Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пептидная связь Пептидная связь, устойчивость

    Белковая цепь приобретает чрезвычайную устойчивость, сворачиваясь в правостороннюю а-спираль (рис. 21-17). В такой структуре аминокислотные остатки направлены наружу от оси спирали, а группы С=0 одного витка спирали связаны с группами Н—N следующего витка водородными связями. Водородные связи образуются между сильно электроотрицательными атомами, например Р или О, и атомами водорода с небольшим локальным избытком положительного заряда. Такие связи имеют главным образом электростатическое происхождение и зависят от способности двух атомов к тесному сближению. Атомы О и Р, имеющие небольшие размеры, способны давать такие связи более крупные атомы О обычно не могут образовать водородных связей. В белках водородные связи играют очень важную роль они возникают между кислородным атомом карбонильной группы и атомом водорода аминогруппы, принадлежащими полипептидной цепи. Как видно из рис. 21-13, частично двоесвязный характер пептидной связи С—N не только обеспечивает плоскостность пептидного звена, но также делает атом кислорода несколько отрицательным, а атом азота с присоединенным к нему атомом водорода несколько положительными. Это и создает благоприятные условия для образования водородных связей. [c.316]


    Для осаждения многих высокомолекулярных соединений (например, полисахаридов, белков) снятие заряда не является обязательным условием, так как главным фактором их устойчивости служит водная оболочка, удерживаемая полярными, но не диссоциированными группами (спиртовыми группами, эфирными и пептидными связями). [c.185]

    Требование полной устойчивости во время пептидного синтеза и мягкого отщепления после его окончания практически трудновыполнимы для связи пептид-носитель. Теоретически кажется, что этим требованиям, скорее всего, может удовлетворить носитель с так называемой группой безопасного захвата . При этом используют якорную связь, которая совершенно устойчива в условиях синтеза, а после него может легко отщепляться в [c.185]

    Итак, можно заключить, что пептидная группа обладает повышенной восприимчивостью к внешним воздействиям и отличается высокой лабильностью в распределении электронной плотности. Сказанное, однако, не исключает известную химическую стабильность пептидной связи. Ее устойчивость объясняется сохранением при изменении внешних условий, не превышающих определенных границ, согласованности во взаимоотношениях между фрагментами пептидной группы, обладающими противоположными и, следовательно, согласно принципу Н. Бора, дополняющими друг друга электронными свойствами. [c.130]

    Причина дестабилизирующего влияния серина и треонина на а-спираль заключается в водородных связях, которые могут образовывать боковые цепи этих остатков с пептидными группами. Такая связь возможна у монопептидов Ser и Thr в конформациях R при соответственно Xi 60° и %2 - -60°. В а-спирали она конкурирует с водородной связью между группой N-H пятого остатка Ser (Thr) и группой С=0 первого остатка, что, естественно, снижает устойчивость спирали. На спиральных участках белков, напротив, внутренняя водородная связь приводит к стабилизации данного состояния основной цепи в конформации R. В конформации В остатков Ser и Thr также возможна водородная связь O -Н. .0=С в пре- [c.188]

    В этой главе описаны те методы введения защитных групп и их избирательного отщепления, которые оказались наиболее эффективными в синтезе пептидов (табл. 1). Кроме того, рассматривается влияние защитных групп на возможную рацемизацию аминокислот при образовании новых пептидных связей и устойчивость этих [c.158]

    Трипсин гидролизует пептидные связи, образуемые основными аминокислотами, т. е. связи, в которых участвуют остатки лизина и аргинина. Пептидные связи Лиз-Про и Арг-Про устойчивы к гидролизу. Частичной устойчивостью к трипсиновому гидролизу обладают также некоторые другие пептидные связи, например в структуре. .. Лиз-Лиз-Х... связь Лиз-Лиз или связи в пептидах Арг-Арг, Арг-Лиз и Лиз-Арг. Скопление основных аминокислот в определенных участках пептида обусловливает частичную устойчивость его к гидролизу. То же самое справедливо и для пептидных связей Лиз-Глу и Арг-Глу. [c.35]


