катализатора поступал при одном и том же давлении газ того или иного состава. Вследствие того, что давление в обеих частях сосуда постоянно, обмен веществ между частями установки может совершаться только диффузией через диафрагму, С одной стороны диафрагмы подавался воздух, содержащий примесь ацетилена с исходной концентрацией С(1 0,008 ма/см -, а с обратной стороны диафрагмы подавали чистый воздух. Диффундирующий сквозь диафрагму ацетилен вымывался чистым воздухом и определялся аналитически. [c.440]

    П.с.-важные промежут. продукты во мн. орг. р-циях, катализируемых соед. Pd. К ним относят окисление олефинов, олигомеризацию олефинов, диенов и ацетиленов, карбонилирование, винилирование, ацетоксилирование, изомеризацию и др. П. с. используют в орг. синтезе для образования связей С—О, С—Hal, С—N, С—S, С—Si. Нек-рые П. с,-эффективные катализаторы, напр, при карбонилировании аллилгалогенидов (аллильные комплексы), при линейной димеризации и тримеризации бутадиена, ацетилировании олефинов и аллена. [c.442]


    Жидкофазные лабораторные реакторы обладают рядом отличий от газофазных, поэтому их целесообразно рассмотреть особо. Устройство аппаратов мало меняется от того, проводятся ли в них чисто жидкофазные или газо-жидкофазные реакции с твердым катализатором. Последний тип реакций, к которому относятся жидкофазное гидрирование, восстановление водородом, жидкофазное окисление молекулярным кислородом, ряд реакций оксосинтеза, реакций с ацетиленом и др., в настоящее время более распространен в технике, чем первый, к которому принадлежат реакции алкилирования, дегидратации и этерифи-кации. Жидкофазные и особенно газо-жидкофазные реакции в большинстве случаев проводятся под давлением, что, естественно, определяет конструкцию лабораторной аппаратуры. [c.360]

    Окисление ацетиленовых углеводородов также ле представляет пока самостоятельного синтетического интереса. Каталитическое окисление самого ацетилена на практике применимо только при крупномасштабном производстве жидкого кислорода, в процессе которого ацетилен как примесь из атмосферы должен быть удален полностью. Удаление ацетилена совершается путем окисления на специальных долго и безупречно четко работающих катализаторах— Промотированных гопкалитах состава 60%МпОг + 40%СиО с примесью от 1 до 10% окиси серебра (см. [262]). [c.353]

    Литературный материал, собранный мисс Вандерворт, ограничился рефератами Хемикел Абстракте за период с 1940 по 1956 г. Ею собраны данные по вопросам кинетики, механизма реакций, аппаратуры лабораторных и опытных установок, заводского оборудования, а также по катализаторам окисления в паровой фазе и по каталитическим процессам. В предметном указателе Хемикал Абстракте просматривались следующие заголовки окисление, кислород, воздух, аммиак, азотная кислота, окись азота, окись углерода, двуокись серы, серная кислота, трехокись серы, ацетилен, соединения ацетилена, бензол, этилен, окись этилена, антрацен, нафталин, ксилолы, водород, синильная кислота, амины, циклоалканы, толуол, тиолы, соединения меркаптана, альдегид, кетоны, спирты, катализ и катализаторы. В обзор включены статьи, опубликованные в 1957 г. [c.204]

    Фастовский и Малюсов [55] изучили ряд катализаторов для окисления ацетилена. На двуокиси марганца при температуре 150° С порядок реакции окисления по ацетилену был всегда меньше единицы, однако при низких концентрациях ацетилена приближался к единице. При температуре 180° С порядок приблизительно равнялся единице в значительном диапазоне концентраций. Это дает возможность предположить, что адсорбция как ацетилена, так и продукта реакции повышается при более низкой температуре. [c.251]

    Кирш и Кригер [94] изучили адсорбцию ацетилена на катализаторах из нитрата серебра при более низких температурах, чем температуры, при которых происходит окисление. Авторы нашли, что адсорбция необратима. Адсорбированный ацетилен не удалось удалить при непрерывном откачивании при очень низком давлении. Скорость сорбции изменяется обратно начальному давлению ацетилена. В ряде работ отмечалось, что общее количество сорбированного ацетилена не зависит от давления, однако слабо увеличивается с повышением температуры. [c.252]

