Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал межмолекулярного взаимодействия. Энергия межмолекулярного взаимодействия потенциал

    Кристаллические и, плотные аморфные материалы обычно непригодны для создания мембран. Это обусловлено малой долей свободного объема и большим временем релаксации для процессов перераспределения вакансий и других дефектов структуры, в результате чего резко снижается растворимость газов и скорость миграции растворенного вещества. Равновесные и кинетические свойства подобных систем во многом определяются высокими значениями потенциала межатомного (межмолекулярного) взаимодействия, обычно превышающего средние значения кинетической энергии КьГ этим объясняется малая подвижность структурных элементов. Однако легкие разы типа Нг, Не, Оа, N2 с наиболее низкими значениями параметров (е,/, о, ) парного потенциала молекулярного взаимодействия могут в некоторых плотных матрицах образовывать системы с повышенной растворимостью и удовлетво рительными диффузионными характеристиками. Наиболее перспективны металлические мембраны на основе палладия для извлечения водорода, а также стекла для выделения гелия [8, 10, 19—21]. [c.114]


    Анализ вклада составляющих в потенциал межмолекулярного взаимодействия показал экспоненциальное уменьшение интенсивности энергии образования ковалентной связи гомео- и гетерополярного типа в зависимости от расстояния между молекулами. [c.167]

    При вычислении термодинамических свойств жидких смесей неэлектролитов методами теории возмущений [1] используется сферически симметричный потенциал межмолекулярного взаимодействия. Между тем потенциальная энергия взаимодействия молекул полярных веществ зависит от их взаимной ориентации. Для того, чтобы теорию возмущений можно было применять к полярным веществам, предлагается использовать эффективный сферически симметричный потенциал [2], полученный усреднением реального, зависящего от ориентаций молекул, потенциала по углам в соответствии с выражением  [c.41]

    Введем величину удельной энергии межмолекулярных взаимодействий молекул, составляющих сольватный слой, /с. Тогда с учетом Aii=j —/ , = —1с выражение для потенциала Гиббса примет вид [c.112]

    Сложный вид экспериментальной зависимости г (ОН) от г (00) (рис. 35) показывает, что энергия водородной связи не может быть однозначно определена при помощи парного потенциала взаимодействия, в связи с чем важны поиски но-. вых подходов к проблеме водородной связи. К этому же выводу приводит и анализ свойств льдов. Энергия и равновесная структура кристаллов НаО существенно определяются объемом конденсированной фазы. Зависимость энергии межмолекулярного взаимодействия и структуры кристалла от объема показывает, что особенно существенными в этом случае оказываются коллективные взаимодействия молекул (дальнодействие). [c.91]

    Большое теоретическое значение функции радиального распределения состоит в следующем. Во-первых, она непосредственно экспериментально связана с функцией рассеяния рентгеновских лучей и нейтронов. Во-вторых, если известна температурная зависимость й(г), зависимость ее от числа частиц в объеме и потенциал межмолекулярного взаимодействия <р(г), то определены все свойства жидкости, так как потенциальная энергия системы, пропорциональна интегралу [c.101]

    Квантовомеханические расчеты энергии межмолекулярного взаимодействия с учетом зависимости этой энергии от ориентации взаимо-действующ,их систем проводились только для простейших случаев для взаимодействия атома с двухатомной молекулой [16—19] и для взаимодействия двух двухатомных молекул [18—26]. Для учета анизотропии дисперсионного взаимодействия некоторые сложные молекулы рассматривались как асимметрические трехмерные осцилляторы [27—31]. Выбор формы потенциала Ф для взаимодействия сложных молекул с адсорбентом на основании таких расчетов, по-видимому, пока практически невозможен. Вместе с тем определение зависимости потенциальной энергии Ф межмолекулярного взаимодействия сложной молекулы с адсорбентом от ее ориентации у поверхности на основании экспериментальных адсорбционных данных также практически невозможно из-за недостаточной чувствительности термодинамических характеристик адсорбции к модели этой зависимости. Кроме того, такие эмпирические определения формы потенциала Ф необходимо было бы проводить для каждой интересующей нас системы в отдельности. Вместе с тем модели потенциалов, учитывающие зависимость межмолекулярного взаимодействия от ориентации молекул, применяемые при расчетах свойств разреженных газов, по-видимому, не годятся для расчетов свойств адсорбционных систем, так как адсорбционные свойства более чувствительны к геометрическому строению молекулы, чем свойства объемных газов. [c.243]


