Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэтиловый эфир, молекулярная

    Метод ЛМ i = 24,5 0,5 °С полиэфир очищен осаждением из хлороформа диэтиловым эфиром. Молекулярная масса полиэфира 3800 нанесен в бензоле 17,51-10- мг ( ), хлороформе 12,12-10- мг (О, ). [c.159]

    Полиизобутилен набухает в диэтиловом эфире, бутилацетате, животных и растительных маслах. Он нерастворим в низших спиртах, ацетоне, этиленгликоле, глицерине. Благодаря насыщенности полимерных цепей полиизобутилен обладает высоким сопротивлением к тепловому и световому старению, а также повышенной химической стойкостью. Высокая термостойкость полиизобутилена позволяет перерабатывать его при 140—200°С, при этом молекулярная масса практически не изменяется. Термическое разложение полиизобутилена происходит при 300 °С и выше. [c.338]


    В табл. XII, 1 дана сводка сравнительных данных о кинетике реакций, ускоряемых молекулярным иодом. Механизм этих реакций сходен с механизмом распада диэтилового эфира. Характерным во всех случаях является изменение направления процесса в присутствии катализатора. Если ограничиться рассмотрением данных для распада трех простых эфиров, то бросается в глаза следующая закономерность для некаталитической реакции энергия активации увеличивается с усложнением молекулы, для каталитической — уменьшается. Ускорение, как видно из двух последних столбцов таблицы, обусловлено в основном снижением энергии активации в присутствии катализатора. Предэкспоненты увеличиваются не более чем в 70 раз этот эффект, по-видимому, также усиливается с усложнением молекулы распадающегося вещества. [c.276]

    Пример 3.. Раствор, содержаш,ий 8 г некоторого вещества в 100 г диэтилового. эфира, кипит при 36,86 С, тогда как чистый эфир кипит при 35,00 °С. Определить молекулярную массу растворенного вещества. [c.119]

    Давление насыщенного пара диэтилового эфира при 293 К Рнаса кПа. Плотность диэтилового эфира при этой температуре 714 кг/м . Молекулярная масса бензола — 78, диэтилового эфира — 74. [c.205]

    Молекулярные соединения фтористого бора с диэтиловым эфиром и ортофосфорной кислотой хорошо смешиваются с реагентами и алкилатом, образуя с ними гомогенные смеси, поэтому катализаторы могут быть использованы только однократно. При применении свободного фтористого бора его можно частично регенерировать путем нагревания реакционной смеси перед соответствующей обработкой. [c.168]

    Некоторые молекулы, хотя они на первый взгляд являются валентно насыщенными системами, так как их валентные электроны попарно заселяют молекулярные орбитали, отнюдь не лишены способности соединяться химическими связями с другими молекулами, не разрывая при этом своих собственных межатомных связей. Одни из этих молекул для этого должны иметь незанятые валентные орбитали, а другие — неподеленные пары электронов. Таким образом, одни молекулы проявляют способность присоединять другие молекулы до тех пор, пока не будут заняты все их валентные орбитали. Как известно, р -орбиталь бора не занята в молекуле ВРз. Поэтому эта молекула присоединяет молекулу аммиака, атом азота которой имеет на валентной орбитали одну пару неподеленных электронов, причем образуется донорно-акцеп-торная связь, почти ничем не отличающаяся от других ковалентных связей. Следовательно, нет оснований называть подобные соединения молекулярными комплексами — это настоящие атомные, а не молекулярные соединения. Связи подобного типа с донорами электронов могут образовать также молекулы — соединения бериллия, алюминия и др. В молекулах типа ВеРг имеются две незанятые валентные орбитали. Благодаря этому фторид бериллия присоединяет две молекулы диэтилового эфира, кислород которого служит донором электронов. Если в молекулах имеются незанятые валентные орбитали и недостаточное количество электронов для их нормального заселения парами электронов, как, например, в молекулах бороводородов, то эти молекулы в ряде случаев соединяются друг с другом путем делокализации всех валентных электронов между всеми молекулярными орбиталями, в результате чего все они оказываются частично заселенными электронами и между молекулами образуются настоящие химические связи. Это относится не только к взаимодействию молекул диборана с образованием высших боранов, но и к конденсации атомов металлов, в результате которой получаются твердые металлы. Атомы металлов также имеют незаселенные валентные орбитали, которые при конденсации сливаются в валентную зону и таким образом становятся достоянием всех валентных электронов. [c.88]


