Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры поглощения и излучения света молекулами

    Влияние электромагнитного излучения. Под влиянием излучения ультрафиолетового или видимого участка спектра протекают реакции, получившие название фотохимических реакций. При поглощении кванта света молекулы переходят в энергетически возбужденное состояние с повышенной реакционной способностью. Многие фотохимические реакции заканчиваются стадией цепной реакции. [c.530]


    Колебательные инфракрасные спектры поглощения дают только молекулы, имеющие дипольные моменты, т. е. смещенные друг относительно друга центры тяжести положительных и отрицательных зарядов. Если при колебании молекулы дипольный момент изменяется, то такая молекула может поглощать инфракрасные излучения частоты, соответствующей частоте колебаний дипольного момента. Дополнительные сведения о колебаниях молекулы дают спектры комбинационного рассеяния при возбуждении этих спектров кванты видимого или ультрафиолетового света воздействуют на электронное облако молекулы, которое при этом деформируется. В спектре комбинационного рассеяния проявляются такие колебания ядер молекул, которые сопровождаются деформацией электронного облака наличия дипольного момента в молекуле при этом не требуется. [c.19]

Рис. 4.2. Спектры поглощения и излучения света молекулами. Рис. 4.2. <a href="/info/2753">Спектры поглощения</a> и <a href="/info/278607">излучения света</a> молекулами.
    Можно наблюдать вращательно-колебательно-электронные спектры поглощения и излучения. При пропускании света в ультрафиолетовом участке спектра через вещество в газообразном состоянии происходит переход молекул с более низкого вращательно-колебательно-электронного уровня на более высокий вращательно-колебательно-электронный энергетический уровень. При нормальных температурах молекулы находятся на нулевом колебательно-электронном уровне. Переходы молекул при поглощении квантов света будут происходить с различных вращательных подуровней нулевого колебательно-электронного [c.13]

    Схема переходов молекулы при поглощении квантов света и при переходе в низшее энергетическое состояние с излучением квантов (рис. 10) поясняет появление линий в спектре комбинационного рассеяния. Измерение частот линий в спектре комбинационного рассеяния (стоксовых линий) дает возможность определять частоту колебания атомов в молекуле, т. е. молекулярную константу  [c.17]


    Не все молекулы поглощают инфракрасное излучение. В частности, молекулы с определенными свойства.ми симметрии, как, например, гомоядерные двухатомные молекулы, не поглощают инфракрасного излучения. В более сложных молекулах не все типы колебаний обязательно соответствуют поглощению инфракрасного излучения. Например, симметричные молекулы, как, скажем, этилен, Н,С=СН2, не обнаруживают всех своих колебаний в инфракрасном спектре. Для того чтобы помочь исследованию колебаний таких молекул, часто используется спектроскопия комбинационного рассеяния (КР). Спектр КР возникает в результате облучения молекул свето.м (обычно в види.мой области) известной длины волны. В современных спектрометрах КР в качестве источника света, облучающего образец, обычно используется лазерный пучок (рис. 13-35). Поглощение излучения измеряется косвенным путем. При облучении светом высокой энергии [c.590]

    Светящиеся тела, содержащие возбужденные частицы, испускают излучение. Возбуждение происходит или путем поглощения квантов света, или при столкновениях, т. е. за счет теплоты. Спектры испускания известны для атомов и сравнительно небольшого числа молекул, в основном двухатомных (более сложные разлагаются при высокой температуре). Молекулярные спектры изучают главным образом как спектры поглощения, когда излучение источника сплошного спектра (например, лампы накаливания) проходит через кювету, наполненную молекулярным газом. [c.145]

    Для расшифровки состава природных органических соединений нефти и нефтепродуктов и характеристики их свойств применяются оптические методы. Сюда относятся инфракрасная и ультрафиолетовая спектрометрия, метод комбинационного рассеяния света, определения показателя преломления и оптической активности. Вещество, через которое проходит излучение, поглощает лучи только определенной длины волны (частоты), и по закону Кирхгофа само вещество излучает только те лучи, которые оно в данных условиях поглощает. Каждый ион, атом, молекула дают характерные частоты в спектре поглощения, спектре испускания и спектре комбинационного рассеяния. Задачей спектрального анализа является определение этих характеристических частот, зная которые, можно определить качественный состав углеводородной смеси. Для этого существуют таблицы характеристических частот индивидуальных углеводородов. Для количественного анализа еще необходима оценка интенсивности излучения. [c.228]

