Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузия однофазная

    Изучая дисперсию вещества, впрыскиваемого в протекающий по трубе поток, Тейлор установил, что даже при отсутствии молекулярной диффузии, только вследствие неизбежной неравномерности профиля скоростей потока, создается неравномерное распределение концентраций по его сечению. Тейлор последовательно рассмотрел режимы ламинарного [14] и турбулентного [15] течений жидкости. Разработанная им теория объясняет рассеяние веществ в полых длинных трубах при протекании однофазного потока [76, 77]. [c.31]


    Вследствие отсутствия методов, позволяющих вычислить диффузию, коэффициент диффузии приходится определять экспериментальным путем. Решение дифференциальных уравнений, описывающих однофазные системы при различных граничных условиях, можно выразить через гауссовскую функцию ошибок или с помощью тригонометрического ряда. При решении (см., например, работу ) рассматривается главным образом лишь первый член бесконечного ряда функции ошибок Параметры дифференциальных уравнений материального баланса приведены в безразмерном виде. Такой приближенный метод дает хорошие [c.39]

    Из рассмотрения системы (VII.109) видно, что помимо кинетики реакций в активной фазе, на ход и результаты процесса в двухфазном потоке влияет диффузия реагентов между фазами и внутри активной фазы. Как и в процессах с однофазным потоком и твердым катализатором для процессов в двухфазном потоке возможны следующие предельные области. [c.308]

    Для газов число Пр а. 1 л ,. //ав-ляет порядка 1, а для капельных жидкостей — порядка 10 . Отсюда еле-дует, что профили скоростей и концентраций в однофазном газовом потоке будут совпадать, в то время как в жидкости влияние вязкости будет сказываться сильнее, чем молекулярной диффузии, и поэтому профиль концентраций будет более вытянутым. [c.201]

    ДИФФУЗИЯ В ОДНОФАЗНОЙ НЕПОДВИЖНОЙ СРЕДЕ [c.204]

    Кинетические уравнения процесса массопередачи для труб с орошаемыми стенками, как и для всех аппаратов с фиксированной поверхностью фазового контакта, представляются в виде критериальных зависимостей, получаемых из анализа диффузии в однофазных потоках, что соответствует уравнениям (111, 229) и (III, 230), в которых фактор гидродинамического состояния двухфазной системы / близок к нулю. [c.258]

    В ламинарном однофазном потоке коэффициент диффузии составит  [c.108]

    Структуру потока в таком аппарате описывали по аналогии процесса перемешивания с процессом диффузии, то есть использовали диффузионную модель. Исследования вели на модельных жидкостях в однофазном и двухфазном потоке, используя импульсное возмущение 8 — функции Дирака [3]. [c.64]

    Размеры макромолекул соизмеримы с размерами коллоидных частиц. Поэтому растворы полимеров обнаруживают ряд свойств, характерных для коллоидных золей (эффект Тиндаля, замедленная диффузия, тиксотропия и др.). Однако в отличие от коллоидных золей растворы полимеров являются молекулярно-дисперсными системами и удовлетворяют основным критериям истинных растворов 1) самопроизвольность образования, термодинамическая устойчивость, равновесность и обратимость 2) постоянство концентрации во времени 3) однофазность, гомогенность. [c.80]


    Высокополимерные и высокомолекулярные соединения (ВМС) и их растворы занимают особое место в коллоидно-химической классификации. Растворы ВМС, являясь, по существу, истинными молекулярными растворами, обладают в то же время признаками коллоидного состояния. При самопроизвольном растворении ВМС диспергируются до отдельных макромолекул, образуя гомогенные, однофазные, устойчивые и обратимые системы (например, растворы белка в воде, каучука в бензоле), принципиально не отличающиеся от обычных молекулярных растворов. Однако размеры этих макромолекул являются гигантскими по сравнению с размерами обычных молекул и соизмеримы с размерами коллоидных частиц. Приведенные на стр. 13 данные показывают, что размеры макромолекул (гликоген) могут быть не меньшими, а иногда большими, чем размеры обычных коллоидных частиц (золь Аи) и тонких пор. Поскольку дисперсность, как мы уже видели, существенно влияет на свойства системы, очевидно, что растворы ВМС должны обладать рядом признаков, общих с высокодисперсными гетерогенными системами. Действительно, по целому ряду свойств (диффузия, задержка на ультрафильтрах, структурообразование, оптические и электрические свойства) растворы ВМС стоят ближе к коллоидным системам, нежели к молекулярным растворам. Поскольку растворы ВМС диалектически сочетают свойства молекулярных растворов и коллоидных систем, целесообразно называть их, по предложению Жукова, молекулярными коллоидами, в отличие от другого класса, — типичных высокодисперсных систем — суспензоидов [1].  [c.14]