    Почему диэтиловый эфир (темп, кип, —34,6°С) кипит значительно ниже, чем бутанол (темп. кип. — 188°С), хотя они имеют одинаковую молекулярную массу  [c.55]

    Молекулярный вес диэтилового эфира определялся по методу Майера [2]. Получены следующие данные вес эфира 0,1023 г объем вытесненного воздуха 35,33 см температура 32,5° С атмосферное давление 743,95 мм рт. ст. Вычислите молекулярный вес эфира. Некоторый газ имел следующие плотности при 300°К  [c.9]

    При растворении 15 г хлороформа в 400 г диэтилового эфира температура кипения повысилась на 0,665° С. Определите молекулярный вес хлороформа. [c.131]

    Нитрометан — бесцветная жидкость, растворяется в этиловом спирте и диэтиловом эфире, в 100 г воды растворяется 9—10 г нитрометана Молекулярная масса 61,041 Температура плавления —28,55°С, температура кипения 101,18°С, df — 1,1381, По — 1,38188 УФ спектр см. рисунок 34 [c.98]

    В табл. 15.2 для сравнения приведены температуры кипения ряда соединений с близкими молекулярными весами, но с различной структурой. Так, диэтиловый эфир, который отличается от -пентана наличием в средней [c.480]

    Полярность карбонильной группы делает полярными альдегиды и кетоны, поэтому они имеют более высокие температуры кипения, чем неполярные соединения сравнимого молекулярного веса. Сами по себе они не способны образовывать межмолекулярные водородные связи, поскольку содержат атомы водорода, связанные только с атомом углерода вследствие этого их температуры кипения ниже, чем у соответствующих спиртов или карбоновых кислот. Для примера можно сравнить н-масляный альдегид (т. кип. 76 °С) и метилэтилкетон (т. кип. 80°) с н-пентаном (т. кип. 36 °С) и диэтиловым эфиром (т. кип. 35°), с одной стороны, и с н-бутиловым спиртом (т. кип. 118 °С) и пропионовой кислотой (т. кип. 141 °С) — с другой. [c.589]

    Удерживание на полисорбате-2 соединений с близкими температурами кипения, как и соединений с близкими значениями молекулярных весов, отличается от удерживания на полисорбе-1 и зависит и от величины дипольного момента разделяемых молекул, и от способности последних к образованию водородных связей с активными центрами поверхности сорбента. Например, вода, -пропанол, нитрометан удерживаются на полисорбате-2 сильнее н-гептана, несмотря на значительно более низкие, чем у н-гептана, значения молекулярных весов при близких температурах кипения (табл. 13), а отношение удерживаемых объемов бу-танола и диэтилового эфира равно 7,8 [441. [c.44]

    К числу экстрагентов, образующих с нитратом уранила молекулярные соединения, относятся простые эфиры, спирты, кетоны, альдегиды и сложные эфиры. Поэтому кроме рассмотренных экстрагентов (диэтиловый эфир, метилизобутилкетон, этилацетат, трибутилфосфат) многие другие соединения, принадлежащие к вышеперечисленным классам органических соединений, также являются пригодными для экстрагирования урана в виде молекулярных соединений с нитратом уранила или с другими его солями. Так, например, для экстракционного отделения урана из растворов нитратов были рекомендованы дибутиловый [30, 36, 92], диизопропиловый [21] и дигексиловый [639] эфиры, которые экстрагируют уранилнитрат, подобно диэтиловому эфиру. Некоторое отличие заключается в меньшей растворимости их в воде. Кроме того, извлечение нитрата уранила экстрагентами одного и того же класса, образующими с ним сольватные комплексы, возрастает с ростом отношения числа содержащихся в молекуле экстрагента атомов кислорода к числу атомов углерода [545, 700, 968]. [c.301]