    Если на N-конце белка или пептида находятся Вал или Иле, картина может осложниться из-за появления флуоресцирующих пептидов ДНС-Вал-Х и ДНС-ИЛе-Х благодаря устойчивости к гидролизу пептидных связей Вал-Х и Иле-Х. Подвижность этих производных отличается от подвижности ДНС-Вал и ДНС-Иле, и в результате может возникнуть ложное представление о гетерогенности исследуемого пептидного препарата. В таких случаях рекомендуется увеличить продолжительность гидролиза. [c.277]

    Заключение. Действие химотрипсина по отношению к субстратам с длинной пептидной цепью достаточно специфично, что позволяет использовать его для селективного расщепления белков. Если пролильный остаток расположен за аминокислотой с ароматической боковой цепью, то пептидная связь устойчива к гидролизу. [c.206]

    Для установления количественного состава входящих в гликопротеин моносахаридов и аминокислот биополимер подвергают полному кислотному гидролизу, и состав гидролизата определяют обычными методами количественного анализа. Пептидные связи устойчивее гликозидных по отношению к кислотам, поэтому для полного расщепления на мономеры гликопротеины приходится гидролизовать в более жестких условиях, чем обычные полисахариды (6 н. НС1, 100—ПО °С, 24 ч) . Нужно иметь в виду, что как сахара, так и аминокислоты могут частично распадаться в условиях кислотного гидролиза, причем в ряде случаев можно с помощью ХОЛОСТЫХ опытов внести соответствующие поправки при анализе. Специфической для гликопептидов побочной реакцией в условиях кислотного гидролиза является возможная конденсация сахаров с аминокислотами, приводящая к окрашенной сложной смеси различных веществ, в том числе простейших карбонильных соединений (так называемая реакция Майяоа). Например, по данным Готшалка , потеря аминокислот при кислотном гидролизе богатых сахарами гликопротеинов может составлять до 30 %. Количественное определение моносахаридов проводят с использованием хроматографии, спектрофотометрической и колориметрической техники (см. гл. 14). Для анализа аминокислот применяют обычно методы, хорошо известные из химии белка. Так, количественный анализ аминокислотного состава проводят в автоматических анализаторах или с помощью газо-жидкостной хроматографии . [c.567]

    В альтернативном объяснении действия солей на белки на первое место ставится прямое взаимодействие между солью и группами белка. Было показано, что ряд Гофмейстера применим и к растворимости низкомолекулярных соединений, таких, как Н-ацетилтетраглицинэтиловый эфир, моделирующий поли-пептидный остов [34]. В этом случае интерпретация была основана на прямом взаимодействии между солью и пептидными группами. При смешивании водных растворов бромида лития с М-метилацетамидом были получены кристаллы, связи в которых могут служить еще одной моделью пептидной связи [35]. Определение структуры кристаллов методом рентгеновской дифракции показало, что ионы действительно могут взаимодействовать с веществами, моделирующими пептиды, причем это взаимодействие по своему характеру соответствует взаимодействию между ионом и диполем. Влияние солей на устойчивость белков можно объяснить также исходя из теории полимерных растворов, предполагая, что имеет место прямое взаимодействие между белком и солью [36]. [c.274]

    Реакция а,р-транспептидации остатка аспарагиновой кислоты идет в кислой среде через промежуточное образование сукцинимидного производного [уравнение (2.14)] [128, 185]. Образующееся -аспартилпроизводное придает пептидной связи устойчивость к гидролизу экзопептидазами, например лейцина- [c.95]

    Прежде чем использовать карбодиимиды в пептидном синтезе, следует уделить внимание выбору заместителя Н. Устойчивость алифатических и ароматических карбодиимидов зависит от природы заместителей, так что при хранении могут иметь место разложение или полимеризация. Длина алкилыюн цепи незначительно влияет на устойчивость карбодиимидов. Напротив, разветвленность алкильных заместителей при атомах азота существенно увеличивает стабильность соединений. Так, если диэтилкарбодиимид полимеризуется при храпении в течение нескольких суток, то дициклогексилкарбодиимид может храниться месяцами. Именно этот реагент и нашел наиболее широкое применение в белковом синтезе. Дициклогексилкарбодиимид (ДЦГК) можно использовать для синтеза пептидных связей  [c.84]