    В разделе 3.5 уже рассматривались методы, пригодные для измерения турбулентности. Было показано, что в общем случае к любой системе применим метод индикации диффузии. По-видимому, нет причин, препятствующих применению такого метода при исследовании потока вблизи стенки. Эккерт провёл подобное исследование в однофазном потоке [97], а в работе [98] вблизи стенки осуществлялось инжектирование как газа, так и частиц. [c.133]

    Если частицы следуют за турбулентным движением газа и интегральный -масштаб турбулентности не очень велик, то могут быть некоторые основания, чтобы для систем с мелкими частицами использовать теорию диффузии частиц., Это очень заманчивый аналитический путь, особенно если могут быть использованы надежные данные, полученные для потоков однофазной среды. Таким методом была рассчитана [94] длина участка неразвитого теплообмена на [c.213]

    Систематизированы результаты теоретических и экспериментальных исследований физических и механических, в том числе упругих свойств одно- и многофазных поликристаллических систем. Изложены современные методы оценки свойств анизотропных систем, описаны эффективные характеристики процессов распространения тепла, прохождения тока, диффузии и фильтрации в однофазных гетерогенных материалах. Показаны возможности оптимизации конструкций и технологических процессов получения материалов с благоприятной анизотропией свойств. Приведены аналитические выражения для расчета упругих и термоупругих характеристик материалов. [c.318]

    Таким образом, течения, вызванные выталкивающей силой, чрезвычайно разнообразны по своим механизмам, физическим размерам, формам возникающих движений. Несмотря на это, некоторые возможные сочетания этих различных факторов хорошо изучены, и среди них есть такие, которые имеют даже важнейшее научное и практическое значение. Большинство полученных до настоящего времени знаний относится к ламинарным процессам в однофазной жидкости, обусловленным взаимодействием силы тяжести с переносом тепла, воздействующим на плотность. Достаточно простым способом можно учесть анализе влияние на плотность среды диффузии химических веществ при малых концентрациях. В большинстве процессов диффузии, происходящих в атмосфере и в водной оболочке Земли, абсолютный уровень концентрации диффундирующих компонентов обычно очень мал. Уровни влажности и содержания СО2 в атмосфере соответственно равны 1 и 0,04%. Соленость океана составляет 3,5 %. [c.23]

    Турбулентная диффузия или коэффициенты обратного перемешивания были определены в экспериментах со стационарно вводимым индикатором, в то время как общие кажущиеся коэффициенты продольной дисперсии измерялись в переходных режимах введения индикатора. Величины и Ев измерены лишь для однофазного потока в колоннах диаметром 15,2 и 105 см. Для каждой из колонн результаты коррелируются зависимостью вида [c.151]

    Согласно закону молекулярной диффузии Фика, направленный диффузионный перенос компонента внутри однофазной среды пропорционален градиенту концентрации этого компонента и диффузионной проницаемости среды по отношению к диффундирующему компоненту  [c.266]

    При изучении дисперсии потока в колоннах диаметром до 300 мм различными исследователями установлено [25 — 28], что степень продольного перемешивания жидкости существенно зависит от размера аппарата и что коэффициент продольного перемешивания изменяется прямо пропорционально диаметру аппарата. Этот факт находится в полном соответствии с теоретическими исследованиями о дисперсии вещества в однофазных потоках в трубах, которые приводят также к увеличению коэффициента турбулентной диффузии пропорционально диаметру аппарата [29]. [c.148]


