Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы также реакции кипения

    Во второй и третьей частях, посвященных реакционной способности веществ, главное внимание уделено их химическому сродству. Разумеется, вопросы кинетики не менее (а зачастую даже более) важны, чем вопросы статики процессов. Однако, если принять во внимание специфичность и большое разнообразие скоростных факторов и также огромную сложность учета их влияния на реакционную способность веществ, изменение представлений о механизме протекания процессов по мере углубления знаний и, наконец, то обстоятельство, что большинство подлежащих рассмотрению вопросов связано со статикой различных процессов, то этот выбор вряд ли можно счесть спорным. Действительно, и закон действующих масс, и принцип Ле Шателье, и многие свойства растворов (в их числе растворимость, температуры отвердевания и кипения, давление пара), и процессы в них (диссоциация, нейтрализация, сольватация, комплексообразование, гидролиз и т.д.)—это прежде всего проблемы равновесия. Вместе с тем надо отчетливо показать, что вопросы статики и кинетики это проблемы возможности и действительности и что значение энергетического (термодинамического) и кинетического факторов неодинаково для различных типов процессов для реакций в растворах электролитов (например, при нейтрализации), для высокотемпературных реакций и других быстрых процессов кинетические соотношения не существенны наоборот, для медленных реакций и таких, продукты которых гораздо устойчивее исходных веществ (например, при горении), не играют ощутимой роли равновесные соотношения. [c.4]


    Синтез полиакрилатов проводят в среде толуола. В реактор загружают гликоль, толуол, метакриловую кислоту, двухосновную насыщенную кислоту (в качестве растворителя) и небольшое количество серной кислоты—катализатора процесса этерификации. Реакцию проводят при температуре кипения растворителя, при этом пары толуола уносят с собой пары воды, выделяющиеся в процессе этерификации далее смесь паров конденсируется в холодильнике, и конденсат расслаивается в ловушке. Толуол вновь возвращают в реактор, вода стекает в сборник. Этерифика-ция сопровождается также частичной полимеризацией. По окончании процесса не вступившие в реакцию кислоты нейтрализуют и удаляют путем промывки водой. Затем реактор соединяют через прямой конденсатор с вакуум-насосом и отделяют оставшийся толуол от форполимера. Чтобы не происходила дальнейшая полимеризация форполимера, при отгонке толуола -в раствор добавляют гидрохинон. [c.418]

    Жидкая двуокись серы является растворителем, имеющим низкую температуру кипения (—10°). Она смешивается с парафиновыми сульфохлоридами в любом соотношении и вместе с тем совершенно неспособна растворять высокомолекулярные парафиновые углеводороды. Преимуществом является также и то, что непрореагировавший углеводород, отделенный при экстрагировании, может быть вновь введен в процесс сульфохлорирования без удаления двуокиси серы, так как последняя сама является участником реакции сульфохлорирования. [c.405]

    Процессы, обусловливающие образование углеводородов, выкипающих в пределах кипения бензина, за счет реакций распада (высокомолекулярных нормальных парафинов с получением олефинов, содержащих от 5 до 11 углеводоро/ ных атомов в молекуле высокомолекулярных олефинов в том же направлении высокомолекулярных нафтенов с отщеплением боковых цепей от многочленных колец и с образованием непредельных осколков боковых цепей), а также деалкилирования и распада боковых цепей ароматических углеводородов высокой молекулярной массы. [c.42]

    Химический состав сырья при заданных условиях процесса определяет также выход водорода при риформинге. Чем меньше парафинов в сырье, тем выход водорода выше, так как снижается его потребление на реакции гидрокрекинга. Для получения катализата с заданным содержанием ароматических углеводородов из фракций данного бензина нужны тем менее жесткие условия риформинга, чем выше интервал кипения фракции, так как с увеличением числа углеродных атомов в углеводородах данного строения растут и термодинамически возможный выход ароматических углеводородов, и скорость ароматизации. Содержащиеся в сырье ароматические углеводороды ограничивают термодинамически воз- [c.256]


    В окислительном нефтехимическом синтезе существуют процессы, имеющие такие особенности высокие температуры плавления и кипения как исходного сырья, так и готового продукта большие отношения исходной смеси, например сырья к окислителю — воздуху и др., для которых требуется необычное решение задач по эффективному выделению из реакционных газов сублимирующихся целевых продуктов, а также вопросов техники безопасности (часто из-за пирофорных свойств продуктов реакции) и т. д. На примере процесса получения пиромеллитового диангидрида показано успешное решение этих и других задач, в частности задачи каталитического обезвреживания отходящих газов при наличии в них тугоплавких пирофорных дисперсных частиц. В узле санитарной очистки использована оригинальная конструкция вихревого смесителя-нагрева-теля отходящих газов и высокоскоростного пластинчатого реактора с катализаторным покрытием. [c.308]

    При выборе третьего компонента для азеотропной перегонки необходимо учитывать следующее 1) после его добавления температура кипения смеси третьего компонента с неароматическими углеводородами (новой азеотропной смеси) должна значительно отличаться от температуры кипения выделяемого ароматического углеводорода или его азеотропной смеси с третьим компонентом 2) желательно, чтобы новая образующаяся азеотропная смесь содержала максимальное количество неароматических углеводородов 3) третий компонент должен иметь низкую теплоту испарения, чтобы расход тепла на отгон был минимальным он должен также легко регенерироваться для дальнейшего использования в процессе, например путем водной промывки, разделения фаз при охлаждении и др., и быть химически инертным — не вступать в реакцию с разделяемыми углеводородами, не корродировать аппаратуру, быть термически стабильным, нетоксичным и доступным в промышленном масштабе. [c.41]