    Если для энергии межмолекулярного взаимодействия силового центра молекулы с атомом С графита принять потенциал Бакингема — Корнера (6,8 ехр), то при аналогичных приближениях (т. е. учитывая вклад в энергию отталкивания только от наружной базисной грани) для Ф получаем [8, 53, 88, 315]  [c.269]

    Итак, уравнение (3) позволяет теоретически рассчитать функцию распределения молекул р (/"), если известна энергия межмолекулярного взаимодействия в растворе. В свою очередь, если известна функция распределения р (/"), можно вычислить избыточную энергию раствора, избыточные химический потенциал и осмотическое давление и другие избыточные термодинамические функции. [c.37]

    При молекулярно-статистическом расчете константы Генри на грамм цеолита интегрирование заменяли суммированием по большому числу элементарных объемов, на которые разделялась повторяющаяся V24 часть большой полости. Для всех молекул расчет проводили в атом-ионном приближении с учетом вклада, вносимого индукционным взаимодействием атома А молекулы с ионом I цеолита. Далее находили потенциальную энергию межмолекулярного взаимодействия данного атома молекулы со всем цеолитом и проводили суммирование по всем атомам молекулы. Приближенность расчета параметров атом-ионных потенциалов и неточность использованных моделей цеолитов и многих молекул преодолевали, как в случае ГТС, введением в вычисленную теоретически величину атом-ионного потенциала эмпирической поправки р. Значение р определяли таким же методом, как и при адсорбции на ГТС (см. разд. 6.5). Несмотря на усложнение, связанное в случае цеолитов с учетом индукционного взаимодействия, этим приближением можно пользоваться. [c.208]

    Отклонения газа от идеальности описываются обычно с помощью вторых и последующих вириальных коэффициентов [525]. С теоретической точки зрения вириальные коэффициенты, полученные для достаточно реалистичных потенциалов, можно в принципе разделить [526] на две компоненты, одна из которых связана со столкновениями свободных молекул, а другая — с образованием соответствующих многомолекулярных кластеров. Модельные расчеты показали, что при низких температурах величина второго вириального коэффициента Вг определяется в основном образованием димеров [526, 527]. Это обстоятельство важно с точки зрения использования квантовохимических методов, поскольку для вычисления вклада образования кластеров достаточно знать поведение гиперповерхности потенциальной энергии в минимумах, а для того, чтобы найти вклад поступательного движения молекул в потенциал межмолекулярных взаимодействий, нужно было бы построить всю гиперповерхность. Поэтому появляется возможность использовать значения вириальных коэффициентов при низких температурах для получения информации о кластерах и для проверки квантовохимических методов. [c.128]

    Для разреженного газа потенциал межмолекулярного взаимодействия ф в среднем значительно меньше энергии Т теплового движения молекул, так что функции Майера можно считать малыми величинами. Это позволяет преобразовать подынтегральное [c.111]

    Подчеркнем, что определить направление вектора основываясь лишь на законах сохранения импульса и энергии, нельзя углы, характеризующие направление этого вектора, существенно Зависят, как уже отмечалось в разделе 7.1, от явного вида потенциала межмолекулярного взаимодействия. [c.368]

    В дальнейшем Поли [48] решил динамическую задачу и для низкосимметричных молекулярных кристаллов нафталина и антрацена (в обоих случаях пр. гр. P2i/ a). Расчет энергии межмолекулярного взаимодействия был проведен в. атом-атомном приближении (потенциал 6-ехр , параметры из работы [99]) со сферой суммирования радиусом 5,5 что дает ошибку в частотах, не превышающую 1%- При поиске минимума энергии в качестве начального приближения были использованы экспериментальные структурные дан-> ные. Как показал расчет, равновесная структура отличается от найденной рентгенографически лишь небольшим поворотом молекул (различие в координатах атомов в большинстве случаев не превышает стандартного отклонения). Динамические коэффициенты были найдены численным дифференцированием с шагом 10 А для трансляционных смещений и 3-10 радиана для либрационных. [c.169]