    Общая скорость технологического процесса мол<ет лимитироваться скоростью одного М3 трех составляющих элементарных процессов, который протекает много медленнее других, но так, что скорости отдельных процессов соизмеримы. Если наиболее медленно идут химические реакции и они лимитируют общую скорость, то говорят, что процесс происходит в кинетической области в этом случае технологи стремятся усилить именно те факторы (концентрация исходных веществ, температура, применение катализаторов и пр.), которые влияют особенно на скорость реакции. Если общую скорость процесса лимитирует подвод реагентов в зону реакции или отвод продуктов, то говорят, что процесс происходит в диффузионной области, и стремятся увеличить скорость диффузии путем перемешивания (турбулизации реагирующей системы), повышения температуры и концентраций, перевода системы из многофазной в однофазную и т. д. Если скорости всех элементов, составляющих технологический процесс, соизмеримы (почти одинаковы), 10 необходимо воздействовать прежде всего такими факторами, которые наиболее сильно ускоряют как диффузию, так и реакции. [c.52]

    Другой особенностью процесса массопереноса в псевдоожиженном слое является то обстоятельство, что диффузия целевого компонента в этой физической системе происходит не в однофазном потоке газа, а в плотной фазе псевдоожиженного слоя, кото- [c.184]

    Закон молекулярной диффузии (закон Фика) состоит в том, что направленный поток вещества внутри какой-либо однофазной среды пропорционален градиенту концентрации этого вещества (компонента) и коэффициенту его диффузии в среде  [c.345]

    Растворы высокомолекулярных веществ, как и растворы низкомолекулярных соединений, относятся к истинным, т. е. однофазным, системам. Следовательно, в противоположность золям растворы высокомолекулярных соединений образуются самопроизвольно и поэтому термодинамически устойчивые и обратимые системы. Однако механизм образования истинных растворов высокомолекулярных и низкомолекулярных веществ различен. Процесс растворения высокомолекулярных соединений в низкомолекулярной жидкости рассматривается как процесс смешения двух жидкостей, поскольку большинство высокомолекулярных соединений представляют собой переохлажденные жидкости. Механизм взаимного растворения двух неограниченно смешивающихся жидкостей низкомолекулярных веществ состоит в том, что молекулы первой жидкости с определенной скоростью диффундируют во вторую жидкость, а молекулы второй жидкости, имея размеры, близкие к размерам молекул первой жидкости, практически с такой же скоростью диффундируют в первую жидкость, т. е. происходит двухсторонняя диффузия молекул. При этом процесс растворения протекает самопроизвольно и в одну стадию. [c.360]

    Положение критической точки, отграничивающей область двухфазного состояния системы от однофазного, является особым не только по своему геометрическому месту, но и по глубоким отличиям в поведении веществ вблизи критической точки по сравнению с другими областями существования системы. Особенности критической точки из-за непрерывного изменения свойств веществ в гомогенной области распространяются на широкую область температур, давлений и составов. Эти особенности накладывают глубокий отпечаток не только на термодинамику, но через нее и на кинетику процессов, протекающих вблизи критической точки. Превращение в нуль первой и второй производных от химического потенциала по составу в критической точке становится причиной того, что в целой области температур и составов молекулярная диффузия компонентов двойной смеси вблизи критической точки практически прекращается. Это предсказанное еще Д. П. Коноваловым явление было впервые экспериментально исследовано авторами [14—16] на примере тех же трех жидких систем, для которых была изучена и термодинамика критической области. Коэффициент диффузии вблизи критической точки падает по сравнению с областью разбавленных растворов на несколько порядков. [c.54]

    В некоторых случаях величина коэффициента диффузии может быть определена теоретическим путем, однако в большинстве случев ее определяют экспериментально. Тэйлор 2 -28 Сьенит-цер 29-30, Тихачек и др. исследовали влияние переменного профиля скоростей прохождения жидкости через реактор, радиального перемешивания и других факторов на коэффициент диффузии. Авторы этих работ считают, что при движении частиц жидкости основными факторами являются переменный профиль скоростей, вызывающий изменение концентраций, а также связанная с этим радиальная диффузия. В работах Тэйлор изучал диффузию в трубе при однофазном течении. Для ламинарного течения (Не < 2300) он получил такое равенство  [c.42]

