Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Производство технологического газа высокотемпературная

    В 1975 г. Е. Фитцер [17] делает попытку охарактеризовать ресурсы и области использования тяжелых нефтяных остатков. Автор пытается оценить и количественные соотношения потребления нефтяных остатков в различных отраслях экономики и техники, в сопоставлении с общими их ресурсами. Основные аспекты работы — производство различных типов технологического углерода на основе высокотемпературной переработки нефтяных остатков, области применения и масштабы потребления технического углерода. Для оценки перспектив развития производства и областей технического применения сажи, кокса, графита, адсорбентов, автор считает необходимым предварительно получить надежную информацию но следующим позициям спецификация на сырье (нефтяные остатки) для производства различных видов технического углерода возможности модификации этого сырья с целью приведения их свойств в соответствие с требованиями спецификаций и стоимости спрос рынка и потребности в специальных видах технического углерода, вырабатываемого из нефтяных остатков экономические показатели — сопоставление стоимости получаемых изделий технического углерода с другими процессами переработки нефтяных остатков и капиталовложения в эти процессы. Не пытаясь дать общую картину развития производства технического углерода на базе переработки нефтяных остатков, автор утверждает, что главное направление использования нефтяных остатков должно быть тесно связано с развитием таких ведущих отраслей промышленности, как, например, алюминиевая, производство стали. Свое утверждение он обосновывает данными о перспективном потреблении кокса в этих отраслях в Западной Европе. Автор справедливо делает вывод, что на производство электродного кокса и пека идет лишь часть нефтяных остатков (не менее 25% от перерабатываемой нефти). Главными же направлениями использования этого нефтепродукта остается топливно-энергетическое потребление прямое потребление мазута как топлива, а также предварительная переработка но процессам гидрокрекинга, газо-фикации и использование в качестве исходного материала в про- [c.255]


    Если технологическая схема производства аммиака включает промывку газа жидким азотом, целесообразно проводить высокотемпературную конверсию природного газа под давлением до 30 ат. при температуре около 1350 С. В этом случае сухой конвертированный газ содержит примерно 96% (СО + На) при остаточной концентрации метана около 1% и низких расходных коэффициентах по природному газу и кислороду. [c.135]

    Несколько отличаются от описанных технологические схемы на основе отходов производства ацетилена (синтез-газ). Этот газ содержит водород и окись углерода в соотношении, близком к двум,, однако присутствуют до 5,5 объемн. % СН4, 2—3 объемн. % N2, ацетилен и его производные, этилен и соединения азота. Это затрудняет использование газа без предварительной подготовки. Имеется несколько способов переработки синтез-газа в метанол. Обычно его подвергают паро-кислородной, паро-углекислотной или высокотемпературной конверсии. Одновременно с окислением метана конвертируется и большинство присутствующих в газе органических примесей. Существуют схемы, в которых компоненты газовой смеси разделяются на установках глубокого холода или метан выделяется промывкой жидким азотом. После конверсии газ очищает- [c.87]

    Как уже отмечено в Предисловии, основной целью данного издания является рассмотрение важнейших аспектов повышения эффективности использования топлива в энерготехнологиях. При этом также важно отметить, что топливо, энергетика и транспорт, а также энергосберегающие технологии являются, в соответствии с Основами политики Российской Федерации в области развития науки и технологий на период до 2010 г. и дальнейшую перспективу , приоритетными направлениями развития науки, технологий и техники Российской Федерации. В число перечня критических технологий Российской Федерации входят также технологии, тесно связанные с рациональным использованием топлива добыча и переработка угля, производство электроэнергии и тепла на органическом топливе, энергосбережение, технологические совмещаемые модули для металлургических мини-производств, природоохранные технологии, технологии переработки и утилизации техногенных образований и отходов, поиск, добыча, переработка и трубопроводный транспорт нефти и газа, прогнозирование биологических и минеральных ресурсов, нетрадиционные возобновляемые экологически чистые источники энергии и новые методы ее преобразования и аю мупирования и др. В связи с тем, что, как правило, использование топлива связано с применением высоких температур для обработки материалов, то при этом рассматриваются высокотемпературные технологические процессы. Основной упор в данном издании сделан на анализ эффективного использования топлива в металлургических процессах и энергетических установках, но, как уже отмечалось, многие материалы и принципиальные положения могут с успехом использоваться и в любых других технологических процессах. Это наше утверждение основывается на двух положениях. Во-первых, ряд глав достаточно общего характера напрямую может использоваться при решении проблем топливного энергосбережения при решении проблем в любой отрасли или технологии. Как уже отмечалось, к этому списку относятся главы достаточно универсального характера топливно-энергетические ресурсы, топливо и его характеристики, методики теплотехнических расчетов при использовании топлив, стратегия развития энергообеспечения и потенциал энергосбережения, интегрированный энергетический анализ, полная энергоемшсть, методы матемагичес1юго моделирования процессов тепломассообмена (общие подходы), основы теории факельных процессов, общие требования к горелочным устройствам и примеры расчетов, принципы регенерации теплоты и использования ВЭР, стандартизация и сертификация при использовании топлив, энергоаудит и методы оценки работ по энергосбережению, учет энергоресурсов, системы и приборы, использование топлива и экологические проблемы. [c.21]


