Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Природный газ выделение парафинов

    Этим и определяются большие технико-экономические преимущества синтеза отдельных индивидуальных парафиновых углеводородов, вместо выделения их из состава нефти. Вот почему основными сырьевыми источниками индивидуальных парафиновых углеводородов являются природный газ, головные фракции сырой нефти и газы термического и каталитического крекинга нефти. [c.25]


    Выше обсуждались вопросы, связанные с выяснением молекулярной структуры нефтяных асфальтенов вне зависимости от молекулярной структуры нефтяных смол. Между тем, в предыдущих главах мы неоднократно подчеркивали генетическую связь этих не-углеводородных высокомолекулярных соединений нефти. Рассмотрим теперь наличие общности и различия в строении молекул смол и асфальтенов, так же как мы сделали это в случае их элементного состава. Д. Эрдман в одной из своих работ [14] рассмотрению структурно-молекулярных вопросов смолисто-асфальтеновых веществ нефти предпослал характеристику их химического состава. Смолы и асфальтены, но мнению Эрдмана, представляют собою смеси высокомолекулярных неуглеводородных соединений нефти, в которых содержатся такие гетероэлементы, как кислород, азот и сера, а также небольшие количества ванадия и никеля. Используя большой комплекс физических методов для изучения углеродного скелета и соотношения в нем атомов углерода различной природы (ароматический, нафтеновый, парафиновый) в молекулах смол и асфальтенов, выделенных из сырых нефтей, природных асфальтенов и продуктов высокотемпературной переработки нефти, многие исследователи при решении принципиальных вопросов пришли к аналогичным выводам. В работах Эрдмана сделаны некоторые обобщения этих экспериментальных результатов. Важное научное значение имеет положение о том, что молекулы смол и асфальтенов состоят из нескольких плоских двухмерных пластин конденсированных ароматических и сферических нафтеновых структур, б.тиз-ких но своему строению. Принципиальное различие между смолами и асфальтенами, проявляющееся в различной их растворимости [c.98]

    Природные газы содержат 93—98% метана, до 2% этана и до 1% пропана. Поскольку для пиролиза пригодны только этан и пропан, природные газы считаются малоценным сырьем пиролиза. Попутный газ и продукты стабилизации нефти содержат 60—70% этана, пропана и более высококипящих парафиновых углеводородов и поэтому представляют собой ценное пиролизное сырье. Иногда пиролизу подвергают не весь попутный газ, а только выделенные из него этан, пропан и бутан. [c.204]

    Краткий обзор случаев применения охлаждения к промышленным процессам должен включать такие производства, как сжижение хлора, получение твердой углекислоты, рекуперацию растворителей, получение бензина из натурального газа, конденсацию паров летучих жидкостей, подобных сероуглероду, этиловому эфиру и четыреххлористому углероду, кристаллизацию солей из раствора, дегидратацию газов и удаление загрязнений из них, кондиционирование воздуха при производстве вискозы, фотографической пленки, желатина и кон-фект, выделение парафинового вара из нефти регулирование скорости реакции для таких органических реакций, как нитрация и диазо-тирование получение кислорода и азота из воздуха и водорода из газа коксовых печей и из других газов, сжижение и хранение природного газа. [c.482]


    Абсорбцию можно провести и в две ступени. В первой ступени поддерживают такие рабочие условия, чтобы извлечь з природного газа приблизительно 60% углеводородов С4 и все более тяжелые парафиновые углеводороды. Остаточный газ с верха колонны поступает на вторую ступень абсорбции, где поддерживают условия, при которых поглощаются 35—40% этана, 90% пропана и остаток фракции С4. После выделения из поглотительного масла эти газы используют для химической переработки, например, для производства этилена. [c.24]

    Еще в 1883 г. [58] было высказано мнение, что, в нефтяном парафине содержатся углеводороды предельного ряда нормальные и изостроения. Аналогичное мнение высказывалось в работе [59], где сравнивались температуры плавления, кипения и плотности парафиновых углеводородов, выделенных из пенсильванской нефти, и синтетических н-алканов. Более высокая плотность природных парафиновых углеводородов объяснялась [59] возможным присутствием изоалканов (указывалось, однако, на возможность присутствия углеводородов других гомологических рядов). Результаты изучения физических свойств узких фракций парафина, выделенного из нефти Мид-Континента методом дифракции рентгеновских лучей [60], позволили заключить, что н-алканов в парафине содержится не более 65 вес. %, содержание изоалканов достигает 20 вес,%. [c.38]