    Понижая температуру раствора, можно осуществить условие Г = 0, при котором химический потенциал взаимодействия полимер— растворитель (как и свободная энергия взаимодействия сегментов в выбранном элементе объема) обращается в нуль. Это означает, что изменение энергии межмолекулярного взаимодействия в растворе (теплота смещения) в точности компенсируется соответствующим возрастанием конфигурационной энтропии. [c.54]

    Методика и объекты расчета. Расчет энергии межмолекулярного взаимодействия проводился в атом-атомном приближении с помощью потенциала 6-ехр = — А гЛ + ехр (— а г,-у), где Гц — [c.394]

    Потенциалы (6.8) — (6.11) являются изотропными, т. е. они описывают зависимость энергии межмолекулярного взаимодействия двух атомов только от расстояния между ними. Однако электронные облака атомов, химически связанных в молекулы и твердые тела, не являются сферически симметричными. Поэтому потенциал ф межмолекулярного взаимодействия двух таких атомов должен зависеть не только от расстояния между ними, но и от угловых координат. [c.92]


    Форма атом-атомного потенциала межмолекулярного взаимодействия. Принимая для потенциала сил отталкивания экспоненциальную (VIII,10) или степенную (VIII,11) функцию и учитывая один, два или более членов степенного ряда (VIII,12) для энергии дисперсионного притяжения, можно получить ряд моделей потенциала межмолекулярного взаимодействия. Для описания межмолекулярного взаимодействия двух силовых центров при адсорбции были использованы главным образом следующие модели 1) потенциал Леннард-Джонса (6,12) [35-38, 40, 42-44, 52, 54-65, 67-74, 76, 78, 79, [c.258]

    В пионерских расчетах Поли в приближеиии жестких молекул были получены дисиерсионные кривые и функции распределения частот для гексаметилентетрамина [97], нафталина и антрацена [98]. В работе [98] энергия межмолекулярного взаимодействия вычислялась в атом-атомном приближении, а динамические коэффициенты были найдены численным дифференцированием. Однако расчетные частоты существенно отклонялись от эксперимеитальных значений. Одной из причин этого отклонения могло быть взаимодействие внешних и внутренних молекулярных колебаний. Чтобы учесть этот эффект Поли и Си-вин [99] провели расчет динамики кристалла нафталина, рассматривая динамические коэффициенты как вторые производные потенциальной энергии по смещениям отдельных атомов. Таким образом, молекулы не считались жесткими и могли деформироваться при колебательных движениях. Для нахождения динамических коэффициентов использовались силовые постоянные внутримолекулярных смещений, полученные из частот колебаний в газовой фазе, а силовые постоянные смещений молекул были вычислены двойным дифференцированием потенциала 6—ехр , т. е. по отдельности для каждого атом-атомного контакта. Полученные частоты внутримолекулярных колебаний были заметно выше, чем для свободных молекул (особенно для низкочастотных мод). Напротив, частоты внешних молекулярных колебаний снизились на 5—10 см .  [c.163]

    Атом-атомное приближение остается основным методом расчета энергии межмолекулярного взаимодействия при вычислении фононного спектра. Однако в отличие от исследований [98—100] в последующих работах авторы обычно считают необходимым дополнять атом-атомный потенциал ( 6—ехр , 6—12 или 6—9 ) учетом электростатического взаимодействия. Вар-шел и Лифсон [122, 123] в расчете частот для кристаллов н-гексана и н-октана учитывали электростатическую составляющую в форме кулоновских членов, содержащих эффективные атомные заряды. Такая же методика предусмотрена в программе [116]. [c.165]