    Для прямого окисления используется этилен концентрацией не менее 95—97% мол. с минимальным содержанием других углеводородов, в первую очередь легкоокисляемых олефинов и парафинов — С4, так как при окислении последних повышается температура реакции, что способствует окислению этилена до СО2 и Н2О содержание ацетилена не должно превьЕшать 0,001%, потому, что в присутствии серебряного катализатора, в условиях процесса окисления ацетилен образует взрывчатый ацетиленид серебра. [c.4]

    Для сопоставления с приводимыми в качестве примера каталитическими реакциями перечислим некоторые важные органические соединения, которые получаются без применения катализаторов уксусная и другие кислоты, синтезируемые окислением углеводородов ацетилен, этилен и другие олефины, получаемые термическим крекингом хлоропарафины, этаноламины, нитропарафины окись этилена и пропилена, синтезируемые хлоргидри-новым методом фенол, получаемый сульфированием и из монохлорбензола мочевина.  [c.324]

    Получение хлористого винила из ацетилена проводят в жидкой или газовой фазе [76, 77, 78]. В первом случае ацетилен пропускают через реактор, заполненный концентрированной соляной кислотой при температуре 20—25 и непрерывном перемешивании. Катализатором служат хлористый аммоний и нолухлористая медь, которые перед пропусканием ацетилена растворяют в соляной кислоте. В некоторых случаях для повышения интенсивности каталитического действия добавляют хлористую медь, медный порошок, хлористый кальций. Вся система должна быть изолирована от кислорода воздуха и заполнена азотом для предотвращения окисления во время реакции. [c.792]

    В промышленности издавна ведут окисление этилового спирта кислородом возду ха в присутствии металлических катализаторов меди, серебра или таллия> з, 174 Часто применяется способ, заключающийся в присоединении воды к ацетилену в присутствии vnьфaтa ртути и 60%-ной серной кислоты .  [c.678]

    Наиболее распространены акриловые реагенты, получаемые гидролизом полиакрилонптрила или полиакриламида — продуктов полимеризации нитрила акриловой кислоты. Промышленное значение имеют три способа получения этого мономера дегидратация этиленциангидрина, получаемого- взаимодействием окиси этилена с синильной кислотой (стадии / и // на рис. 34) присоединение синильной кислоты к ацетилену в присутствии катализатора и совместное каталитическое Окисление пропилена и аммиака. [c.190]

    М с применяют в качестве катализаторов и полупродуктов во мн промышленно важных процессах, напр при гомог жидкофазном гидрировании олефинов и ацетиленов (Rh, Ru, Со), а также их димеризации и олигомеризации (Со, Ni, Си, Rh, Pd), в р-ции перераспределения (метатезиса) олефинов (W, Мо, Re), в многочисл р-циях с участием СО, таких, как гидроформилирование и карбонилирование (Fe, Со, Ni, Rh, Pd), при получении СН3СНО и винилацетата окислением этилена (Pd), при асимметрич гидрировании и изомеризации (хиральные фосфинродиевые кат ) (см Металло/Комплексный катализ). [c.46]

    K.— серебристо-белый металл, оченьмягкий, легко режется ножом, В соединениях проявляет степень окисления +1. Химически К. очень активен. На воздухе быстро окисляется. Энергично соединяется с галогенами, образуя соответствующие соли. С серой образует сульфид КгЗ. Бурно взаимодействует с водой и кислотами с выделением водорода. К. энергично реагирует со многими органическими соединениями (со спиртами образует алкоголяты на холоде взаимодействует с ацетиленом с образованием КНСг). Металлический К. применяют для получения пероксида калия К2О2, используемого для регенерации кислорода. К. служит катализатором при получении некоторых видов синтетического каучука. Сплав К- с Na используется как охладитель в атомных реакторах и как восстановитель в производстве некоторых металлов (титана). Соли К. (КС1 и др.) применяют как калийные удобрения. См. также Калия соединения. [c.60]

    Из низших парафинов получают ацетилен дегидрированием метана при 1500°С над вольфрамовым или хромовым катализатором по реакции 2СН4- С-1Н 1 + ЗН . Получение ацетилена может быть основано также на процессе окислительного пиролиза метана в пламени при 1500°С, когда сочетаются экзотермические реакции окисления и эндотермические реакции пиролиза, при зтом реакции протекают по схеме СН4 + 02 ->СгНа + СО -н Сг Н4 + СО-н Нг + НгО С. [c.274]