    Около 90 г триоксана, очищенного по методике, описанной в пункте А, перегоняют н колбу емкостью 500 мл (отожженную пламенем при откачивании), содержащую 200 мл предварительно высушенного над РаОб дихлорэтана. Колбу закрывают пробкой с самозатягивающейся прокладкой (см. раздел 2.1.3). При перемешивании в колбу вводят 0,06 мл (0,5 ммоля) эфирата трехфтористого бора, растворенного в 7 мл дихлорэтана, и содержимое колбы нагревают до 45 С. После небольшого индукционного периода, составляющего примерно 1 мин, полиоксиметилен начинает выпадать из раствора в осадок, а затем и все содержимое колбы затвердевает. Через 1 ч полученный продукт переносят в 200 мл ацетона, фильтруют, кипятят, как описано в пункте А, и сушат. Для удаления окклюдированного инициатора полимер кипятят в 1 л диэтилового эфира, содержащего 2% (масс.) трибутиламина. Полимер фильтруют и сушат в вакуумном сушильном шкафу при комнатной температуре. Конверсия составляет 90—95%, интервал плавления полученного образца 176—178 °С. Определяют характери стическую вязкость полимера в растворе диметилформамида (молекулярная масса порядка 60 000) и термическую стойкость полимера (см. пункт А). [c.166]

    При растворении 13,0 г неэлектролита в 400 г диэтилового эфира (С2Н5)гО температура кипения повысилась на 0,453 К- Определить молекулярную массу растворенного вещества. [c.122]

    Влияние растворителей на скорость реакции изучено на примере алкилирования уксусной и трихлоруксусной кислот циклогексеном и бромуксусной кислоты бутеном-2 [ 7а]. Установлено, что неполярные или слабополярные растворители, как бензол и четыреххлористый углерод, смягчают реакцию и немного понижают скорость ее вначале, а при продолжительном времени реакции позволяют получать эфиры (в бензоле) даже с более высоким выходом, чем без растворителя. В четыреххлористом углероде реакция протекает немного медленнее, чем без растворителя Хрис. 7). Растворители ацетон и диэтиловый эфир, с которыми фтористый бор легко образует высокополярные молекулярные соединения, парализуют реакцию присоединения кислот к олефинам. Так, эфирообразование в реакции циклогексена с трихлоруксусной кислотой в присутствии ВРз-0(С2Н5)2 в ацетоне обнаруживается только через 20—30 час. после начала смешивания реагентов. Бромуксусная кислота с бутеном-2 в этиловом эфире [c.20]


    По данным изучения свойств раствора бромида алюминия в диэтиловом эфире и пиридине молекулярная масса этого вещества соответствует формуле А1Вгз, а в сероуглероде молекулярная масса в 2 раза больше. Сформулируйте на основании этой информации задачу, предложите решить ее Вашим товарищам и объяснить причину столь различного поведения бромида алюминия в различных растворителях. [c.182]

    Определите молекулярную массу камфоры, если раствор 12,987 г камфоры в 399,6 г диэтилового эфира ( 2Hs)20 кипит на 0,453 °С выше, чем чистый эфир. [Для ( 2Hs)20 = = 2,02, /кип=34,6 °С]. [c.183]

    Этиловый спирт относится к тем немногим органическим соединениям, которые были хорошо известны п течение столетий. Представим себе, однако, что он до сих пор не известен тогда даже весь огромный объем сведений о свойствах других низших спиртов не позволил бы кому-либо предсказать а priori его воздействие (полезное или разрушительное — в зависимости от дозы ) на человеческий организм, не говоря уже о его роли в исторических событиях (таких, как, скажем, пивной путч D Мюнхене или революция 1917 г. в России). Нередко случается и так, что впервые полученные или даже хорошо известные соединения не привлекают внимания, пока, благодаря тому или иному случайному наблюдению, не становятся исключительно важными. Так, ни способность диэтилового эфира служить стабилизирующим растворителем для магнийорганических соединений, ни анестезируюшие свойства хлороформа, ни образование жидких кристаллов бензоатом холестерина, ни уникальный набор физических и химических свойств политетрафторэтилена (тефлона) не могли бьггь в свое время предсказаны только на основе анализа их структур [30]. Таким образом, остается невероятно трудной проблемой разработать общие принципы молекулярного дизайна новых структур, обеспечивающих вешеству заданный набор свойств. Тем не менее для определенных классов задач предсказание свойств на основании знания структуры соединения все же возможно. Такой рациональный подход, основанный на идеологии молекулярного дизайна, доказал свою дееспособность, что мы и постараемся продемонстрировать приводимыми в этом разделе примерами. [c.460]