    Для гидратации белка наибольшее значение имеют пептидные связи, за счет которых притягивается примерно /3 всей гидрата-ционной воды. В общем частицы гидрофильных коллоидов связывают значительные количества воды так, 1 г сухого крахмала при растворении связывает 0,18 г воды, 1 г яичного альбумина (белка) — 0,35 г воды, 1 г карбоксигемоглобина — 0,353 г воды. Связанная полярными группами вода приобретает новые качества, приближающие ее к твердому веществу ее молекулы имеют уплотненное расположение, свойства воды как растворителя понижены, она не замерзает при низких температурах и т. п. В свою очередь, гидратированное вещество также приобретает иные свойства повышается его устойчивость в растворе, уменьшается скорость диффузии и др. Вязкость и скорость образования внутренних структур в этих растворах значительно выше, чем в коллоидных. [c.174]


    Трипсин 21 расщепляет пептидные связи, в образовании которых участвуют карбоксильные группы лизина и аргинина. К гидролизу трипсином устойчивы связи лизина и аргинина с пролином (лиз—про и арг—про). Замедление гидролиза этим ферментом наблюдается тогда, когда остатки лизина и аргинина находятся рядом со свободными а-амино- и а-карбоксильными группами, а также в участках полипептидной цепи с повышенным содержанием основных аминокислот (связи ЛИЗ—лиз, арг—арг, лиз—арг и арг—лиз расщепляются только частично). Селективность расщепления трипсином можно повысить путем блокирования e-NH2-rpynn лизина (например, ангидридами янтарной, малеиновой или цитраконовой кислот) или же гуанидиновых группировок аргинина (дикетоновыми реагентами, такими как диацетил, циклогександион, фенилглиоксаль и др.). Гидролизу трипсином могут подвергаться связи, образованные и остатками цистеина, после превращения его в аминоэтилцистеин обработкой белка этиленимином. [c.140]

    Амиды можно превратить в гидразиды путем нагревания их с теоретическим количеством или небольшим избытком гидразингидрата, обычно в отсутствие растворителя. Благодаря тому, что замещенные амиды, например образовавшиеся в результате возникновения пептидных связей, более устойчивы к действию гидразина, чем первичные амиды, можно получать с хорошим выходом гидразиды пептидов из амидов пептидов [105]. В общем амиды, повидимому, более инертны в отношении реакции с гидразином, чем сложные эфиры, хотя относительно некоторых амидов, нанример бензамида [184], сообщалось, что они реагируют более гладко. Реакция гидразина с амидами иногда применяется для расщепления амидных связей, имеющихся в соединениях природного происхождения (эргогамин [185]). [c.349]

    Резонанс является фактором, повышающим устойчивость химических соединений, и его наличием объясинст-ся прочность пептидной связи. [c.5]

    Эти работы, развитые Фрутоном, имеют существенное значение в связи с вопросами о путях образования пептидной связи. Однако для разделения рацематов на антиподы этот путь мало пригоден, так как образующиеся анилиды слишком устойчивы. [c.456]

    Наиболее распространена транс-пептидная связь (рис. 2-3), но стречается и цыс-пептидная связь (она примерно на 8 кДж-моль [енее устойчива, чем первая) цис-связъ чаще всего образуется при томе азота пролина [16, 17]. [c.88]

    При получении аминокислот белки прежде всего расщепляют с помощью основного, кислотного или ферментативного гидролиза [54]. В классическом методе кислотного гидролиза [55, 56] используют 6 н. НС1 ( 110 °С) или 8 н. H2SO4. Время реакции от 12 до 72 ч в зависимости от строения белка. Очень устойчивы к гидролизу пептидные связи, образованные лейцином, изолейцином и валином. При этом триптофан разрушается полностью, серин и треонин до 10%. [c.38]