    При однофазном потоке, как и в газовой фазе, процессы превращения веществ протекают в несколько стадий 1) подвод реагентов пз ядра потока к вненшей поверхности катализатора 2) диффузия реагентов в порах катализатора из раствора к его внутренней поверхности 3) адсорбция реагентов 4) собственно химическая реакция на поверхности катализатора 5) отвод продуктов реакции через стадии десорбции и внутренней, и внешней диффузии. При двухфазном потоке вследствие того, что катализатор смачивается одной пз фаз, эта последовательность не нарушается, однако ей предваряется либо за ней следует стадия диффузии реагентов или продуктов в дисперсную фазу. Особенно четко это проявляется в газожидкостных реакциях, где катализатор пропитан жидкостью или покрыт ее пленкой. Диффузия из одной фазы потока в другую, которую обозначим как межфазную, протекает в общем так же, как и в случае двухфазных систем без твердого катализатора (см. гл. И). Межфазная диффузия не имеет, собственно, прямого отношения к гетерогенно-каталитической реакции, но доляша учитываться при расчетах реакторов (см. гл. 10). Поэтому в настоящей главе рассматриваются только явления, происходящие в системе раствор — твердый катализатор. [c.47]

    Двухслойность однофазной окалины может быть объяснена одновременной встречной диффузией реагентов (металла и окислителя) наружный слой окалины образуется вследствие диффузии металла наружу, а внутренний — вследствие диффузии окислителя внутрь. Однако при окислении указанных выше металлов установлено, что скорость диффузии металла через окалину на несколько порядков выше, чем окислителя. [c.74]

    Мровец и Бербер выдвинули гипогезу, объясняющую формирование двухслойной однофазной окалины только путем односторонней диффузии ионов металла к наружной поверхности окалины при непременном условии образования микропустот на границе раздела металл—окалина. При этом следует различать две стадии Б образовании окалины. [c.74]

    В пособии рассматриваются современные представления о равновесии и диффузии в бинарных и многокомпонентных системах. Излагаются гидродинамические основы однофазных и двухфазных систем. Даны принципы математического моделирования процессов массопередачи. Впервые систематизируются математические модели и алгоритмы расчета процессов абсорбции, ректификации и экстракции. Описываются основные типы диффузионньгх аппаратов, приводится их расчет, моделирование и масштабирование. Дается сравнительная оценка различным конструкциям диффузионных аппаратов. [c.2]

    Если взаимодействие коллоидных частиц со средой незначительно, то золи называют лиофобными (гидрофобными), если оно выражено сильно, то золи называют лиофильными (гидрофильными). Частицы в лиофильных золях окружены сольватной (гидратной) оболочкой, делающей их более агрегативно устойчивыми по сравнению с лиофобными золями. Типичные гидрофобные золи — гидрозоли металлов (платины, золота, серебра и др.), неметаллов (серы, графита и др.), солей, не образующих истинных растворов в воде (Agi, As Sg и др.). Гидрозоли кремниевой и ванадиевой кислот, гидроксидов алюминия и железа (III) несколько приближаются к гидрофильным системам. Типичные лиофильные системы — водные растворы желатина и вообще разных белковых веществ, целлюлозы и др. Их раньше причисляли к лиофильным коллоидам. Но в настоящее время доказано, что растворы подобного рода высокомолекулярных веществ, а также синтетических высокомолекулярных веществ являются однофазными системами (Каргин, Слонимский и др.). В отличие от типичных коллоидных растворов указанные растворы только в некоторых отношениях сходны с типичными коллоидами медленная диффузия, неспособность проникать через животные и растительные пленки. Это объясняется тем, что в растворах высокомолекулярных веществ молекулы велики (см. гл. XIII) и соизмеримы с размерами коллоидных частиц. Но все же они являются молекулярно-дисперсными системами и по своей агрегативной устойчивости близки к истинным растворам низкомолекулярных веществ. По этой причине растворы высокомолекулярных веществ сейчас не причисляют к типичным коллоидным микрогетеро-генным системам. [c.176]