    Этот метод синтеза широко применяется для получения моно-и диалкилуксусных кислот с высоким молекулярным весом, алкильные группы в которых не разветвлены. Иногда в качестве алкилирующих агентов используют вторичные галогенпроизводные, а третичные галогенпроизводные для этого не применяют никогда. Для того чтобы расширить область алкилирования, используют гидрид натрия в таком растворителе, как диметилформамид примером такой реакции может служить этилирование диэтилового эфира /ире/и-бутилмалоновой кислоты [70], однако наилучшей средой для осуществляемого с трудом алкилирования малоновых эфиров является, по-видимому, гидрид натрия в тетраметилмочевине [71]. Находящиеся в а-положении малонового эфнра атомы водорода имеют сильно выраженный кислый характер за счет того, что они присоединены к атому углерода, расположенному между двумя карб-этоксигруппами. Этот эффект обычно приписывают резонансной стабилизации карбаниона. Первая стадия реакции приводит к об-+ — [c.233]

    Хлор(И Стый циан СЫС1 — легко ожижаемый газ с сильным раздражающим запахом вызывает слезотечение. Молекулярный вес 61,47. Темп, кип, +13,1 °С темп. пл. —6,5 °С. Плотность при 0°С (в жидком состоянии) 1,322 г/сл . При 0°С и 760 мм рт. ст. в 1 объеме воды растворяется 25 объемов газа в 1 объеме диэтилового эфира — 50 объемов в одном объеме этилового спирта — 100 объемов хлористого циана. [c.262]

    Другая важная группа средств, влияющих на функциональное состояние нервной системы, — это анестетики [ИЗ]. К ним относятся как соединения довольно большого молекулярного веса, например барбитураты, так и очень простые соединения типа диэтилового эфира илн га-лотана (СРзСНСШг). В настоящее время галотан представляет собой наиболее широко употребляемый ингаляционный анестетик. Относительно механизма действия анестетиков существует несколько теорий. Принято считать, что эффективность препаратов этого типа зависит от их растворимости в липидах, однако чрезвычайно трудно указать место приложения их действия в нервной клетке. Согласно одной из недавно высказанных гипотез, анестетики способны расщеплять водородные связи [114]. Основной эффект анестетиков на уровне клетки состоит в уменьшении тока ионов натрия через мембраны нервных клеток [114а]. [c.347]

    Эфиры кислот малого молекулярного веса легко вступают во взаимодействие с гидразином, но с возрастанием молекулярного веса требуются более жесткие условия. Эфиры ароматических кислот менее реакционноспособны, чем эфиры алифатических кислот для проведения реакции с ними и с наиболее инертными эфирами алифатических кислот иногда требуется продолжительное нагревание с гидразином при высокой температуре в запаянных трубках. Разветвление углеродной цепи в а-положении к карбоксильной группе замедляет образование гидразидов. Так, например, уксусноэтиловый эфир реагирует с гидразином самопроизвольно при комнатной температуре, этиловый эфнр триметилуксусной кислоты вступает в реакцию только при нагревании до НО , а из диэтилового эфира адамантан-1,3-дикарбоновой кислоты (1) не удалось получить гидразид, хотя были испытаны различные условия [17]. [c.324]

    Наиболее важными растворителями являются диэтиловый эфир и ацетон, а наилучшими осадителями — пентан я циклогексан (естествсыыо, являющиеся самыми слабыми растворителями). Известно, что чем ниже молекулярная масса углеводородного соединения, тем ниже его растворяющая способность, что легко заметить, например сравнивая пентав и гептан, [c.170]

    В смесь 1,8 г измельченных активированных молекулярных сит размером 0,4 нм (4 Л) и 50 мл безводного дихлорметана в предварительно прогретой колбе на 100мл в атмосфере аргона при 0°С вводят шприцем через мембрану 910 мг (3,20 ммоль) тетраизопропилата титана и 1,0 г (4,80 ммоль) диэтилового эфира (-ь)-винной кислоты 3-12. Смесь охлаждают до — 20 С и шприцем вводят 32,3 мл (97 ммоль) 3 М раствора /ире г-бутилгидропероксида в толуоле. Смесь перемешивают при этой температуре в течение 20 мин, затем добавляют 10,0 г (65 ммоль) свежеперегнанного гераниола. Реакционную смесь перемешивают 45 мин при — 20°С и повышают температуру смеси до 0°С. [c.467]