    Из -M r под действием трипсина образовалось три осколка [120, 142], при этом связь —Лиз.Асп.ОН оказалась устойчивой. Выход всех пептидных осколков превышал 80%. Поскольку в инсулине С-концевая связь —Лиз.Ала.ОН разрывалась трипсином, устойчивость связи —Лиз.Асп.ОН в -M r, по-видимому, обусловлена комбинированным эффектом а- и -г-карбоксильных групп аспарагиновой кислоты, так как в обоих случаях перед указанными С-концевыми группами находится пролильный остаток. Установлено [241], что ли-зиновая связь устойчива в Н.Тир.Лиз.Глу.ОН, но не в Н.Тир.Лиз.Глу.Тир.ОН. В рибонуклеазе (рис. 4) связи —Арг.Глу— и —Лиз.Асп— легко разрывались. [c.196]

    Пролин и оксипролин полностью устойчивы к действию фермента.- Цистеин в продуктах расщепления не был обнаружен. Полуцистин, если он присутствует в продуктах расщепления, мог образоваться за счет разрыва пептидной связи при этом связь с полипептидной цепью дисульфидным мостиком сохраняется. Окисление остатков цистина в цистеиновую кислоту не должно давать способную отщепляться под действием карбоксипептидазы группу, так как она содержит заряженную боковую цепь, но восстановление и алкилирование до --S H2 ONH2-rpynn приводят к образованию нейтрального остатка. Такой остаток был недавно обнаружен [198] в гидроЛизатах, полученных при действии карбоксипептидазы на восстановленный и алкилированный пролактин, что свидетельствует о присутствия С-концевого полуцисти нового остатка. [c.233]

    Обработка белков 6 М НС1 при 110°С в вакууме приводит к гидролизу пептидных связей, но одновременно с этим происходит разложение триптофана, гидролиз аспарагина и глутамина соответственно до аспарагиновой и глутаминовой кислот, а также частичное разложение серина, треонина, цист(е)ина. Пептидные связи между аминокислотами с объемистыми боковыми группами, такими как Пе и Val, более устойчивы к гидролизу. Хорошо известно, что гидролизуя образцы белков в течение 1, 2 и 3 дней, необходимо экстраполировать количество таких аминокислот, как Ser и Thr к нулевому времени, а Пе и Val — к бесконечному. В случае цист(е)ина целесообразно перед гидролизом либо окислить его в цистеиновую кислоту, либо превратить в 5-карбоксиметилци-стеин или 4-пиридилэтилцистеин (см. разд. 23.3.3), так как все эти соединения стабильны. Обычно, в особенности если белок содержит углеводы, образуются продукты осмоления. После гидролиза соляную кислоту лучше удалить, так как она мешает при после дующем разделении аминокислот. [c.259]

    Для защиты карбоксильной группы используются сложные эфиры, расщепляемые катализируемыми основаниями реакциями отщепления. Простыми примерами здесь служат производные сульфонов (41) и сульфониевых солей (42) оба этих производных расщепляются в мягких щелочных условиях по схеме р-элиминации [ср. (21)] [35]. Интересные возможности связаны с образованием этих сложных эфиров на более поздних стадиях синтеза путем окисления или реакцией с метилиодидом более устойчивого метил-тиоэтилового эфира (43) (схема (18) . Таким путем в процессе создания пептидной связи в щелочных условиях уменьщается риск преждевременного открытия концевой карбоксильной группы. [c.381]

    Выбор метода создания пептидной связи в каждом случае определяется общей стратегией синтеза (рм. разд. 23.6.5), скоростью и эффективностью протекания реакции и факторами повседневной практики. Не последнюю роль играет при этом легкость отделения конечного пептида от неизбежно получающегося побочного продукта, образующегося при превращении активирующей группы. Так, активация дициклогексилкарбодиимидом (см. разд. 23.6.3.1) приводит к практически нерастворимой дициклогексилмочевине,. тогда как при использовании сложных эфиров Л/-гидроксисукцини-мида (см. разд. 23.6.3.2) образуется водорастворимый Л/-гидрокси-сукцинимид. Таким образом, обоснованный подбор конденсирующих реагентов обеспечивает значительную гибкость выбора методики обработки реакционной смеси. Выбор метода активации зависит также от природы карбоксильной компоненты, в особенности от группы X, защищающей аминогруппу схема (30) . Уретанопо-добные защиты обеспечивают существенную устойчивость к рацемизации в простых производных аминокислот, и поэтому здесь не столь важно, насколько выбранный метод создания пептидной связи способствует рацемизации. Если защитная группа представляет собой простое ацильное производное или замещена дополни тельным остатком аминокислоты, как в карбоксикомпоненте пепти дов, то тогда предотвращение рацемизации полностью зависит от избранной методики активации и условий реакции. [c.390]