    Решение приведено на фиг. 9.6. Значение безразмерного коэффициента турбулентной диффузии остается примерно постоянным и равнь м D/vb 4,2- КН. Эта величина хорошо согласуется с опытными данными по турбулентной диффузии в однофазном потоке [7]. [c.309]

    Растворение.ч, как мы уже сказали, называют само(ЕроизволЬ ный процесс образования термодинамически устойчивой гомогенной (однофазной) системы. Прн самопроизвольном растворе-иин полимеров происходят следующие процессы диффузия молекул растпорителя в матрицу полимера, сольватация молекул растворителя на активных центрах макромолеку.ч распад надмолекулярных образований вследствие сольватации н ослабления межмолекулярного взаимодействия отделение предельно [c.400]

    Гутофф [1011 измерял скорость перемешивания однофазного потока между секциями колонны Олдшу — Раштона диаметром 10,2 см, применяя стационарный метод введения солевого индикатора. При низких скоростях вращения ротора перемешивание было относительно слабым. Однако при достижении турбулентного режима скорость перемешивания линейно возрастала с увеличением числа оборотов. Как полагает Гутофф, колонну Олдшу Раштона нельзя отнести ни к дифференциально-контактным аппаратам, ни к ступенчатым. Поэтому для описания поведения в ней двухфазных потоков не применимы концепции турбулентной диффузии и модели с обратными потоками. [c.160]

    Растворимость при уменьшении молекулярного веса полистирола с 550-10 до 9,8-10 меняется незначительно. При дальнейшем падении молекулярного веса растворимость резко возрастает. Экстраполяция приведенных данных показывает, что для достижения 100%-ной растворимости молекулярный вес полистирола не должен превышать 500. Аналогичные результаты получены при изучении растворимости фенольных смол в вулканизатах различных каучуков. При величине параметра р 2 кал1см растворимость смолы в каучуке не превышает 10—12%. При величине р 0,3/сал/сж растворимость смолы в каучуке составляет примерно 30% при молекулярном весе смолы 1500 и превышает 70% при молекулярном весе 700. Вследствие гетерогенности подавляющего большинства смесей полимеров их свойства в зна-чительно стёпейи зависят от характера взаимодействия на границе раздела фаз. С. С. Воюцким с сотрудниками было проведено систематическое исследование взаимодиффузии полимеров в зонё контакта Молекулы термодинамически совместимых полимеров диффундируют до полного растворения и образования однофазного термодинамически устойчивого раствора. При отсутствии термодинамической совместимости происходит локальная диффузия, глубина которой ва многом зависит от соотношения б смешиваемых полимеров. Локальная диффузия молекул полимера КЗ одной фазы в другую существенно снижает поверхностное натяжение в зоне контакта При значительном различии б компонентов диффузия в зоне контакта определяется перемещением сегментов. Для большинства полимеров молекулярный вес кинети- ческого сегмента лежит в интервале 1000—2000. В результате сегментальной диффузии образуется переходный слой, толщина которого достигает нескольких сотен ангстрем [c.12]

    Согласно закону диффузии (5.5), причиной, вызывающей поток диффундирующего компонента в однофазной среде, является градиент концентрации этого компонента grad С. Для однофазной среды наличие градиента концентрации - это и есть отклонение от состояния концентрационного равновесия внутри однофазной среды. Возникающий диффузионный поток /д как бы стремится перевести однофазную среду в состояние концентрационного равновесия, т. е. выровнять концентрацию во всех внутренних точках среды. Таким образом, условие равновесия (равенство концентраций) и причина, вызывающая поток компонента (неодинаковое значение концентрации компонента) в пределах одной фазы формулируются проще, чем условия равно- [c.346]