    Процесс фирмы Майн сейфти аплайенс . Этот процесс применяется главным образом для полного удаления небольших количеств ацетилена (0,1 —1,0-10 %) и других углеводородов из воздуха, поступающего на установки низкотемпературной ректификации воздуха. Полное удаление ацетилена из таких потоков имеет исключительно важное значение из-за низкой растворимости ацетилена в жидком кислороде. Вследствие накопления твердого ацетилена на поверхностях теплообмена в отдельных точках схемы могут достигаться концентрации, превышающие нижний предел взрываемости смеси действительно, именно этим явлением и были вызваны многочисленные взрывы на установках ректификации воздуха. В присутствии гопкалита (смесь 60% двуокиси марганца и 40% окиси меди) углеводороды при сравнительно низкой температуре полностью окисляются до двуокиси углерода и воды. На этом катализаторе протекает также окисление окисп углерода в двуокись и разложение озона. Для очистки влажных воздушных потоков особенно активны промотироваиные гопкалиты, содержащие сравнительно небольшое количество серебряных солей [58]. Промышленный гопкалит позволяет практически полностью окислить ацетилен при температуре всего 152—158 С. Однако для окисления других углеводородов требуются более высокие температуры, иногда достигающие 425° С. Степень нревращения некоторых углеводородов в присутствии промышленного гоп-калитового катализатора прп разных температурах показана на рис. 13.16 [59]. [c.346]

    Катализатор дегидроконденсацни терминальных ацетиленов. М. X. катализг-грует окисление терминальных ацетиленов в смеси метанол — пиридин под действием кислорода или воздуха. Катализатор применяют в количестве 0,012 моля на 1 моль ацетилена. Реакция завершается быстро и дпацетилеиы получаются с высокими выходами [И]. Проведение реакции ири избыточном давлении кислорода (0,7—1,0 атм) еще более сокращает время реакции [121. сн, с .а, Шз СН, [c.244]

    Известняки и уголь, содержащие значительное количество соединений серы, фосфора, мышьяка, магния, кремния и алюминия, не пригодны для производсгва карбида, как в том случае, когда последний должен быть употреблен для получения ацетилена, так и тогда, когда он идет в производство цианамида кальция. Если карбид содержит соединения серы, фосфора, кремния и мышьяка, то при разложении его водой вместе с ацетиленом выделяются водородистые соединения этих элементов. Водородистые соединения фосфора и кремния—легко разлагающиеся вещества они воспламеняются сами собой при обыкновенной комнатной температуре. Ясно, что их присутствие в ацетилене может быть причиной взрыва последнего. Кроме того, ацетилен, загрязненный водородистыми соединениями фосфора, мышьяка и серы, оказывает весьма вредное действие на организм человека. Мышьяковистый водород является сграшным ядом, который даже при вдыхании в весьма малых количествах причиняет смерть. Менее опасны, но все же очень вредны, фосфористый водород и сернистый водород. Их присутствие в аммиаке, выделенном из - цианамида кальция, крайне нежелательно, так как при окислении аммиака в азотную кислоту, они способны отравлять катализаторы, вследствие чего, процесс окисления замедляется и может остановиться вовсе. [c.88]

    Если в О.-в. к. участвуют переходные металлы, молекулы субстрата образуют с катализатором комплексы, что обеспечивает возможность одноврем. переноса неск. электронов. Напр., молекула азота в координац. сфере металла превращ. в гидразин (перенос четырех электронов) или аммиак (перенос шести электронов), окись углерода — в метанол, ацетилен — в этан или метан. О.-в. к. примен. в пром-стн при окислении двуокиси серы в трехокись в проиэ-ве серной к-о ы, окислении аммиака в окись азога [c.398]

    Закономерности глубокого окисления на оксидных катализаторах углеводородов при низких концентрациях [ 10 % (об.)] существенно отличаются от закономерностей, характеризующих превращения их макроколичеств [ 0,1% (об.)]. Например, на марганецоксидных катализаторах изменяются ряды относительной реакционной способности. В случае микроколичеств указанных веществ в воздухе имеем ряд пропилен > > бензол > ацетилен > пропан, а в случае макроколичеств -ряд ацетилен > пропилен > бензол [199, 200]. [c.173]