    Вообще говоря, превращение постунательной энергии молекул в колебательную при столкновениях не может быть рассмотрено в рамках модели, в которой игнорировалось бы превращение поступательной энергии во вращательную и вращательной в колебательную. Это следует из того факта, что эффективность превращения поступательной энергии во вращательную в принципе велика и пренебречь взаимодействием поступательных и вращательных степеней свободы нри рассмотрении механизма колебательпого возбуждения молекул нельзя. Тем не менее для молекул, у которых асимметричная часть потенциала межмолекулярного взаимодействия мала, теория, основанная на пренебрежении взаимодействием поступательных и вращательных степеней свободы, дает правильные результаты по зависимости скорости колебательного возбуждения молекул от параметров взаимодействия и молекулярных констант. Поскольку значения параметров потенциала точно не известны, теория носит полуэмнирический характер, и поэтому возможные ошибки, связанные с пренебрежением превращения поступательной энергии во вращательную, неявным образом компенсируются оптимальным подбором параметров. Разумеется, существуют случаи, когда никакой разумный подбор параметров взаимодействия не может объяснить результат эксперимента в терминах Т—У-обмена энергией. Тогда необходимо привлекать либо взаимодействие с вращением, либо неадиабатическое взаимодействие с близко расположенными электронными термами. [c.165]

    Из (2.7) следует, что в системах, с разной природой компонентов, но близкими средними значениями термодинамических потенциалов, будет наблюдаться близость физикохимических свойств. Такое явление - особый вид изомерии (изомерия многокомпонентности). Пример химически подобных многокомпонентных систем - тяжелые нефтяные фракции, пеки, битумы, углеродистые материалы и полимеры на их основе. Таким образом, причиной подобия физико-химических характеристик является близость энергии межмолекулярного взаимодействия, составляющей часть термодинамического потенциала системы. Определим такие системы как изореакционные. [c.25]

    Межмолекулярные силы имеют в основном электрическую природу, обусловленную движением электронов и ядер, составляющих взаимодействующие молекулы [127,128]. В то же время межмолекулярные потенциалы рассматриваются как результат одновременного существования различных типов межмолекулярного взаимодействия (ММВ), каждый из которых вносит свой вклад в результирующий потенциал (табл.2.1). Это позволяет выделить типы ММВ, дающие в данной области межмолекулярных расстояний R наибольший вклад в общую энергию ММВ, обладающие конкретным физическим смыслом и связанные с определенными физическими характеристиками молекул. В этом аспекте различают три области R [128]. Б первой области с R < 0,212 нм, где потенциал имеет характер отталкивания, электронный обмен в связи с перекрыванием молекулярных орбиталей весьма существенен и молекулы теряют индивидуальность, образуя единую взаимодействующую систему (квазимолекулу), основной вклад в межмоле-кулярный потенциал Emi вносят кулоновское E oui и обменное Еех взаимодействия  [c.62]

    Межмолекулярный потенциал представляет сложную функцию расстояний между молекулами и зависит от расположения, строения и состава. Современная теория межмолекулярного взаимодействия не завершена и не обеспечивает получения строгих количественных соотношений, выражающих зависимость энергии взаимодействия от молекулярных характеристик и строения жидкости. Поэтому при расчете межмолекулярного потенциала используют эмпирические и полуэм-пирические уравнения. Межмолекулярное взаимодействие рассматривается как сумма эффектов взаимодействий двух, трех, четырех, пяти н шести. молекул. Для парных взаимодействий межмолекулярный [c.230]

    В теоретич. аспекте Г. в. рассматривают в рамках общей проблемы влияния среды на межмолекулярные взаимодействия. Внедрение неполярной молекулы в воду невозможно без нарушения образуемой молекулами воды простраи- ственной сетки прочных водородных связей. Для такого внедрения требуется значит, затрата работы, т.е. повышается своб. энергия системы (изохорно-изотермич. потенциал, или энергия Гельмгольца). В результате неполярные молекулы в воде начинают притягиваться, поскольку при их сближении термодинамически невыгодный контакт с водой в тон или иной степени устраняется и своб. энергия системы понижается. Вызываемые присутствием неполярной молекулы искажения в структуре воды могут передаваться на значит, расстояния по цепочкам водородных связей и обусловливать дальнодействие сил Г. в. Эти искажения носят упорядоченный характер и сопровождаются уменьшением энтропии системы энтропийная природа Г. в. и проявляется в его усилении при повышении т-ры. [c.568]