    Возбужденные электронные состояния. Спектральная область, обычно используемая для абсорбционных и люминесцентных измерений (200—800 нм), соответствует электронным переходам в молекуле. Поглощение молекулой кванта света в этой области спектра приводит к переходу электрона на более высокий энергетический уровень. Взаимодействие излучения с молекулой может быть представлено кривыми потенциальной энергии, соответствующими основному и возбужденному состояниям. [c.50]

    Электронное возбуждение полимерной сетки может быть вызвано электромагнитным излучением (свет, ультрафиолетовое излучение, -излучение) или облучением частицами. Для передачи энергии соударения частиц или кванта излучения электрону необходимо, чтобы энергия оказалась достаточной для перехода последнего в возбужденное состояние н чтобы существовал механизм взаимодействия. При облучении светом в видимой части спектра фотон, скажем, длиной волны 330 нм обладает достаточной энергией для разрыва С—С-связи.. Однако фотон не будет поглощаться алканами, и в них нет электронных состояний с такой же или меньшей энергией возбуждения. Для эффективного разрыва связей фотон должен поглощаться и взаимодействовать с электроном связи. Подобное взаимодействие происходит либо непосредственно, либо косвенно с помощью механизмов переноса энергии путем диффузии экситона, одноступенчатой передачи или поглощения флюоресцентного света, испускаемого той же самой или другой (примесной) молекулой [11]. Природа и последовательность этих важных процессов, которые определяют фотохимическую стабильность (или нестабильность) полимеров, не будут здесь подробно рассматриваться. Интересно, однако, определить уровни энергии, на которых начинается возбуждение электронов или ионизация молекул, и изменения энергии связи, вызванные в свою очередь возбуждением или ионизацией. [c.109]

    В фотометрических методах используют избирательное поглощение света молекулами анализируемого вещества. В результате поглощения излучения молекула поглощающего вещества переходит из основного состояния с минимальной энергией , в более высокое энергетическое состояние Е . Электронные переходы, вызванные поглощением строго определенных квантов световой энергии, характеризуются наличием строго определенных полос поглощения в электронных спектрах (см. разд. 4.1.2) поглощающих молекул. Причем поглощение света происходит только в том случае, когда энергия поглощаемого кванта совпадает с разностью энергий Д между квантованными энергетическими уровнями в конечном (Ег) н начальном ( 1) состояниях поглощающей молекулы  [c.177]


    В фотометрическом анализе, как правило, используют поглощение света молекулами комплексных (координационных) соединений, сольватов, а в ряде случаев и более сложных соединений (ассоциатов, аддуктов и т. п.). Взаимодействие светового излучения с такими сложными многоэлектронными системами описывают с помощью молекулярных спектров поглощения, вид которых определяется в основном состоянием электронов внешних орбиталей, участвующих в образовании химической связи. [c.180]

    При когерентном рассеянии света молекулами, описываемом законом Рэлея (см. уравнение (467)), часть энергии излучения переходит в энергии вращательного и колебательного состояния молекул. Поэтому в спектре рассеянного света наряду с частотой линии возбуждающего света наблюдаются линии с большими и меньшими частотами, соответствующие выделению и поглощению энергии молекулами. Поскольку при комнатной температуре преобладает основное колебательное состояние, происходит только поглощение энергии. Линии получаемого таким образол спектра комбинационного рассеяния (КР) часто значительно сдвинуты по сравнению с линиями падающего на вещество света в сторону больших длин волн. В то время как ИК-спектр связан с изменением дипольного момента молекул, появление линий в КР-спектре связано с изменением поляризуемости молекул. Поэтому линии спектра [c.354]

    Можно выделить две основные группы спектроскопических методов исследования молекул. К первой группе относятся методы, включающие различные способы получения отдельных участков ультрафиолетового (УФ), видимого и инфракрасного (ИК) спектров поглощения молекул вещества. К ней примыкает также метод комбинационного рассеивания света (КРС). Методы этой группы классифицируются либо по принадлежности исследуемого излучения к различным участкам шкалы электромагнитных волн (УФ-видимые, ИК-спектры), либо по характеру соответствующих движений и состояния молекул (электронные, колебательные и вращательные спектры). [c.50]