    Ацетилен, H N Акрилонитрил Смесь цианидов К и Na на активированном угле (раствором K N и Na N в NH4OH пропитывают уголь, затем прокаливают при 600° С и окисляют воздухом или О2 при 500—900° С) 80—90 ч , мол. соотношение С2Н2 H N = 1,8—2,05, 18 ч. Выход 79%. Окисленный катализатор более активен, чем не подвергшийся окислению [470] [c.85]

    Комплексные катализаторы способны активировать разнообразные молекулы олефинов и ацетиленов, окиси углерода, углекислого газа, азота, насыщенных углеводородов, что открывает необычайно широкие возможности для создания новых каталитических процессов. В промышленных масштабах с участием комплексных катализаторов осуществлены такие процессы, как полимеризация и димеризация олефинов и ацетиленов, окисление этилена в ацетальдегид, гидрофоркйлирование, диспропор-ционирование олефинов. [c.5]

    Систематическое исследование активности сульфидов переходных металлов в реакции окисления HjS проведено Паннетье с сотрудниками [544]. Ими испытаны сульфиды Си, Fe, Ag, Mo, Ni, Со, нанесенные (4%) на пористый алюмосиликат, в в протоке (100 мл мин) при окислении сероводорода, содержащегося в смеси 91% СН4, 6% О2, 3% HjS. При температуре 150° С в начале слоя и 270—290° С в его середине на сульфидах Си, Fe, Ag, Mo сероводород окислялся не полностью, лишь на сульфидах Со ( 03S4) и Ni (NiSj) окисление происходило на 100%. В продуктах реакции наряду с SOj обнаруживалась и сера, которая, оседая на катализаторах, понижала их активность. Окисление HjS на изученных сульфидах не тормозится метаном и другими насыщенными углеводородами, водородом, СО, СОа, Sa, но обратимо тормозится непредельными соединениями (олефинами, ацетиленом, тио-феном, ароматическими углеводородами) [544, 545]. [c.272]

    Предварительная адсорбция на поверхности катализатора различных молекул, которые проявляют электронодонорные свойства (Нг, СО, NHз) по отношению к катализатору, в существенной мере ускоряет процесс распада гидроперекиси (рис. 16). Модификация катализатора за счет адсорбции электроноакцепторных молекул, например Ог, СОг, ацетилен и др., не только тормозит, но и полностью останавливает распад гидроперекиси на радпкалы [55]. Торможение расиада гидроперекиси на поверхности молекулами кислорода подтверждает возможность существования высокореакционной ион-радикальной поверхностной формы кислорода Ог не только в газовой фазе, но и в условиях жидкофазного окисления [55]. [c.23]

    Взаимное транс-влияние молекул СО в карбонильных комплексах придает им свойства, важные для катализаторов гомогенных процессов. Например, при каталитической олигомеризации ацетилена и акрилонитрила с участием Ы1(СО)зРРЬз присутствие СО в составе катализатора необходимо для поддержания нулевой степени окисления центрального иона и для облегчения контакта между М и 5 посредством сильного транс-влияния. В ходе реакции СО в координационной сфере катализатора замещается на ак-рилонитрил, который затем реагирует с ацетиленом [92]. Так как стадия замещения СО протекает все же недостаточно быстро, в реакции наблюдается индукционный период. Если же СО предварительно заместить на акрило-нитрил, индукционный период исчезает. [c.91]


Смотреть страницы где упоминается термин Катализатор окисления ацетилена: [c.27]    [c.101]    [c.15]    [c.143]    [c.248]    [c.398]    [c.44]    [c.143]    [c.248]    [c.53]    [c.1372]   
Технология нефтехимического синтеза Издание 2 (1985) -- [ c.220 , c.221 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы ацетилена

Катализаторы для каталитического окисления ацетилена

Окисление, ацетилена ртути, в катализаторе для

Цинк ванадат как катализатор при окислении ацетилена

Цинк молибдат как катализатор при окислении ацетилена

Цинк хромат как катализатор при окислении ацетилена



© 2025 chem21.info Реклама на сайте