    В этом отношении может показаться, что низкокалорийные газы имеют некоторое преимущество перед ЗПГ. С одной стороны, повышенная сложность установок для производства ЗПГ весьма часто приводит к большим потерям, к тому же синтез метана сопровождается образованием побочных продуктов, таких, как ароматические углеводороды и полукокс. С другой стороны, более высокий температурный уровень процессов получения низкокалорийных газов, если в них не предусмотрено сложное теплообменное оборудование для взаимной передачи тепла от печных продуктов и конечного газа, приводит к снижению коэффициента полезного действия, а образование, полукокса при термическом разложении может быть предотвращено при тщательной проработке конструкции подогревателя, что позволит избежать также дополнительных потерь тепла. Хотя в итоге высокотемпературные реформаторы и установки частичного окисления являются и менее сложными, чем оборудование для получения ЗПГ, требуемые капитальные затраты в обоих случаях одного порядка, особенно если их выразить в удельных капитальных затратах на единицу тепла. В действительности, как по тепловым потерям, так и по капитальным затратам технологические схемы производства низкокалорийных газов обладают незначительным преимуществом по сравнению с оборудованием для производства ЗПГ. [c.219]

    Предлагаемая технология, совмещающая процесс переработки отходов свинцовых аккумуляторов с их изготовлением из восстановленной активной массы, позволяет уменьшить потери свинецсодержащего сырья, выбросы вредных газов и пыли, улучшить условия труда, осуществить безотвальное, малоотходное, высокомеханизированное, экологически более чистое производство. Исключение из технологического процесса переработки окисно-сульфатного шлама стадий высокотемпературного восстановления в шахтной печи и металлургического рафинирования металлического свинца и замена их на термическую обработку позволяет получить положительный экономический эффект. [c.51]

    ПРОМЫШЛЕННОЕ ПРОИЗВОДСТВО ТЕХНОЛОГИЧЕСКОГО ГАЗА МЕТОДОМ ВЫСОКОТЕМПЕРАТУРНОЙ КОНВЕРСИИ УГЛЕВОДОРОДОВ [c.258]

    Производство технологического газа высокотемпературной конверсией может быть охарактеризовано уравнениями [c.78]

    Применение повышенного давления на стадии производства технологического газа обусловливает уменьшение энергозатрат при последующей конверсии синтез-газа. В соответствии с этим наиболее целесообразно проводить высокотемпературную конверсию метана под давлением, равным давлению синтеза аммиака. [c.28]

    Так, применительно к процессу разделения технологического газа в производстве аммиака показано [238], что габариты абсорбера, поверхность теплообменной аппаратуры уменьшаются, если повысить температуру жидкости. Как видно из рис. 7.1, существенный эффект для процесса, проводимого в адиабатических условиях, достигается при повышении температуры уже на 10—15 °С (в зависимости от конечной степени использования хемосорбента) по сравнению с обычно используемой в практике проектирования (метод высокотемпературной абсорбции). Данные, приведенные на рис. 7.1, получены на основе метода локальной оптимизации при определенных ограничениях (постоянная производительность по газу в жидкости, концентрация хемосорбента, давление и др.) зависимость степени извлечения СОг от температуры получена численным методом на основе моделирующего алгоритма по программе ABS (см. разд. 6.5). [c.196]

    Производство технологического газа для синтеза аммиака и спиртов методом высокотемпературной кислородной конверсии углеводородов за последние два десятилетия получило довольно широкое распространение во многих странах. [c.258]