    Вторая группа данных получена в результате исследований методом оже-спектроскопин поверхностного состава образцов сплава Ni— u в виде пластин (как moho-, так и поликристаллических) с содержанием никеля в объеме 16—17 ат.7о 120— 123]. Во всех случаях состав поверхности образца оказался идентичен его составу в объеме. Использование метода оже-спектроскопин для количественного анализа состава сплавов оказалось не слишком эффективным из-за трудности адекватной калибровки тем не менее нельзя не прийти к выводу, что в рассматриваемом случае разница между составом сплавов Б объеме и на поверхности не может быть очень существенной. Поэтому различие в результатах, полученных для пленок и для пластин, по-видимому, обусловлено неполным достижением равновесного состояния в последних. Трудность достижения равновесного состояния для пластин хорошо известна [122], и отсутствие его доказывается тем, что в условиях температуры и состава, соответствующих двухфазной структуре, фазы не выделяются, если, конечно, достигнуто истинное равновесие. Очевидно, равновесие устанавливается много легче на пленках, чем на толстых пластинах объясняется это как большей концентрацией дефектов в пленках, способствующих увеличению скорости взаимной диффузии компонентов, так и намного меньшим расстоянием диффузии в пленках. Кроме того, пластины очищали ионной бомбардировкой с последующим отжигом при температуре не менее 670 К, в то время как критическая температура выделения фаз составляет менее 570 К из-за быстрого охлаждения однофазная структура, полученная при температуре выше критической, оказалась замороженной. Таким образом, отсутствие фазового равновесия наблюдается параллельно с отсутствием равновесия поверхностного состава. Ясно, что состав поверхности сплавов Ni— u сильно зависит от формы образцов и условий их термической обработки. [c.158]

    Жидкофазные каталитические процессы в указанном плане обладают рядом особенностей, однако принципиальные отличия этих реакций от газофазных здесь проявляются тогда, когда поток реагентов становится двухфазным или многофазным, т. е. когда реакции на катализаторе протекают между жидкостью и газом или двумя несмеши-вающимися жидкостями. Мы здесь рассмотрим только последние случаи, поскольку к однофазному жидкостному потоку с точностью до абсолютных значений коэффициента приложимы закономерности и уравнения, выведенные для газофазных гетерогенно-каталитических процессов. Ограничимся наиболее часто встречающимися случаями двухфазного потока реагентов, в основном потока жидкость—газ. Качественно, без потери общности, можно принять за основу сумму явлений, имеющих место при газо-жидкостной реакции типа А+В— на твердом катализаторе, соответствующей таким реакциям, как гидрирование, алкилирование ароматики низшими олефинами и т. п. Газообразное вещество А для того, чтобы достигнуть твердой поверхности, на которой протекает реакция, должно сперва перейти из дисперсной (газовой) фазы в сплошную (жидкую) фазу, а затем раствориться в ней. После этого вещество А должно продиффундировать через систему капилляров в зерне катализатора и, наконец, сорбироваться на поверхности катализатора. Вещество В из жидкой фазы должно продиффундировать только через капилляры и затем сорбироваться на поверхности. Образовавшееся на поверхности вещество С должно десорбироваться и, продиффундировав через капилляры, выйти в объем. Таким образом, в многообразных жидкостных системах возникает принципиально новая стадия — стадия межфазной диффузии, частично или полностью определяющая общую скорость каталитического процесса. Скорость этой стадии зависит как от поверхности контакта между фазами, так и от величины эффективных коэффициентов диффузии компонентов реакции из одной фазы в другую. [c.76]

    Замечено, что при нанесении и обжиге эмалевого покрытия фазовый состав пленок, образующихся в результате предварительного окисления металла, не изменяется. Однако при этом наблюдается интенсивный переход поверхностного слоя стали из однофазного аустенитного состояния в двуфазное аустенитно-ферритное, что, очевидно, связано с диффузией хрома в окис-ную пленку и эмалевое покрытие. [c.88]


Смотреть страницы где упоминается термин Диффузия однофазная: [c.23]    [c.377]    [c.194]    [c.214]    [c.22]    [c.396]    [c.204]    [c.43]    [c.226]    [c.101]    [c.131]   
Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) -- [ c.447 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузия в однофазной неподвижной среде



© 2025 chem21.info Реклама на сайте