    Сравнительные исследования бронирующих оболочек, выделенных из промысловых эмульсий нефтей различных месторождений, показали, что даже нефти с близкими характеристиками могут иметь существенные отличия по устойчивости и составу таких оболочек [48, 55]. В состав бронированных оболочек наряду с основными стабилизаторами нефтяных эмульсий - асфальтенами и смолами - могут входить высокоплавкие парафиновые компоненты (до 70 %) и различные неорганические примеси (до 40 %). В зависимости от природы нефти и условий ее добычи компоненты защитного слоя в количественном отношении могут быть представлены в различных сочетаниях. Устойчивость водонефтяных эмульсий зависит как от общего значения адсорбции природных стабилизаторов, образующих защитные оболочки на глобулах воды, эмульгированной в нефти, так и от типа стабилизатора. Кинетически стабилизирующим действием обладают все адсорбционные слои, независимо от их природы. Стабилизация эмульсий, обусловленная особыми структурно-механическими свойствами адсорбционных слоев, может привести к практически неограниченному повышению устойчивости эмульсии. Гидрофильные эмульгаторы (глина, мел, гипс) стабилизируют нефтяные эмульсии типа нефть -вода, а гидрофобные - эмульсии типа вода — нефть. [c.44]

    Как правило, схема процессов абсорбции углеводородов сравнительно проста. При первичном процессе какие-либо основные или побочные химические реакции не протекают часто вполне применимы уравнения равновесия между паром и жидкость)о, выведенные из законов для идеальных растворов. Поскольку массообмен в этих случаях не усложняется протеканием химических реакций в жидкой фазе, проектные расчеты могут основываться на обычных концепциях коэффициента абсорбции и теоретической тарелки. Важнейшим осложняющим фактором при расчете абсорбционных установок для выделения углеводородных продуктов часто является присутствие весьма многочисленных компонентов. Это не только чрезвычайно сильно усложняет вычисления, но и вызывает необходимость располагать обширными данными по равновесиям для этих многочисленных компонентов. Равновесные данные для сравнительно простых смесей парафиновых углеводородов, встречающихся при процессах абсорбции природного газа, подробно рассматриваются в литературе. Методика расчета таких установок вполне установилась и с достаточной полнотой изложена в ряде руководств [39—41]. Кроме того, в коксовом газе наряду с азотистыми, сернистыми и кислородными соединениями содержатся многочисленные циклические углеводороды и поэтому методика расчета установок для выделения углеводородов из таких газовых систем разработана несколько меньше. Поскольку удаление нафталина является важной фазой очистки каменноугольного газа, используемого в качестве бытового топлива (вследствие частого образования твердых [c.371]

    Сравнительно легкое выделение асфальтенов из нефтей, природных асфальтов и тяжелых остаточных нефтепродуктов" путем осаждения их петролейным эфиром или индивидуальными парафиновыми угле- водородами С5—С7 послужило основанием для обособления их в от-у дельную классификационную группу высокомолекулярных гетеро- I органических соединений пефти. Этим же объясняется более деталь- ( ное изучение физических и коллоидных свойств асфальтенов по сравнению с изучением свойств нефтяных смол. J [c.494]


    Для калибровки прибора попользовались индивидуальные углеводороды —С5. Парафиновые углеводороды были получены выделением из природного газа многократной фракционировкой, олефиновые углеводороды — каталитической дегидратацией соответствующих спиртов. Чистота углеводородов была 97—99%. [c.75]