    В докладе отражены вопросы разработки и исследования процесса паровой конверсии на никелевых катализаторах. Этот процесс рассматривается в двух аспектах производство технологического водородсодержащего газа и обеспечение снятия тепла с высокотемпературной поверхности за счет эндотермического эффекта реакции. [c.29]

    Одной из важнейших задач топливно-энергетического баланса промышленного предприятия является рациональное использование тепловых отходов технологических производственных процессов, к которым в первую очередь относится физическое тепло газов, уходящих из основных рабочих камер агрегатов. Рациональное использование тепла уходящих газов не только является источником экономии топлива, но и оказывает непосредственное влияние на условия энергоснабжения, на возможность модернизации технологической схемы производства и на общие экономические показатели работы. Для высокотемпературной обработки керамических материалов (изоляторов, керамических блоков и т. д.) в промышленности применяют туннельные печи с неподвижной зоной обжига и перемещающимся материалом. Туннельные печи в последнее время получили большое распространение во всех областях керамического производства. [c.111]


    При технологическом осуществлении таких процессов, как высокотемпературная конверсия углеводородных газов, газификация жидких топлив и термоокислительный пиролиз природного газа выделяется высокодисперсный углерод (сажа), выход которого достигает в ряде случаев 4—6% вес. от переработанного исходного сырья. Проблема сажистого углерода, получаемого в процессах производства синтез-газа на ос- [c.181]

    Во втором разделе Получение технологического газа описаны различные методы производства водорода и синтез-газа каталитическая и высокотемпературная конверсия углеводородных газов, конверсия окиси углерода, газификация твердых и жидких топлив, разделение коксового газа методом глубокого охлаждения. [c.8]

    Одним из основных классификационных признаков промыщ-ленных трубчатых печей является их целевая принадлежность — использование в условиях определенной технологической установки. Так, большая группа печей, применяемых в качестве нагревателей сырья, характеризуется высокой производительностью и умеренными температурами нагрева (300—500 °С) углеводородных сред (установки АТ, АВТ, вторичная перегонка бензина, ГФУ). Другая группа печей многих нефтехимических производств одновременно с нагревом и перегревом сырья используется в качестве реакторов. Их рабочие условия отличаются параметрами высокотемпературного процесса деструкции углеводородного сырья и невысокой массовой скоростью (установки пиролиза, конверсии углеводородных газов и др.). [c.6]

    Технологическая схема производства синтез-газа в печах с обогревом высокотемпературной парогазовой смесью непрерывным методом приведена на рис. 6. [c.45]

    Коксовый газ является вторым после кокса основным продуктом в материальном балансе процесса высокотемпературного коксования угля Высокая температура сгорания газа позволяет применять его как высококачественное технологическое и энергетическое топливо (до 85 % от ресурсов) Лишь 15 % от всего количества коксового газа используется в качестве химического сырья для производства азотных удобрений, а затем в обогащенном виде для технологических и энергетических нужд [c.187]

    Краткое описание технологического процесса. ХТС изомеризации н-пентана предназначена для получения изопентана высокотемпературным способом [40, с. 851. Целевой продукт (изопентан) является остродефицитным, вследствие его широкого использования в качестве растворителя (производства изопренового каучука и бутилкаучука) в качестве компонента высокооктановых бензинов и для других целей. Технологический процесс производства изопентана представляет собой замкнутую химико-технологическую схему с материальными и тепловыми рециклами, что обусловлено современными требованиями рекуперации тепла и использования непрореагировавшего сырья схема состоит из следующих основных узлов азеотропная осушка исходной н-пентановой фракции, изомеризация н-пентана, водородсодержащего газа (ВСГ), комприми- [c.50]

    В книге описывается производство водорода и технологических газов для синтеза аммиака и метанола методами каталитической и высокотемпературной конверсии углеводородных газов при низком и повышенном давлении (до 40 ат). [c.2]

    В производстве аммиака имеются высокопотенциальные технологические потоки конвертированный газ и дымовые газы после конверсии метана. Но их энергии и потенциала недостаточно для образования пара с высокими параметрами. Необходим дополнительный высокотемпературный источник энергии. Им является вспомогательный котел с огневым обогревом, установленный в газоходе после трубчатой печи, - дополнительный энергетический узел (рис. 5.49). Пар, получаемый в котлах-утилизаторах в линиях технологических потоков и в дополнительном котле, собирается в паросборнике и оттуда распределяется на паровые турбины - приводы компрессоров. Таким образом, производство аммиака становится автономным по энергетическому пару, но для его выработки, используя свои вторичные энергетические ресурсы, потребляет также дополнительное количество топлива - природного газа. Такая схема обеспечения производства энергией и есть энерготехнологическая система. [c.451]