    В-третьих, как уже упоминалось, взаимодействие вещества с инфракрасным излучением, сопровождающееся поглощением излучения, а также испускание радиации в этой области спектра возможно для молекул, у которых вращение и колебание сопровождаются изменением электрического момента (дипольный момент). У молекул, состоящих из одинаковых атомов (Оа, N5, Нг. ..), дипольный момент равен нулю и не появляется ни при колебаниях, ни при вращении, поэтому для таких веществ отсутствует испускание или поглощение в инфракрасной области. Однако изменения колебательных и вращательных состояний могут сопровождаться электронными переходами, а также проявляются при рассеянии света. [c.252]

    При поглощении света молекулы вещества участвуют в трех типах возбуждения, или переходов, — электронных, колебательных и вращательных. Если связывающий (или несвязывающий) электрон в молекуле переходит под действием излучения из основного состояния на незанятую молекулярную орбиталь с более высокой энергией, то этот переход характеризуется изменением электронного состояния молекулы. Электронным переходам соответствуют относительно высокие энергии и частоты (от 209 до 627 кДж/моль). Для такого возбуждения электронов необходимо излучение в видимой и ультрафиолетовой частях спектра. [c.157]

    Обычно изучают спектры поглощения молекул. Для этого через наследуемое вещество пропускают свет и при помощи спектрографа устанавливают, излучение каких длин волн поглощается. Поглощая квант излучения, молекула переходит из одного энергетического состояния в другое поглощаются только те кванты, энергия которых равна энергии этих переходов таким образом, спектр поглощения, так же как и эмиссионный спектр, позволяет судить об энергетических уровнях в молекуле. [c.130]

    Чтобы произошло поглощение света, необходимо использовать излучение, соответствующее полосе спектра поглощения исследуемого вещества. Например, энергии разрыва связи в молекуле I2 соответствует квант света с длиной волны [c.368]

    ЛИШЬ при действии довольно жесткого ультрафиолетового излучения с длиной волны меньше 300 нм. Наоборот, вещества, которые могут поглощать световую энергию, окрашены. Например, хлорофилл— сложная органическая молекула, ответственная за поглощение света при фотосинтезе, имеет ярко-зеленую окраску, что соответствует поглощению света в видимой области. На рис. 1.07 представлен спектр поглощения хлорофилла. [c.369]

    Атомно-абсорбционный анализ. В течение последних десяти лет получил большое распространение новый вид атомного анализа по спектрам поглощения. Получить резонансное поглощение отдельных атомов можно только в парах. Поэтому анализируемую пробу вводят в высокотемпературное пламя, где она испаряется и диссоциирует на отдельные атомы, так же как и в методе пламенной фотометрии. Для более полной диссоциации молекул обычно используют восстановительное пламя, в котором образование устойчивых двухатомных молекул происходит реже. Концентрацию анализируемых элементов в пламени определяют не по излучению возбужденных атомов, а по поглощению света от дополнительного источника невозбужденными атомами. В качестве источника света используют отпаянные трубки с полым катодом (или высокочастотным разрядом), в которые тем или иным способом вводится один или несколько определяемых элементов. Такие трубки в течение длительного времени стабильно излучают узкие резонансные линии введенных элементов. Проходя через пламя, это излучение частично поглощается невозбужденными атомами анализируемой пробы, введенной в пламя. С ростом концентрации анализируемого элемента увеличивается упругость его паров [c.274]

    Было установлено, что несмотря на кратковременность процесса поглощения и испускания фотона, молекула иногда успевает перейти из одного колебательного состояния в другое. Поэтому испущенный фотон может имеет частоту несколько меньше или больше по сравнению с фотоном поглощенным, причем разность их энергий точно равна разности двух колебательных или вращательных уровней молекулы, Если освещать анализируемое вещество строго монохроматическим светом с частотой то в спектре рассеянного излучения, кроме этой основной линии, появится еще ряд линий с частотами м,, — и [c.338]