    Если первоначально возникающая карбоксильная компонента находится в избытке, 0-ацилизомочевина (73) может предпочтительно реагировать с карбоновой кислотой или ее производным, что приводит к симметричному ангидриду (74) путь (б) на схеме (32) . Это вторичное активированное соединение способно в свою очередь реагировать с аминокомпонентой с образованием пептида и с регенерацией части карбоксильной компоненты, которая, таким образом, включается в цикл. Внолне вероятно, что образование пептидной связи в процессе твердофазного синтеза (см. разд. 23.6.4), при котором карбоксильная компонента обычно находится в большом избытке, в значительной мере протекает через промежуточный симметричный ангидрид. В отсутствие аминов карбодиимиды можно очень успешно применять для получения симметричных ангидридов. И, наконец, в отсутствии аминокомпоненты или когда реакции соединений (73) или (74) с амином протекают особенно вяло, может образоваться устойчивая Л -ацилмочевина (75). Это может произойти либо путем внутримолекулярной перегруппиров- [c.392]

    Синтезированы антисмысловые олигонуклеотиды с фосфорамидитной и полиамидной (пептидной) связями (рис. 21.14, Вм Г). Такие молекулы очень устойчивы к действию нуклеаз. Химические группы, присоединенные к 2 -угле-родному атому сахарного остатка и С-5-атому пиримидинов, также защищают антисмысловые олигонуклеотиды и облегчают их связывание с сайтом-мишенью (рис. 1.14, Ди ). Все преимущества этих и других модификаций сейчас интенсивно изучаются. [c.506]

    Химотрипсин расщепляет больше пептидных связей, чем трипсин. При кратковременном гидролизе в течение 2—3 ч фермент расщепляет пептидные связи, в которых участвуют остатки тирозина, фенилаланина и лейцина, И в этом случае полную устойчивость к гидролизу сохраняют пептиды пролина. Скопления ароматических аминокислот, например структуры, подобные. .. Фен-Фен. .. или.... .. Тир-Фен. .. и т. д., обладают частичной устойчивостью к гидролизу. Однако с увеличением продолжительности гидролиза происходит разрушение пептидных связей многих типов. Подробный обзор по химотрипсину был сделан Деснуэллем [7] сведения о специфичности химотриптического гидролиза можно найти в обзоре Хилла [341. [c.36]

    Если в ходе анализа получается отрицательный результат, т. е. концевые группы обнаружить не удается, должны быть рассмотрены следующие возможные причины этого 1) исследуемое вещество представляет собой циклическую молекулу и не имеет свободной а-ЫНг-группы 2) молекула имеет малореакционноспособный (заблокированный) N-конец 3) концевая группа ацети-лирована (как, например, в цитохроме с или в белке вируса табачной мозаики) 4) и наконец, возможно, что ДНФ-производное (ДНФ-Про, ДНФ-Гли) разрушилось в ходе определения. Необходимо также учитывать, что выход ДНФ-Вал и ДНФ-Иле невелик из-за устойчивости к гидролизу пептидных связей Вал-Х и Иле-Х в таких случаях следует проводить гидролиз в течение 72 ч. [c.267]

    Циклизация является критическим этапом реакции назависимо от того, идет ли реакция с аминокислотой, с пептидом или с белком. Спектры поглощения ФТК-производного и циклизованного ФТГ-производного имеют различные максимумы 270 и 240 нм соответственно. Поэтому за процессом циклизации можно следить спектрофотометрически при 240 нм реакция заканчивается, когда перестает изменяться экстинкция при этой длине волны. Если циклизация идет слишком медленно, процесс можно ускорить, увеличив концентрацию кислоты или осторожно нагревая смесь. Однако нужно помнить, что существуют устойчивые пептидные связи, циклизация которых идет очень медленно или не идет вообще. [c.287]