    Как было установлено, котлы, работающие на газообразном топливе, для высокотемпературного нагрева органической жидкости под давлением, необоснованно были расположены в помещении, в котором находилось технологическое оборудование с большим количеством обращающихся ЛВЖ и горючих газов, что усугубило последствия аварии. Кроме того, в конструкции здания не были предусмотрены необходимые средства взрывозащиты, так как это производство по формальным соображениям (размещение процессов с огневым обогревом) было отнесено к категории невзрывоопасных, и, соответственно, не были предусмотрены другие средства противоаварийной защиты. После указанной аварии котлы-агрегаты с газовыми топками были вынесены из помещения и размещены на открытой площадке. Подобные ошибки совмещения в одном помещении процессов с огневым обогревом с другими пожаро-взрывоопасными процессами усугубляют последствия аварий. [c.377]

    В технике и промышленности кислород применяется для интенсификации различных технологических процессов (доменное и сталеплавильное производство, получение серной и азотной кислот). Кислород обеспечивает получение высоких температур сгорания различных газов, что находит широкое применение в высокотемпературной технологии (газовая сварка, резка). [c.340]

    Современное коксохимическое производство представляет собой сложный технологический комплекс цехов высокотемпературной переработки угля, в результате которой получают кокс, газ и химические продукты коксования, используемые во многих отраслях народного хозяйства. [c.5]

    Таким образом, представляется эффективным технологическое комбинирование производств аммиака, азотной кислоты и спиртов. Кроме того, дальнейшее существенное снижение расхода природного газа может быть достигнуто при использовании в реакции паровой конверсии метана тепла высокотемпературного ядерного реактора. [c.82]

    Если в технологической схеме производства аммиака не предусмотрена промывка газа жидким азотом, но имеются отделения низкотемпературной конверсии оксида углерода и метанирования, для высокотемпературной конверсии природного газа целесообразно применять воздух, обогащенный кис-лородом. При этом остаточная концентрация метана в конвертированном газе не должна превышать примерно 0,5%, что связано с повышением тем- пературы реакции до 1400 °С. Вследствие указанного обстоятельства, а также значительной концентрации инертного азота в исходной смеси расход газа на 4,6% выше соответствуюшего расхода при конверсии 95%-ным кислородом однако расход 100%-ного кислорода на 17,2% ниже. [c.134]

    Существуют два основных направления отвода (с охлаждением и очисткой) дымовых газов после технологических агрегатов энерготехнологическое комбинирование и система технологический агрегат—установка ВЭР . В первом случае предлагаемые к использованию схемы предусматривают принципиально новые конструкции огнетехнических агрегатов [2]. В большинстве случаев энерготехнологическое комбинирование основывается на создании новых энерготехнологических агрегатов, обеспечивающих получение технологического продукта и пара высоких параметров [2—4]. Данное направление получило достаточно широкое распространение в отдельных производствах. Упрощенно это направление сводится к тому, что в составе энерготехнологического агрегата используется унифицированный высокотемпературный котел-утилизатор типа К, обеспечивающий выработку пара энергетических и технологических параметров. Конструкция этих котлов предусматривает применение очистных устройств для поверхностей нагрева. [c.5]

    В первой половине 60-х годов ГИАП и его Днепродзержинский филиал в содружестве с Харьковским политехническим институтом, Днепродзержинским химическим комбинатом и Невским машиностроительным заводом разработали энерготехнологическую схему производства азотной кислоты под единым давлением 740 кПа [13, 14]. Мощность такого агрегата в 3 раза превышает мощность агрегата комбинированной системы с давлением при абсорбции 355 кПа. Особенностями этой схемы являются газотурбинный привод, компенсирующий затраты энергии на технологические нужды производства, высокотемпературная очистка отходящих газов на катализаторе, содержащем 2% палладия на окиси алюминия, до концентрации в них окислов азота 0,005 об.%. Установка не потребляет энергии со стороны. В 1976 г. па таких агрегатах производилось 43% всей выпускаемой слабой азотной кислоты [13]. По мере накопления опыта в систему вносились некоторые изменения, улучшившие показатели ее работы. [c.44]