    В неплазменном (неионизированном) состоянии частицы газообразных загрязнителей (молекулы, радикалы, атомы) содержат равное количество протонов и электронов, и поэтому не обладают избыточным электрическим зарядом. В то же время между ними возникают силы электрического взаимодействия, которые принято делить на квантовые (межмолеку-лярные, вандерваальсовы, дисперсионные) и классические электростатические. Причиной возникновения вандерваальсовых сил считается поляризация частиц под действием электрических полей соседних частиц, из-за собственных температурных колебаний и так называемых нулевых колебаний зарядов, присущих ядрам и электронам атомов, радикалов, молекул вследствие их квантовой природы. Энергия межмолекулярного взаимодействия оценивается в 10 . .. 10" эВ на одну частицу, что составляет около 1,6(10 ...10 ) Дж. Точные расчеты потенциальной энергии (потенциала) дисперсионного (вандерваальсового) взаимодействия чрезвычайно затруднены. Обычно потенциалы принимают обратно пропорциональными расстоянию в шестой степени между частицами, а коэффициенты пропорциональности находят эмпирически. [c.72]

    Наиболее простой системой для изучения является атермическая система, т> которой ДЯ = 0 и изменение химического потенциала определяется только температурой и изменением энтропии. Атер-мической системой должна являться система полимергидрирован-ный мономер (глава VI), так как химическое строение молекул мономера сходно со строением звена полимера, н при одинаковой плотности молекулярной упаковки обоих компонентов энергия межмолекулярного взаимодействия E,,=E22 = i2, а следовательно, Q = 0 (стр. 360).  [c.366]

    Представление потенциала в виде суммы слагаемых, выражающих вклады различных видов взаимодействия. Энергия межмолекулярных сил обычно рассчитывается с помощью квантовомеханической теории вовмущений. Согласно этой теории потенциальную энергию и притяжения двух молекул на расстояниях, при которых электронные оболочки молекул не перекрываются, можно представить в виде суммы трех слагаемых [157, 159]  [c.255]

    В кристаллических решетках углеводородов расстояние наибольшего сблин<ения атомов водорода соседних молекул равно 2,4— 2,6 А [310]. Часто это значение принимается равным равновесному расстоянию / о,н....н межмолекулярного взаимодействия двух атомов Н. Однако расчеты кристаллических решеток углеводородов на основании атом-атомных потенциальных функций межмолекулярного взаимодействия С и Н показывают [172, 186, 228], что расстояние наибольшего сближения атомов Н соседних молекул в решетке приблизительно на 0,3 А меньше значения равновесного расстояния 0,Н...Н) принятого в расчетах потенциала межмолекулярного взаимодействия двух атомов Н. Это обусловлено главным образом тем, что расстояния между атомами сложных молекул в кристаллической решетке определяются минимумом потенциальной энергии межмолекулярного взаимодействия всех силовых центров рассматриваемой молекулы со всеми силовыми центрами остальных молекул, а не потенциальным минимумом межмолекулярного взаимодействия только наружных атомов Н. Таким образом, расстояние наибольшего сближения атомов Н в молекулярных кристаллах пе равно значению о,н...нДля потенциальной функции межмолекулярного взаимодействия этих двух изолированных атомов Н. Чтобы из атом-атомных потенциальных функций межмолекулярного взаимодействия получить расстояние наибольшего сближения атомов Н в кристаллической решетке к-гексана, равное экспериментально наблюдаемому, для равновесного расстояния Го,н...н взаимодействия двух атомов Н необходимо принять значение, равное 2,8—3,2 А [228, 229]. Необходимость введения более высокого, чем 2,4—2,6 А, значения для Го, н. .. н было отмечено и в других работах [173, 227]. [c.266]

    Принимая потенциал Леннард-Джонса (6,12) для энергии межмолекулярного взаимодействия силового центра молекулы с атомом С графита, используя приближение Крауэлла (УП1,46) и учитывая вклад только наружной базисной плоскости решетки графита в2 для потенциальной энергии Ф межмолекулярного взаимодействия силового центра молекулы с базисной гранью графита, получили [52, 76, 315] выражение  [c.269]