    Удерживание на указанных сорбентах соединений с близкими температурами кипения, а также соединений с близкими значениями молекулярных весов зависит и от величины дипольного момента разделяемых молекул, и от способности последних к образованию водородных связей с активными центрами поверхности сорбента (см. табл. 23, 24). Например, на полисорбе-1 отношение удерживаемых объемов ацетонитрила и циклогексана составляет 0,2, а на полисорбах Р оно составляет 1,8 и 15,6 соответственно для сополимеров дивинилбензола и метилового и бутилового эфиров стиролфосфоновой кислоты на иолисорбе-1 отношение удерживаемых объемов н-бутанола и диэтилового эфира равно 3,2, а на сополимерах дивинилбензола и метилового и бутилового эфиров стиролфосфоновой кислоты это отношение равно 9,7 и 36,2 соответственно. [c.56]

    В этом направлении большой интерес представляют работы Зи, Блемера, Рийндерса, Ван Кревелена [273, 274], использовавших в качестве флюидов пентап, диэтиловый эфир, изопропанол при давлении 30—50 атм и температуре 250° С вместо газа-носителя низкого давления. В основе метода флюидной хроматографии лежит принцип смещения адсорбционного равновесия, которое определяется двумя факторами молекулярным взаимодействием в плотной газовой фазе и модифицированием поверхности адсорбента молекулами адсорбированного газа-носителя — флюида. Метод позволяет при температуре 200—250° С разделять производные алкилбензолов с числом атомов углерода 36 (температура кипения выше 500° С) за короткое время одновременно улучшается симметрия пиков. В работе [273] приведены примеры разделения антиоксидантов, алкалоидов, хинонов и эпоксисмол (рис, 52, 53). [c.155]

    Однако по мере увеличения молекулярной массы поликремневой кислоты вскоре достигается точка, когда в присутствии желатина в системе происходит осаждение даже без введения в нее солп. Для увеличения интервала титрования используется также конкурентоспособный по отношению к соли агент или вещество, имеющее низкую молекулярную массу и способное образовывать водородные связи. В частности, для этой цели находит применение диэтиловый эфир диэтиленгликоля (ранее известный как диэтилкарбитол или ДЭК). Как показано на рис. 3.11  [c.281]

    Восстановление изоиндолоизохинолин-5,7-диона (2.588) с помощью олова в смеси уксусной и соляной кислот привело к лактаму (2.596) [283], а восстановление последнего большим избытком ЛАГ в эфире позволило получить соединение (2.597), относящееся к 18-я-электрон-ным гетероароматическим системам [283]. Последняя реакция происходит при кипячении в течение 72 ч реагирующих веществ в токе азота. Соединение (2.597) чувствительно к действию кислорода воздуха. При кипячении (14 ч) с диэтиловым эфиром ацетилендикарбоновой кислоты в толуоле оно образует 1 1 аддукт, который в эфире либо в бензоле имеет интенсивную желто-зеленую флюоресценцию. Он не обладает основными свойствами, но образует аддукты с 1,3,5-тринитро-бензолом и пикриновой кислотой, что характерно для гетероароматических систем. На основании рассмотрения молекулярных моделей [c.185]

    При осушке на АЬОз диэтилового эфира, а также эфиров с большой молекулярной массой и углеводородов одновременно происходит очистка от возможной примеси пероксидов. При осушке хлороформа на основном AlaOj (марки Akt. I) из него удаляется добавленный для стабилизации этанол (условия очистки диаметр колонны 37 мм, масса AljOa 250 г, скорость пропускания 0,1—I л/ч, объем очищенной от спирта фракции 150—550 мл). Полученный таким образом хлороформ в охлажденном состоянии может храниться лишь несколько дней. Производить регенерацию AI2O3 ие рекомендуется. [c.42]