    Сходство процессов высокотемпературной конверсии углеводородных газов и газификации жидких нефтепродуктов позволило создать промышленные схемы, в которых предусмотрена возможность использования того или иного сырья, в зависимости от конъюнктурных условий. Эти принципиально однородные процессы имеют, однако, существенные различия. Так, при газификации жидких нефтепродуктов (например, мазута) наряду с кислородом в качестве реагента — окислителя применяют водяной пар, который служит для уменьшения количества образующегося углерода (сажи). Различаются также способы подготовки сырья, конструкция горелоч-ного устройства (форсунки), некоторые элементы теплоиспользующей аппаратуры и аппаратуры для очистки конвертированного газа (в связи с повышенным содержанием в нем сажи и сернистых соединений). Поскольку газификация жидких нефтепродуктов является отдельной отраслью производства технологического газа, этот процесс здесь не рассматривается. [c.258]

    Дальнейшая безостаточная переработка нефти может быть осуществлена лишь химической переработкой твердых нефтяных остатков с получением синтетических жидких топлив, энергетических или технологических газов, водорода и т.д. Для этих целей применимы давно используемые и отработанные технологические процессы переработки твердых горючих ископаемых (углей, сланцев, антрацитов). Из многообразия используемых в углепереработке способов (полукоксование, средне- и высокотемпературное коксование, газификация, гидрогенизация и др.) применительно к нефтепереработке более предпочтительны и эффективны процессы газификации. Именно посредством газификации твердых нефтяных остатков решаются в последние годы проблемы глубокой переработки нефти с получением высококачественных малосернистых моторных и котельных топлив на ряде НПЗ зарубежных стран (США, Западной Европы и Японии). При этом процессы газификации используют преимущественно для производства водорода, потребность в котором резко возрастает по мере повышения глубины переработки нефти. [c.520]

    В технологических процессах наиболее часто нагрев осуществляют пламенем и топочными газами водяным паром высокотемпературными органическими теплоносителями (ВОТ) продуктами переработки, промежуточными и конечными продуктами производства, отводимыми из аппаратов с относительно высокой температурой. Кроме указанных теплоносителей для нагревания веществ применяют горячую воду, нагретый воздух, электрическую и атомную энергию. Часто применяемые хладоагенты — вода, рассолы, фреоны, аммиак, сжиженные газы (пропан, бутан, этилен, азот и др.). [c.140]

    Неметаллические, химически стойкие материалы подразделяются на две основные группы неорганические и органические материалы. Неорганические материалы, как правило силикатные, незаменимы для осуществления высокотемпературных химико-технологических процессов, связанных с воздействием агрессивных газов и растворов, а также расплавленных металлов и шлаков при повышенных и высоких температурах. Из силикатных конструкционных материалов выполняются футеровки аппаратов и реакционные аппараты (в частности, промышленные печи) в производстве кислот, минеральных солей и удобрений, силикатных материалов, в металлургии, при электролизе растворов и расплавов, при химической переработке топлива, в разнообразных производствах органических полупродуктов и т. п. К неорганическим химически стойким конструкционным материалам относятся 1) природные кислотоупоры (горные породы) 2) искусственные материалы, получаемые плавлением горных пород или силикатной шихты — каменное литье, кварцевое и силикатное стекло, эмали 3) искусственные материалы, получаемые обжигом силикатного сырья (керамических масс) до спекания — различные виды керамики и огнеупоров 4) вяжущие силикатные материалы — кислотоупорные цементы и бетоны. [c.252]

    На НПЗ и НХЗ широкое распространение получили гидроге-ннзациолные процессы и в связи с этим возникла необходимость проектирования специальных систем снабжения водородом. Поэтому важной частью технологической части проекта аавода является баланс производства и потребления водорода. Определив потребность в водороде и имеющиеся ресурсы водородсодержащего газа, устанавливают необходимость строительства на НПЗ и НХЗ установок производства водорода. Промышленно освоены два метода производства водорода из нефтезаводских газов каталитической высокотемпературной конверсией в присутствии кислорода в шахтных печах и каталитической конверсией в присутствии водяного пара в трубчатых печах. Разрабатывается процесс получения водорода методом парокислородной газификации нефтяных остатков. Установки по производству водорода различной мощности проектируются институтом ВНИПИНефть. [c.63]