    Процессы азеотропной и экстрактивной ректификации почти никогда не используются самостоятельно, а являются стадиями технологических процессов разделения смесей. Естественно, поэтому, что эффективность и показатели процессов азеотропной и экстрактивной ректификации в большой степени зависят от показателей предшествующих и последующих стадий. Так, для успешного выделения путем азеотропной и экстрактивной ректификации отдельных веществ из многокомпонентных смесей, например из смесей углеводородов, важнейшее значение имеет предварительное выделение узкой фракции, являющейся в указанных процессах исходной смесью. Состав этой функции определяется требованиями к целевому продукту, составом исходной смеси и особенностями процесса азеотропной и экстрактивной ректификации. Так, экстрактивная ректификация широко применяется для выделения ароматических углеводородов из природных смесей. Последние, кроме ароматических, содержат парафиновые и нафтеновые углеводороды, отгоняющиеся при экстрактивной ректификации в виде дистиллата. Наличие этих соединений с температурами, превышающими температуру кипения ароматического углеводорода, затрудняет разделение. Такие соединения должны быть, поэтому, предварительно отделены, если возможно, путем обычной ректификации. В связи с тем, что ароматические углеводороды образуют положительные азеотропы с многими парафиновыми углеводородами, фракция, выделенная путем обычной ректификации и предназначенная для разделения путем экстрактивной ректификации, имеет интервал температур кипения ниже температуры кипения ароматического углеводорода. Так, например, для выделения толуола используется смесь с интервалом температур кипения 95—105° С [345], а для выделения бензола — с интервалом температур кипения 73—77° С [346]. Из этих фракций ароматические углеводороды выделяются путем экстрактивной ректификации с применением полярных веществ в качестве разделяющих агентов. [c.318]

    Основные носители парамагнетизма содержатся в асфальтенах и почти не содержатся в маслах, смолы по их содержанию занимают промежуточное положение. Соединения парафинового ряда способствуют уменьшению числа свободных радикалов. По мере углубления окисления и увеличения молекулярного веса окисленных битумов интенсивность сигналов ЭПР возрастет, что объясняется ростом содержания асфальтенов и числа свободных радикалов. Если содержание свободных радикалов в окисленном битуме БН-П принять за 100%, то в битумах БН-Ш и БН-1У оно составляет соответственно 170 и 180%[91]. Между температурой размя1-че-ния и интенсивностью сигналов ЭПР для дорожных окисленных и компаундированных битумов, полученных ич Усть-Балыкской нефти, установлена прямая зависимостъ [92]. На основании рентгеновского структурного анализа было показано, что асфальтены и карбены, выделенные из природных асфальтов, являются кристаллическими веществами. Некоторые из них имеют признаки цепной ориентации, фафитовая структура у них отсутствует. [c.36]

    Работы, проведенные другими авторами, значительно расширили и углубили познания в области химического состава нефтяных природных и заводских газов Грозненской области. Однако недостатком почти всех этих работ было то, что газы фракционировались не па индивидуальные углеводороды, а на группы в них отсутствуют анализы выделенных фракций, в результате чего невозможно определить соотношение парафиновых углеводородов нормального и изостроения, а также количества непредельных углеводородов. [c.5]

    Более детальное изучение влияния различных факторов на растворимость углеводородных смесей в природном газе проведено на широких фракциях, выделенных из нефтей парафиновой, нафтеновой и ароматической природы. Их характеристика дана в табл. 19. Фракции 1 и 2, обе парафиновой природы, отличались только содержанием легких фракций. [c.49]

    Выбор границ выкипания сырьевых фракций обусловлен содержанием природных ароматических и тех нафтеновых и парафиновых углеводородов, которые являются основным источником образования ароматических углеводородов. Благодаря этому немаловажное значение для получения максимального выхода ароматических углеводородов имеет четкость выделения узких бензиновых фракций. [c.20]

    Октановое число бензинов прямой перегонки парафиновой нефти лежит в пределах 50—60, октановое число бензинов асфальтовой нефти может достигнуть 72—76, бензинов термического крекинга — около 65 и бензинов каталитического крекинга — 85. При добавлении тетраэтилсвинца октановое число этих бензинов можно повысить на 15—16 единиц эффект добавления тетраэтилсвинца несколько изменяется в зависимости от характера бензина. Некоторые современные двигатели требуют бензинов с октановым числом 100. Такие бензины получаются при смешении природного высокооктанового бензина (72—76) или бензина каталитического крекинга с изопентаном, выделенным при перегонке нефти, с 2,2,4-триметилпентаном или с другим изоалканом, полученным синтетическим путем, а также с тетраэтилсвинцом. [c.401]