    Для энергии межмолекулярного взаимодействия с атомами С графита атомов С и Н молекул углеводородов был принят теоретически наиболее обоснованный потенциал Бакингема — Корнера ( 111,16) [9—11, 14, 17]. В этом случае потенциальная функция Ф, взаимодействия -го атома молекулы с базисной гранью графита, полученная при использовании приближения Крауэлла (VIII,46), дается выражением ( 111,49). Параметры Су, С Су, Вид этого потенциала для взаимодействия с атомами С графита атома С и Н молекулы сначала были оценены на основании только физико-химических свойств молекул и адсорбента, взятых в отдельности [9, 10]. Параметры сил притяжения Су и С были оценены по приближенной квантовомеханической формуле Кирквуда — Мюллера ( 111,25) для Су и по аналогичной ей формуле ( 111,33) для С - Принятые в расчетах значения поляризуемости а и диамагнитной восприимчивости X для атомов Н и С молекул алканов и атомов С гра- нта и полученные значения Су, С и С /Су приведены в табл. Х,1. [c.309]

    Расчеты термодинамических характеристик адсорбции н-алканов при выборе в качестве силовых центров звеньев СНд и СНа. Расчет термодинамических характеристик адсорбции метана, этана, пропана, н-бутана и н-пентана на базисной грани графита производился также при рассмотрении в качестве силовых центров молекулы СН4 в целом [9, 10, 64, 65] и звеньев СН3 и Hj для остальных молекул [9, 10, 13]. Расчеты Ф и на ее основании расчеты термодинамических характеристик адсорбции в работах [9, 10, 13] производились путем, аналогичным использованному при выборе атомов в качестве силовых центров молекулы. В этих работах для энергии межмолекулярного взаимодействия звеньев СН3 и Hg молекулы адсорбата с атомом С графита был принят потенциал Бакингема — Корнера (Vin,16). Параметры сил притяжения Су и этого потенциала оценивались с помощью формулы Кирквуда — Мюллера (VIII,25) и аналогичной ей формулы (VIII,33). Параметр сил отталкивания в экспоненте q принимался одинаковым для взаимодействий GH4. . . С, СНз . С и Hj. .. С и равным 36 нм" . Предэкспоненциальный параметр сил отталкивания В для взаимодействия этих пар силовых центров оценивался при условии равенства сил притяжения и сил отталкивания между силовым центром молекулы и всей решеткой графита при соответствующем равновесном расстоянии Zq, т. е. при использовании уравнения (VIII,38). При этом равновесное расстояние Zq принималось равным сумме эффективного ван-дер-ваальсового радиуса г силового центра молекулы и половины межплоскостного [c.324]

    Этот процесс является примером, иллюстрирующим превращение от носительной поступательной энергии во вращательную или колебательную энергию. Одно из простейших предположений относительно взазшо-действия частиц отвечает модели, в которой потенциал взаимодействия частиц считается суммой потенциалов, каждый из которых зависит от расстояния между парой атомов (такая модель называется гантельной). Один из потенциалов IIвс отвечает внутримолекулярному потенциалу молекулы ВС, а два других С/дв и Пас — межмолекулярному взаимодействию. [c.110]

    Амплитуда колебаний ядер для нижних колебательных уровней двухатомной молекулы мала по сравнению с характерной шириной потенциала межмолекулярного взаимодействия. Для оценки амплитуды колебаний а при заданной энергии Е аппроксимируем потенциал Морзе парабо- [c.166]


Смотреть страницы где упоминается термин Потенциал межмолекулярного взаимодействия. Энергия межмолекулярного взаимодействия потенциал : [c.74]    [c.83]    [c.126]    [c.402]    [c.411]    [c.366]    [c.271]    [c.366]    [c.197]    [c.164]    [c.170]    [c.108]    [c.104]    [c.292]   
Введение в молекулярную спектроскопию (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие межмолекулярное

Межмолекулярные

Потенциал межмолекулярного взаимодействия

Потенциал межмолекулярный

Энергия взаимодействия

Энергия потенциала



© 2024 chem21.info Реклама на сайте