    В предварительно обожженную трехгорлую колбу емкостью 250 мл, охлажденную до —78 °С, переносят 150 мл полученного раствора формальдегида в диэтиловом эфире так, чтобы не попала влага. Колба снабжена эффективной мешалкой, пробкой с самозатягивающейся прокладкой и уравнивателем давления с трубкой, заполненной едким натром. При интенсивном перемешивании в охлажденный раствор мономера постепенно вводят в течение 15 мин раствор 1 мг пиридина в 5 мл абсолютированного диэтилового эфира. Через I ч достигается конверсия, превышающая 90% (запах формальдегида практически исчезает). Если скорость полимеризации вследствие присутствия примесей мала, в систему дополнительно вводят инициатор. Образующийся полиоксиметилен фильтруют с отсасыванием, промывают диэтиловым эфиром и сушат в вакуумном сушильном шкафу при комнатной температуре. Полимер плавится в интервале 176—178 °С. Измеряют характепистическую вязкость образца в 1%-ном растворе диметилформамида при 140 С (т1уд/С 0,08 л/г, что соответствует молекулярной массе около 80 000). Определяют термическую стойкость полимера до и после превращения концевых гидроксильных групп (см. опыты 5-09 и 5-15). [c.160]

    Из данных по определению молекулярной массы следует, что реактивы Гриньяра в диэтиловом эфире при низких концентрациях (примерно до 0,1 М) существуют в виде сольватированных мономеров К—М Х-20(С2Н5)г. При более высоких концентрациях существуют димерные и более ассоциированные частицы, имеющие трехцентровые двухэлектронные связи Мд—X— Mg. В тетрагидрофуране алкил- или арилмагнийгалогениды мономерны в более широком диаЬазоне концентраций. В реактивах Гриньяра имеются сильнополярные связи М —С, и поэтому они обладают высокой реакционной способностью. Легкая доступность реактивов Гриньяра одновременно с их активностью способствовала их широкому внедрению в органический синтез [2.2.70]. Реакции с использованием магнийорганических соединений называют реакциями Гриньяра. [c.539]

    Работа хроматографа. В хроматографической колонке длиной 1 м с внутренним диаметром 6 мм, заполненной молекулярными ситами типа 5А с размером зерен 0,25—0,5 мм, происходит отделение метана от следов азота при 50 °С. Форколонка представляет собой и-обратную стеклянную трубку длиной 50 см с внутренним диаметром 4 мм, заполненную высушенным при 350 °С гранулированным (0,25—0,5 мм) активным оксидом алюминия с добавкой 10% Ы-метилпирролидона. Удельные объемы удерживания диэтилового эфира и бензола на этом сорбенте при 20 °С составляют 37 см г и 345 смУг соответственно, метан в колонке практически не сорбируется. Форколонка служит для отделения метана, образовавшегося в результате реакции гидроксилсодержащего полимера с метилмагнийиодидом, от паров растворителей — бензола и диэтилового эфира. Время удерживания диэтилового эфира в форко-лонке при комнатной температуре и скорости газа-носителя, равной 50 смУмин, составляет 4 мин, поэтому продолжительность продувки реактора и форколон-ки по схеме с прямой продувкой не должна превышать 3,5 мин. Продолжительность продувки реактора и форколонки определяется удельным объемом удержания диэтилового эфира на оксиде алюминия, модифицированном метилпир-ролидоном, а также шириной хроматографической полосы метана. [c.92]

    Триметилалюминий в условиях, характерных или оптимальных для реакции высших алюминийтриалкилов, с этиленом заметно не реагирует. Это можно показать как на простом опыте поглощения этилена при давлении в 1 сг и 100—110°, так и в автоклаве при давлении этилена 100 ат. Реакция возможна при жестких условиях опыта, однако большая часть триметилалюминия остается непрореагировавшей и продукты реакции (содержащие большое количество олефина, ср. стр. 124) имеют значительно больший молекулярный вес, чем можно было ожидать. Это типичный случай, известный для систем трифенилме-тилнатрий [11] или фениллитий [12] + бутадиен. При ступенчатом металлорганическом синтезе начальный этап реакции может протекать значительно медленнее, чем последующие. Действительно, имеется целый ряд указаний на то, что вообще соединения металл — метил обладают меньшей реакционной способностью, чем их высшие гомологи. Метиллитий, например, в противоположность высшим литийалкилам обладает лишь незначительной способностью разлагать диэтиловый эфир или же вступать в реакцию с галогеналкилами. [c.163]


Смотреть страницы где упоминается термин Диэтиловый эфир, молекулярная: [c.392]    [c.60]    [c.71]    [c.255]    [c.147]    [c.164]    [c.249]    [c.291]    [c.138]    [c.122]    [c.93]   
Гетероциклические соединения и полимеры на их основе (1970) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Диэтиловый эфир

Диэтиловый эфир, молекулярная структура



© 2025 chem21.info Реклама на сайте