    Молекулы в состоянии 5[ могут сразу перейти на один из низких колебательных уровней состояния 5о, отдав всю избыточную энергию в форме света. Этот процесс, происходящий обычно за время порядка 10"3 с, называется флуоресценцией. Этот относительно медленный процесс характерен главным образом для малых молекул, например двухатомных, и молекул с жесткой конфигурацией, например ароматических. Для большинства других соединений флуоресценция очень слабая, и часто ее невозможно детектировать. Спектры флуоресцентного излучения обычно представляют собой зеркальное отображение спектров поглощения. Однако это отображение не точное, а приблизительное, поскольку флуоресцирующие молекулы переходят с самого низкого колебательного уровня состояния 51 на различные колебательные подуровни состояния 5о, тогда как [c.313]

    Зависимость поглощения (уменьшения интенсивности) от длины волны к (или частоты V, поскольку с = уХ) представляет собой спектр поглощения. В дальнейшем наше внимание будет обращено на спектры поглощения в ультрафиолетовой (200— 400 нм) и видимой (400—700 нм) областях спектра. Происхождение этих спектров связано с электронными переходами в молекулах под воздействием поглощенных квантов света, и поэтому их называют электронными спектрами поглощения. Многие рассматриваемые ниже закономерности имеют общее значение и справедливы для излучения любых длин волн. [c.643]

    Спектры комбинационного рассеяния. Не только ИК-спектры поглощения дают способ исследования вращения и колебания молекул. Вращательно-колебательные переходы ярко проявляются в спектрах комбинационного рассеяния (КР-спектры) и наблюдаются в видимой области света. Комбинационное рассеяние света заключается в изменении частоты рассеиваемого веществом света. Для получения КР-спектра образец (рис, 78) освещают монохроматическим светом. Рассеянное излучение, возникающее под прямым углом к падающему свету, вводят в спектрограф и изучают возникающий спектр комбинационного рассеяния. [c.179]

    Реактор, в который помещается исследуемое вещество, облучается мощной короткой вспышкой света, создаваемой специальной импульсной лампой с непрерывным спектром излучения. Вспышка получается при разряде батареи конденсаторов, заряженных предварительно до высокого напряжения. Электрическая энергия достигает десятков килоджоулей при длительности вспышки в несколько десятков микросекунд. Под действием облучения происходит диссоциация молекул исследуемого вещества. Концентрация активных частиц непосредственно после вспышки оказывается столь значительной, что ее можно измерить. В классическом флеш-фотолизе анализ проводится при помощи спектров поглощения анализирующая лампа также представляет собой импульсную лампу, излучение от которой после прохождения через исследуемое вещество и спектрограф снимается на фотопластинку. Проводя серию опытов с различными задержками анализирующей лампы относительно вспышки, можно проследить за изменением концентрации активных частиц во времени. [c.304]

    Чисто колебательные спектры поглощения возникают при изменении только колебательной энергии, т. е. при энергетическом переходе молекулы из квантового состояния с меньшим значением V в квантовое состояние с более высоким значением V за счет поглощения, например, энергии кванта hv падающего излучения, где V частота колебаний поглощаемого света. [c.531]

    Природные пигменты по приведенному выше определению поглощают свет в видимом диапазоне спектра электромагнитного излучения, т. е. между длинами волн 380 и 750 нм. Поэтому их спектр поглощения видимого света имеет по крайней мере один максимум поглощения при длине волны (>.тах), характерной для хромофора молекулы пигмента. Это свойство, а также общая картина спектра дают полную информацию о молекулярной структуре и обычно используются при первых попытках идентифицировать пигмент. Положение Хтзх сильно зависит от используемого растворителя, а у некоторых групп пигментов и от величины pH. На спектры поглощения пигментов in vivo часто влияет ближайшее микроокружение молекулы. [c.25]

    Полоса 3360 А присутствует в спектре излучения голов комет, как й полосы NH2 поЛосы первой отрицательной системы ионизованных молекул N2 испускаются хвостами комет. Полосы аммиака NH3 обнаружены в спектре поглощения солнечного света, отраженного от Юпитера. О кометных спектрах см. (ZZ25) о планетных спектрах — в (ZZ10). Азот является одной из компонент радикала N, данные о котором приведены в разделе, посвященном углероду. [c.41]