    Автогенными принято называть технологические процессы, идущие преимущественно за счет тепла, выделяющегося при окислении сырьевых материалов. Традиционным является, например, использование химической энергии сырья на нагрев дутья и расплавление холодных присадок при конвертировании штейнов, а также при протекании процессов обжига сульфидов в кипящем слое. Работы по расширению области применения химической энергии сульфидных материалов в производстве меди привели в начале 50-х годов XX в. к созданию принципиально новых, работающих в автогенном режиме агрегатов для плавки на штейн, а также опытных полупромышленных и промышленных установок для непрерывного производства черновой меди. Преимущества, которыми они обладают по сравнению с топливными и электрическими печами аналогичного технологического назначения, заключаются в значительном (примерно в два раза) сокращении энергозатрат на весь технологический цикл получения черновой меди и практически полной ликвидации выбросов сернистого газа в атмосферу на стадии производства штейна [11.3, 11.5,11.6,11.99] (см. также п. 11.7.6). Вместе с тем увеличение количества реализуемых в агрегате технологических процессов привело к существенному усложнению режима его тепловой работы, так как будучи печью, в рабочем пространстве которой идут процессы нафева и растворения шихты, он одновременно выполняет функции высокотемпературного реактора для глубокого окисления сульфидов. Режимные параметры тепловой работы афегата и принципы компоновки его конструкгивных элементов во многом зависят от состава перерабатываемых в нем шихтовых материалов. Разнообразие применяемого при производстве тяжелых цветных металлов сульфидного сырья привело к созданию целой серии различных в конструктивном отношении печей для плавки на штейн, представляющих собой афегаты со смешанным режимом тепловой работы. [c.452]

    В производства аммиака имеются высокопотенциальные технологические потоки конвертированный и дымовые газы после конверсии метана, синтез-газ после метанирования, газ после конверсии метана. Однако их энергии и потенциала не достаточно для образования пара с высокими параметрами. Необходим дополнительный высокотемпературный источник энергии. Таким источником является вспомогательный котел 6 с огневым обофевом от дополнительного энергетиче- [c.411]

    Если в технологической схеме производства аммиака не предусмотрена промывка жидким азотом, но имеется меднОаммиачная очистка, для высокотемпературной конверсии природного газа целесообразно применять воздух, обогащенный кислородом. При этом остаточная концентрация метана в конвертированном газе не должна превышать примерно 0,5% достигиение этого связано с повышением температуры реакции до 1400 °С. [c.135]

    Одним из путей более активного использования природного газа в металлургии как химического реагента с обеспечением экономии кокса является получение и использование нагретых восстановительных газов. При хорошо освоенной паровой конверсии природного газа требуется уровень теплоты в реакторе 900-950 °С, этот уровень принципиально может быть обеспечен высокотемпературным газоохлаждаемым ядер-ным реактором с гелиевым теплоносителем. В бескоксовой металлургии представляется возможным использование теплоты ядерного реактора для производства и нагрева (в том числе с плазменным догревом) восстановительного газа. При этом расход природного газа в качестве сырья для получения восстановительного продукта по расчету из работы [10.54] может быть значительно уменьшен — до 150-170 м7т металлизированного продукта. Этот расход, кстати, соответствует расходу природного газа на 1 т чугуна, который вдувается в фурмы доменных печей. Отметим, что в одном из наиболее экономичных по расходу топлива процессе Мидрекс на технологические цели расходуется более 260 м /т природного газа, поэтому расчеты [10.54] нуждаются, с нашей точки зрения, в уточнении. По этим расчетам / мощности атомной энерготехнологической установки в ядерно-металлургическом комплексе может идти на конверсию и нагрев природного газа, а остальное — на выработку электроэнергии, потребляемой в производстве металлизированного продукта и электросталеплавильных процессах. Получаемый пар при этом может использоваться при паровой конверсии, определенная часть электроэнергии — в электрических и плазменных (с рабочим газом — водородом) нагревателях. [c.389]