    Как в белках, так и в пептидах имеются устойчивые пептидные связи, например связи в пролилпептидах не расщепляются карбоксипептидазой. [c.293]

    Характер связи между полисахаридными и пептидными цепями. Поскольку от характера связи между полисахаридными и пептидными цепями и ее устойчивости к разного рода воздействиям в значительной мере зависит химическое поведение гликопротеина, вопрос о типе связи является центральным вопросом химии этих биополимеров. Типы такой связи вследствие полифункциональности моносахаридов и аминокислот могут быть Достаточно многообразными. В принципе возможны сложноэфирная связь гидроксильной группы сахара с карбоксилом аминокислоты (/4), ацилгликозидная связь гликозидного гидроксила сахара с карбоксилом аминокислоты (В), амидная связь аминогруппы аминосахара с карбоксилом аминокислоты (С), гликозиламинная связь, образованная аминогруппой аминокислоты, связанной с гликозидным центром (D), N-ацил-гликозиламидная связь, образующаяся при ацилировании аминогруппы гликозиламина карбоксильной группой двухосновной аминокислоты (Е), О-гликозидная связь, образованная гликозилированием восстанавливающим концом олиго- или полисахаридной цепи гидроксила оксиаминокислоты (F). Менее вероятна простая эфирная связь гидроксильных групп моносахарида и оксиаминокислот (G) и амидная связь аминогруппы аминокислоты с карбоксильной группой уроновой кислоты (Я). [c.570]

    Для разрушения пептидной части гликопротеинов широко применяется протеолиз, особенно часто под действием проназы (обычно из 81гер1от св5 г15тч), которая является набором мощных протеиназ, способных разрушать пептидные цепи, устойчивые к другим протеолитиче-ским ферментам. Часто употребляются также трипсин, химотрипсин, па-паин. Гидролизат, полученный после обработки протеиназами, подвергают фракционированию с применением диализа, гель-фильтрации и хроматографии (см., например, ), выделяя один или несколько низкомолекулярных гликопептидов, структуру которых устанавливают обычными методами и иногда подтверждают встречным синтезом. Впервые гидролиз гликопротеина трипсином был применен Нейбергером для выделения фрагмента овальбумина, содержащего узел связи олигосахаридной и пептидной части молекулы в дальнейшем для этой же цели использовали также химотрипсин, пепсин и другие фepмeнты " . . Протеолиз проназой очень широко применялся при выделении узловых фрагментов из 7-глобулина , тиреоглобулина фибриногена и особенно му- [c.571]

    Механизм действия этих антибиотиков основан на взаимодействии связывающего кармана антибиотика, который образован водородными связями пептидного фрагмента аминокислот 2, 3, 4, 5, 6, с фрагментом О-аланил-В-аланил строящегося пептидогликана бактериальной клетки, что приводит к ее разрушению. Однако широкое и крайне опасное распространение бактериальных инфекций, резистентных к большинству применяемых в клинике антибиотиков, привело к увеличению применения ванкомицина (особенно в отделениях интенсивной терапии), и в настоящее время появились штаммы грам-положительных бактерий, резистентные к ванкомицину и тейкопланнну (особенно штаммы энтерококков GRE) и штаммы стафилококков, с промежуточной (низкой) чувствительностью к гликопептидам (GISA). Показано, что ванкомицин-устойчивые энтерококки используют для построения бактериальной стенки не фрагмент D-Ala-D-Ala, а депсипептид D-Ala-D-la tate, который не может взаимодействовать со связывающим карманом гликопептида с участием 5 водородных связей, и такой комплекс является непрочным, что приводит к потере антибактериальной активности. В настоящее время нет средств борьбы с этими патогенами, которые получают все более широкое распространение. [c.80]


Смотреть страницы где упоминается термин Пептидная связь Пептидная связь, устойчивость: [c.150]    [c.73]    [c.157]    [c.300]    [c.382]    [c.149]    [c.133]    [c.246]    [c.206]    [c.597]    [c.593]    [c.261]    [c.261]    [c.29]   
Пептиды Том 2 (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Пептидные связи



© 2025 chem21.info Реклама на сайте