    Присутствие тяжелых конденсирующихся углеводородов в природных газах, транопортируемых по трубопроводам под высоким давлением, приводит при некоторых-условиях к выделению кбнденсата, что создает многочисленные трудности. В частности, в условиях холодного климата и в гористых районах, где трубопроводы проложены с крутым уклоном, конденсат заполняет пониженные участки трубопровода. Во многих случаях количество конденсата оказывается весьма значительным и он образует своего рода гидравлический затвор. Поэтому из газов с высоким содержанием высших парафиновых углеводородов предварительно извлекают газовый бензин. В последующем по мере роста потребления сжиженных газов начали выделять также часть пропана и большую часть бутанов. В настоящее время стремятся достичь максимальной полноты извлечения как этих компонентов, так и этана. Из этана можно получать этилен с выходом 75% вес. выход же этилена иэ пропана составляет лишь около 45%, а из нефти не более 20—28%. [c.22]

    Химический состав твердых углеводородов масляных фракций зависит от характера нефти, из которой они выделены. Так, в масляных фракциях нефтей парафино-нафтенового основания содер-жится меньше твердых ароматических углеводородов, чем в соответствующих по температурам кипения фракциях, выделенных из тяжелых высокоароматизированных нефтей. Химический состав твердых углеводородов масляных фракций зависит также от пределов выкипания этих фракций. По мере повышения пределов выкипания фракции одной и той же нефти содержание твердых парафиновых углеводородов уменьшается, а твердых нафтеновых и ароматических углеводородов возрастает (рис. 26). Церезины, концентрирующиеся в остатке от перегонки мазута, представляют собой в основном смесь нафтеновых углеводородов и в меньших количествах содержат твердые ароматические и парафиновые углеводороды, причем их соотношение зависит от характера нефти, из которой выделен церезин. Изопарафиновые углеводороды содержатся в церезинах в сравнительно небольших количествах. Химический состав природных церезинов аналогичен составу нефтяных церезинов [3]. [c.117]

    И других СВОЙСТВ асфальтенов, выделенных из природных битумов разных месторождений и разной химической природы (битум асфальтового основания венесуэльского месторождения Боксан, битум нафтенового основания калифорнийского месторождения Медуэй, битум парафинового основания аравийского месторождения Сафоний) показали, что они резко различаются между собой и по составу, и по свойствам [16]. Значительное различие в соотношении молекул асфальтенов с разными массами сильно сказывалось на их растворимости и реологических свойствах, на температурной зависимости вязкостных свойств. Эти свойства, наряду с адгезией к твердым минеральным материалам и погодостойкостью, имеют важное значение и учитываются в случае применения технических битумов в качестве дорожных покрытий, в производстве кровельных и гидроизоляционных материалов. Различия в элементном составе (прежде всего в отношении С/Н), молекулярных весах, растворимости и других свойствах асфальтенов, выделенных из остаточных продуктов переработки нефти, зависят в сильной степени от продолжительности высокотемпературной обработки нефти и нефтепродуктов и от реакционной среды (окислительной, восстановительной, нейтральной). [c.254]

    Из приведенных в табл. 36 данных видно, что оба исследованных церезина весьма близки между собой по химической природе углеводородов, их составляющих. Эти церезины характеризуются резко выраженным преобладанием гибридных структур углеводородов парафино-циклопарафинового характера при сравнительно небольшом содержании чисто парафиновых углеводородов и практически полном отсутствии парафино-ароматических структур у шорсинского и незначительном содержании их у бориславского церезина. Интересно также отметить, что чисто парафиновые углеводороды представлены исключительно изомерами нормального строения в гибридных, парафино-циклопарафиновых формах углеводородов также преобладают изомеры с нормальными парафиновыми цепями, хотя наряду с ними присутствуют в значительных количествах структуры с разветвленными парафиновыми цепями. Приведенные здесь основные результаты, которые были получены Черножуковым и Казаковой [58] при длительном изучении твердых углеводородов, выделенных из тяжелых нефтепродуктов и природных церезинов, представляют большой принципиальный научный интерес для химии высокомолекулярных углеводородов нефти. Здесь сделан новый шаг в раскрытии природы так называемых изонарафинов , содержащихся в природных церезинах различных месторождений, а такн<е в сырых нефтях и в тяжелых нефтепродуктах. [c.202]