    Радиоволны, инфракрасный, видимый и ультрафиолетовый свет, рентгеновские лучи и гамма-излучение представляют собой электромагнитные волны с различной длиной волны. Скорость света, с = 2,9979-10 ° см с , связана с его длиной волны X и частотой V соотношением с = Ху. Волновое число у-это величина, обратная длине волны, V = 1/Х. Все нагретые тела излучают энергию (излучатель с идеальными свойствами дает излучение абсолютно черного тела). Планк выдвинул предположение, что энергия электромагнитного излучения квантована. Энергия кванта электромагнитного излучения пропорциональна его частоте, Е = км, где / -постоянная Планка, равная 6,6262 10 Дж с. Выбивание электронов с поверхности металла под действием света называется фотоэлектрическим эффектом. Квант света называется фотоном. Энергия фотона равна /IV, где V-частота электромагнитной волны. Зависимость поглошения света атомом или молекулой от длины волны, частоты или волнового числа представляет собой спектр поглощения. Соответствуюшая зависимость испускания света атомом или молекулой является спектром испускания. Спектр испускания атомарного водорода состоит из нескольких серий линий. Положения всех этих линий точно определяются одним общим соотношением-уравнением Ридберга [c.375]

    Такие группы, вызьгеаюшие сильное поглощение каких-то у гас-тков спектра видимого электромагнитного излучения (света), называются хромофорами. Не менее важньш дпя проявления окрашивания является наличие в структуре молекулы сопряжетюй системы двух и.чи более хро.чофоров- [c.158]

    Колебательно-вращательный спектр называют также ин -фракрасным спектром. Такие спектры очень разнообразны, особенно в случае свободных молекул (в газах при уменьшенном давлении). Разрешающая способность обычного спектрального прибора слишком мала для разделения индивидуальных линий, вызванных вращательными Переходами. При повышении давления или при конденсировании фаз эти линии исчезают, так как продолжительность существования отдельного вращательного состояния настолько сильно изменяется. при соударениях молекул, что наблюдается уширение и перекрывание линий. Спектры в ближней инфракрасной области 1(Л от 1000 до 50 000 нм) обусловлены колебаниями атомов. При этом, различают колебания вдоль валентных связей атомов (валентные) и колебания с изменением валентных углов (деформационные). Колебания возникают, если поглощение электромагнитного излучения связано с изменением направления и величины дипольного момента молекул. Поэтому молекулы, состоящие, например, из двух атомов, не могут давать инфракрасные спектры. Симметричные валентные колебания молекул СОг также нельзя возбудить абсорбцией света. Отдельные группы атомов в молекулах больших размеров дают специфические полосы поглощения, которые практически не зависят от строения остальной части молекулы. Этот факт используЮ Т для идентификац,ии таких групп. В симметричных молекулах колебания одинаковых групп энергетически равноценны и поэтому вызывают появление одной полосы поглощения. По такому упрощению ИК-спектра можно сделать вывод [c.353]

    Широко используются в химии различные формы взаимодействия вещества с электромагнитным излучением рассеяние света при нефелометрии, определение показателя преломления, оптического вращения. Особенно часто для характеристики соединений используются спектры поглощения в различных областях электромагнитных колебаний. Поглощение в области видимого или ультрафиолетового спектра характеризует электронные свойства молекул. Р1нфракрасные спектры отражают колебания ядер. Наконец, дифракция рентгеновских лучей открывает возможность устанавливать геометрию молекул, чему служат также электронография и нейтронография. Дополнительную информацию о строении молекул может дать резонансная 7-спектроскопия (эффект Мессбауэра). [c.22]

    Такие труппы, вызываюшзне сильное поглощение какик-то участков спектра видимого электромагнитного излучения (света), называются хролюфорами. Не менее важным для проявления окрашивания является наличие в структуре молекулы сопряженной системы двух или Оолее хромофоров. [c.158]

    Электронным переходам соответствуют линии, лежащие в ультрафиолетовой и видимой областях спектра, а излучению, вызванному колебательными и вращательными переходами, — линии инфракрасной области (рис. 31). Электронные переходы часто сопровождаются одновременным изменением колебательных уровней. В результате спектры испускания молекулы не представляют собой совокупности отдельных линий, отвечающих электронным переходам, а обнаруживают более сложную структуру и имеют вид полос. Практически удобно изучать электронные спектры поглощения, используя жидкости или растворяя исследуемое вещество в малополярном растворителе. При этом электронный спектр не осложняется вращательно-колебательными переходами и лучше поддается интерпретации. Если свет с интенсивностью I проходит в веществе путь дЛиной х, причем концентрация поглощенного вещества равна С, то доля поглощенного света dill равна [c.63]