    Влияние способа получения диоксида урана на его свойства и технико-экономические параметры процесса. Эту проблему следует рассматривать в нескольких аспектах. Широкое использование гидрохимических технологий производства керамического иОз, оправданное на ранних стадиях развития ядерной энергетики, когда недостаточно был развит аффинаж на стадии производства концентратов, в настоящее время не только стало технологическим анахронизмом, но и порождает массу экономических и экологических проблем. В результате технико-экономических исследований, неоднократно проводимых проектными организациями Минатома еще до распада СССР, выяснено, что технология, основанная на осаждении нерастворимых солей (полиуранатов, трикарбонатоуранила аммония и пр.), фильтрации, сушке, прокалке, сопровождаемая получением маточных растворов и т. п., значительно дороже так называемой газовой технологии высокотемпературной технологии прямой конверсии гексафторида урана в оксиды урана с применением водяного пара в качестве конвертирующего реагента. Эта экономия определяется практическим отсутствием реагентов при производстве первичного оксида урана — 11з08, резким снижением количества единиц емкостного оборудования и, следовательно, снижением коррозии и загрязнения продукции примесями конструкционных элементов, реализованной возможностью регенерировать фтор из иГб, отсутствием маточных растворов. В конечном итоге резко сокращается количество отходов и потерь обогащенного урана. При использовании газовой технологии резко сокращается число стадий технологического процесса, отпадает необходимость в переработке маточных растворов. Существенно и то, что сокращается число технологических параметров, которые надлежит контролировать на протяжении технологического маршрута ПРе — -НзОз. Действительно, форма частиц изО , полученных высокотемпературным гидролизом иГб, близка к сферической, размер частиц, удельная поверхность и насыпная плотность регулируются параметрами процесса (температурой, давлением, разбавлением реагентов нейтральным газом и пр.). Совокупность вышеперечисленных преимуществ газовой технологии над гидрохимическими технологиями должна стимулировать ее широкое использование в атомной промышленности на стадии производства оксидного ядерного топлива. Это сократит затраты на производство топлива и будет способствовать дальнейшей социальной адаптации ядерной энергетики. [c.620]

    Контрольными цифрами развития народного хозяйства СССР на 1950—1965 гг. предусматривается ускоренное развнтие химической промышленности, прежде всего производства синтетических полимерных материалов. Производство синтетических материалов должно расширяться на новой сырьевой базе главным образом за счет использования попутных газов нефтедобычи, природных газов и газообразных продуктов нефтепереработки. На нефтеперерабатывающих заводах найдут распространение процессы получения втилена, пропилена, ароматических углеводородов и других полупродуктов и углеводородного сырья для производств нефтехимического синтеза. Ресурсы природных газов и газов, являющихся продуктами переработки нефти, могут быть увеличены за счет газов, получаемых в результате освоения новых технологических процессов, разработанных советскими учеными. К таким процессам относятся высокотемпературный распад газового и дистиллятного сырья, пиролиз остаточных нефтепродуктов в кипящем слое теплоносителя, контактное коксование гудрона, пиролиз тяжелых нефтяных остатков в присутствии водяного пара, термическое и каталитическое иревращение газообразных углеводородов и др. [c.3]

    К низкокалорийным газам относятся доменный и силовой (генераторный). Доменный (колощниковый) газ вырабатывается как побочный продукт технологического процесса на металлургических заводах. Генераторные газы получают путем высокотемпературной газификации полезных ископаемых органического происхождения (торф, бурый уголь и др.) и биомассы (древесина, отходы сельскохозяйственного производства, водоросли и др.). Основным горючим компонентом этих газов является монооксид углерода СО (25—30 %). Кроме горючей части эти газы содержат в очень больщом количестве (до 65 % и более) негорючие компоненты, среди которых азот N2 (до 50 % и более) и углекислый газ СО2 (до 10-15 % и более). Поэтому теплота сгорания таких газов очень невелика (Яд = 3 800-5 ООО кДж/м ). Однако при хорошей очистке и обогащении газ, полученный из биомассы, имеет теплоту сгорания Я = 30 000—35 ООО кДж/м и не уступает по этому показателю природному газу [6.33]. [c.228]


Смотреть страницы где упоминается термин Производство технологического газа высокотемпературная: [c.637]    [c.367]    [c.827]    [c.227]    [c.45]    [c.77]    [c.369]   
Очистка технических газов (1969) -- [ c.15 , c.16 ]




ПОИСК





Смотрите так же термины и статьи:

Производство технологических газов

Производство технологического газа высокотемпературная конверсия попутных газов

Промышленное производство технологического газа методом высокотемпературной конверсии углеводородов



© 2024 chem21.info Реклама на сайте