    Парафиновые молекулы легко смешиваются друг с другом в пределах одной кристаллической структуры, т. е. легко изоморфно замещают друг друга. Этим объясняется поликомпонентность гомологического состава природных парафиновых выделений, представляющих собой обычно твердые растворы или, иными словами, изоморфные смеси. Изучение пределов изоморфных замещений молекул разных парафиновых гомологов при разных температурах позволило не только создать экспериментальную основу для построения диаграмм состояния парафиновых систем [146, 151, 158], но и выявить критерии изоморфной смесимости парафинов [79, 146, 151], важнейшим из которых для ротационно-кристаллических фаз может быть названа форма теплового движения алифатических цепочек. [c.9]

    В предыдущей главе речь шла о выделении нормальных парафиновых углеводородов из керосиновых и дизельных фракций с числом углеродных атомов от 10 до 20, так называемых жидких парафинов. Указывалось, что одним пз главнейших направлений использования нормальных парафинов является производство линейных алкилбензолов и а ткилбензосульфонатов (ЛАБ, ЛАБС), то есть веществ, которые являются одним из основных компонентов при производстве синтетических моющих веществ или поверхностно-активных веществ (ПАВ). Сравнительно недавно для производства моющих веществ использовалось значительное количество жиров природного характера (растительных масел и животных жиров). С использованием жидких нормальных парафинов для этих целей жиры высвобождаются, увеличивая тем самым ресурсы для обеспечения потребностей человека. [c.260]

    Цеолит СаА (5А) незаменим при выделении нормальных парафиновых углеводородов из различного углеводородного сырья, например природного бензина и керосина. Большие молекулы разветвленных и циклических углеводородов на это.м цеолите не адсорбируются. Интерес к процессу выделения нормальных углеводородов сначала был связан с необходимостью повышения октанового числа моторного топлива. Позднее резко возросла потребность в нормальных парафинах, используемых в качестве сырья при производстве биологически рлзрушаел1ых моющих средств (рис. 8.46) [210—2121. В связи с раширепием производства синтетических белков потребность в нормальных парафинах, используемых в качестве исходного сырья, еще более увеличилась. [c.720]

    Главным природным источником углеводородов различных классов является нефть, однако содержание ароматических углеводородов в нефтях, как правило, несоизмеримо ниже, чем углеводородов парафинового и нафтенового рядов поэтому выделение их из нефтей представляет собой сложную и трудную задачу. Тем не менее оно неоднократно предпринималось для нефтей, богатых ароматико , а в настоящее время практикуется с успехом и для нефтей с небольшим содержанием ароматических углеводородов. Наиболее богата ими нефть с острова Борнео, в которой, как показали еще в 1907 г. Джонс и Бут-тон, содержится от 25 до 40% ароматических углеводородов. Такое значительное содержание ароматики сделало в начале первой мировой вохгны нефть с острова Борнео особенно ценной. [c.9]

    Содержание парафиновых углеводородов разветвленного строения в нефтях также снижается с возрастанием молекулярного веса. Большинство изопарафинов, выделенных или идентифицированных в нефтях, представляют собой метилзамещенные углеводороды, но из бензиновой фракции были выделены и некоторые соединения с этильными боковыми цепями преобладают монометилпроизводные. С увеличением числа боковых цепей содержание парафинов изостроения уменьшается. В нефтяных твердых парафинах идентифицированы только углеводороды с одной метильной боковой цепью. В парафиновых углеводородах разветвленного строения, выделенных из бензиновой фракции и твердого парафина, преобладают углеводороды с метильными боковыми цепями у конца главной цепи. Так, преобладают 2-метилпроизводные, затем — 3-метил-, 4-метил-и т. д. замещенные парафины. В интервале молекулярных весов средних дистиллятных фракций выделены и идентифицированы различные виды парафиновых углеводородов с большим числом боковых цепей. Все эти соединения обладают структурой, аналогичной структуре полиизопрена и характерной для многих природных соединений растительного происхождения.  [c.27]