    ИК-Спектры. При воздействии электромагнитных воли ИК-диа-пазона на систему взаимосвязанных атомов амплитуды колебаний связи увеличиваются. При этом молекула поглощает те частоты ИК-излучения, энергия которых соответствует разности между двумя колебательными уровнями энергии. Таким образом, при облучении образца инфракрасным светом с непрерывно меняющейся частотой поглощается излучение только с определенной энергией (длиной волны), при этом происходит растяжение или изгиб соотвстствуюцдих связей. Регистрируя интенсивность прошедшего излучения в зависимости от длины волны или волновых чисел, получают спектр поглощения — ИК-спектр. [c.271]

    Поэтому при поглощении молекулой ультрафиолетового излучения высокой энергии наблюдаемый спектр поглощения состоит из широких полос, являющихся результатом наложения большого числа узких полос, соответствующих различным переходам между близко расположенными подуровнями. Сложная природа электронных спек-ров многоатомных молекул делает очень трудным их полный анализ даже при использованип приборов высокого разрешения, т. е. высоко монохроматичных потоков излучений. Отсутствие вращательной и вращательно-колебательной структур можно наблюдать в спектрах жидких веществ и растворов, что связано с взаимодействием между соседними молекулами растворенного вещества и влиянием сольватации (большинство химических исследований относится именно к этим условиям). Полярные растворители обусловливают обычно значительно большие изменения в полосах поглощения, чем неполярные. Это объясняется тем, что оптические спектры возникают в результате поглощения или излучения света внешними электронами, наименее прочно связанными с ядром, которые требуют для возбуждения меньше энергии, чем внутренние электроны. [c.8]

    Среди физических методов исследования органических со едийе-ний особенно важное место заняли методы, основанные на изучении спектров поглощения. Общий принцип и х сводится к следующбму когда свет (а в общем виде любое электромагнитное излучение, как будет ясно из дальнейшего) проходит через вещество, то происходит поглощение света. Физическая сущность поглощения состоит в том, что энергия света частично превращается во внутреннюю энергию вещества — энергию его молекул, атомов, электронов, ядер. [c.357]

    Вращательные спектры. Излучение в дальней инфракрасной и микроволновой областях дает вращательные спектры молекул в чистом виде. Эти спектры, как правило, спектры поглощения, а не испускания. Чисто вращательные спектры могут давать лишь молекулы с постоянным электрическим моментом диполя. Бездипольные молекулы типа На, Ог, N2 и другие не способны поглощать или испускать свет при изменении состояния вращения, т. е. они не дают ИК-спектров вращения. Это в какой-то мере ограничивает практическое использование ИК-спектров вращения. [c.175]

    Запасание и использование солнечного излучения зависит от наличия в растениях хлорофилла. На рис. 8.7 показана структурная формула наиболее широко распространенного хлорофилла о. Резонанс сопряженной системы приводит к оптическому поглощению в видимой области спектра на длинах волн, соответствующих максимальной солнечной интенсивности на уровне моря. В то же время свойственная порфнриновой структуре стабильность гарантирует, что поглощение излучения будет сопровождаться процессами переноса энергии или излучения, а не диссоциацией хлорофилла. Хлорофилл является особо эффективным сенсибилизатором благодаря способности поглощать энергию света и передавать ее от одной молекулы к другой до тех пор, пока не появятся условия, подходящие для сенсибилизируемой реакции. В органических растворах выход флуоресценции составляет примерно 0,3 (хотя в естественных условиях он значительно меньше), что является дополнительным свидетельством стабильности молекулы. [c.230]


Смотреть страницы где упоминается термин Спектры поглощения и излучения света молекулами: [c.34]    [c.99]    [c.145]    [c.145]   
Фотосинтез (1983) -- [ c.54 ]




ПОИСК





Смотрите так же термины и статьи:

Спектр света

Спектры молекул



© 2025 chem21.info Реклама на сайте