    Некоторые металлургические заводы в настоящее время используют в мартеновских и доменных печах природные газы с относительно высоким содержанием этана. При наличии на коксохимическом заводе, связанном с металлургическим производством, установки низкотемпературного газоразделения коксового газа можно осуществить (перед сжиганием природного газа) выделение этана и более тяжелых углеводородов, чтобы направить их на пиролиз в коксовые печи. Природный газ, содержащий парафиновые углеводороды Са, Сз и высшие, перед сжиганием его в мартеновских, доменных и других печах проходит через установку газоразделения, в которой получаются две фракции метановая, нанравляемая на сжигание, и фракция Сз и высшие, направляемые на пиролиз в коксовые камеры Коксовый газ подается на установку разделения, из которой этилен, азото-водородную смесь и бензол направляют для дальнейшего использования, а предельные углеводороды воз-врахцают в цикл. [c.22]

    Нефть представляет один из природных источников большого количества органических соединений. В нашей кавказской (Баку) нефти содержится до 90% циклических (нафтеновых) углеводородов и совсем мало ациклических, жирных. Уральская нефть содержит много ароматических углеводородов. Вообще всякая природная нефть имеет очень сложный состав. В нее входят в значительных количествах разнообразнейшие углеводороды парафины, олефины, циклопарафины, ароматические углеводороды в небол1>-ших количествах нафтеновые кислоты, азотистые основания, органические сернистые соединения и др. Поэтому выделение из нефти, нянример парафиновых углеводородов, представляет весьма трудную задачу. [c.37]

    Вторая задача особенно трудна и решается пока только в единичных случаях. На пути к решению первой задачи сделано гораздо больше, и в настоящее время разные группы углеводородов перестают быть изолированными друг от друга, превращаясь в единый большой класс простейших по качественному составу органических соединений, связанных многими взаимными переходами. От простейшего парафина — мет.ана — можно непосредственно перейти к ацетилену, а последний превратить в ароматические углеводороды. От ближайших гомологов метана известен прямой переход к непредельным — олефинам и далее к диолефинам, способньш полимеризоваться с образованием разных видов синтетического каучука. От парафинов, содержащих в молекуле шесть атомов углерода и больше, можно непосредственно перейти к ароматическим углеводородам. От последних известен простой и легкий переход к гидроароматическим соединениям — циклогексану и его гомологам, которые в других условиях могут быть превращены обратно в ароматические углеводороды. Циклогексаны и циклопентаны — компоненты любой природной нефти — могут превращаться друг в друга циклопентаны могут превращаться в парафиновые углеводороды. Почти все перечисленные реакции осуществляются с помощью каталитических методов и имеют характер непосредственных превращений, не требующих выделения каких-либо промежуточных продуктов. [c.237]

    Ароматические углеводороды, выделенные из природного бензина и полученные в результате аналитического дегидрирования, а также иедегид-рирующийся остаток, состоящий из гем-замещенных гексаметиленовых, нентаметиленовых и парафиновых углеводородов подвергались четкой ректификации, и состав полученных фракций изучался по спектрам комбинационного рассеяния света и по удельной рефракции. [c.237]

    Материалы по превращению сернистых соединений с алюмосиликатными катализаторами (И. Н. Тиц-Скворцова и др.) свидетельствуют, что такие превращения ведут к выделению серы в виде сероводорода, образованию различных углеводородов, иногда стойких сернистых соединений типа тиофенов, тиантренов и других кольчатых структур, а в целом — к обессериванию нефтяных фракций. Эксперименты по превращению нефтей в целом (т. е. не отдельных фракций) при невысоких температурах с природными катализаторами были проведены М. Луи (М. Louis, 1966), В опыте с нефтью из неогеновых отложений северо-американского месторождения Ми-рандо отношение углерода парафиновых структур к углероду нафтеновых циклов за 33 дня с монтмориллонитом возросло от 0,70 до 0,73. В опыте с нефтью Пешельбронна отношение суммы насыщенных углеводородов к сумме ароматических через 84 дня увеличилось от 7,6 до 11,2, причем содержание асфальтенов тоже возросло от 0,6 до 5,2%. Таким образом, эти результаты показывают ту же парафи-низацию нефти с одновременным ростом высокомолекулярных малорастворимых компонентов. [c.126]


Смотреть страницы где упоминается термин Природный газ выделение парафинов: [c.156]    [c.32]    [c.21]    [c.10]    [c.237]    [c.129]    [c.199]    [c.338]   
Производство мономеров и сырья для нефтехимического синтеза (1973) -- [ c.217 ]




ПОИСК





Смотрите так же термины и статьи:

Выделение парафиновых



© 2025 chem21.info Реклама на сайте