    Если температура проведения реакции является величиной переменной, то она должна учитываться в уравнении кинетики путем коррекции констант скоростей реакций. Уравнения скоростей реакций должны также включаться в модель в случае экзотермических или эндотермических реакций при составлении теплового баланса, который обычно вводят в модель процесса для определения температуры или величины парового потока при кипении (см. гл. V). [c.113]

    Кажущимся недостатком жидкого аммиака как растворителя является низкая температура кипения. Однако применение его во многих случаях обеспечивает столь высокую скорость реакции, что позволяет вести процесс при температуре, не превыщающей температуру кипения. Аммиак также используется при более высоких температурах (комнатной и выще), и хотя это осложняет процесс (из-за необходимости применять автоклав), однако не создает непреодолимых препятствий. Заметим также, что теплота испарения аммиака велика, поэтому, работая с ним, можно использовать емкости, сообщающиеся с атмосферой. При этом быстрого испарения аммиака не происходит, и в больщинстве случаев можно обойтись без наружного охлаждения системы. Немаловажным обстоятельством является также то, что аммиак можно удалить при небольшом нагревании. Это облегчает процесс его регенерации, делает возможным повторное использование. Неудивительно поэтому, что многие исследователи рассматривают аммиак как перспективный нетрадиционный растворитель для экологически чистых и малоотходных технологий. [c.201]

    Температура реакции. Кроме увеличения скорости процесса нагревание реакционной смеси позволяет также обеспечить удаление из сферы реакции алкилгалогенида, если его температура кипения ниже 100°С, а в случае высококипящего продукта — отгонку воды. Галогенирование вторичных и третичных спиртов проводят при [c.136]

    Несмотря на то, что температура подаваемого сырья и газа на 39—110 °С ниже температуры каталитического слоя, в реакторе быстро достигается изотермический режим за счет тепла реакции в результате циркуляции части жидкости в реакторе сверху вниз и кипения ее, а также в результате интенсивного перемешивания катализатора с поступающим сырьем. Изотермические условия в реакторе позволяют вести процесс при оптимальной температуре и эффективно использовать объем реактора (исключена потеря части объема реактора из-за подачи сырья в реактор при пониженной температуре, как это имеет место на установках со стационарным слоем катализатора. [c.119]

    В качестве реакторов непрерывного действия используют также вертикальные колонные аппараты различных типов колпачковые [168, 169], насадочные [146, 170], а также со специальной конструкцией тарелок [70, 85, 165, 166]. Процесс этерификации осуществляется по принципу прямотока или противотока. При противотоке реагент с более низкой температурой кипения (обычно спирт) испаряется и вводится в нижнюю часть колонны. Его пары, поднимаясь вверх по колонне, реагируют с кислотой, моноэфиром или соединением фосфора, например РОСЬ, образуя соответствующий эфир. Газообразные побочные продукты реакции (вода, низший спирт, хлористый водород) выводятся вместе с парами спирта сверху колонны. Температура в реакторе поддерживается выше температуры кипения низкокипящего реагента. Для облегчения испарения спирта через колонну можно пропускать с небольшой скоростью инертный газ. [c.49]


    Исходные данные при проектировании установки должны, по возможности, включать сведения о ее производительности, сырье, технологическом процессе, протекающих реакциях и конечном продукте. Особое внимание следует обратить на физические характеристики реагентов, в частности, на вязкость при различных стадиях процесса, на давление паров, теплоемкость, точку кипения, удельный вес, теплоту реакции и коррозионное воздействие. Необходимы также данные о температуре и давлении в продолжение всего цикла. Если установку предпола- гают использовать в дальнейшем для другого процесса или расширить, то эти возможности следует учесть в первоначальном проекте. [c.84]

    Изучение физической картины горения материалов в жидком кислороде показало, что фронт пламени горящего образца находится в газовом пузыре. Отсюда следует предположить, что некоторые уже изученные закономерности горения материалов в газообразном кислороде [2, 3] будут наблюдаться и при горении в жидком кислороде. Подтверждением сказанного может служить одинаковая зависимость видимой скорости горения фторопласта-4 от давления в газообразном и жидком кислорде (рис. 48). Из рисунка видно, что скорость горения фторопласта-4 в жидком кислороде несколько больше, чем в газообразном. Эта особенность, по-видимому, связана с интенсификацией процессов массообмена, обусловленной кипением и испарением жидкого кислорода на границе жидкость — газовый пузырь, а также пульсацией пузыря. Кроме того, если при горении в газообразном кислороде диффузия кислорода в зону реакции, лимитирующая скорость горения, затрудняется продуктами реакции, то при горении в жидком кислороде большая часть газообразных продуктов реакции конденсируется при температуре жидкого кислорода, не участвуя во флегматизации процесса горения. [c.115]

    Реакцию обычно проводят в жидкой фазе между точкой кипения SOj и комнатной температурой нри добавлении хлора и некоторого избытка SOg к жидкому улеводороду в условиях сильного облучения коротковолновым видимым или ультрафиолетовым светом. Продукты реакции наряду с хлористыми сульфонилами обычно содержат хлоралканы и некоторое количество нолисульфированного вещества (присутствием которого можно объяснить худшие моющие свойства этих продуктов). Однако реакция инициируется также другими источниками радикалов [161 ]. По-видимому, почти не приходится сомневаться в том, что реакция может быть представлена как радикальноцеиной процесс из реакций, протекающих в следующей последовательности  [c.311]

    Естественно, что у каждого структурного изомера могут быть изомеры по положению двойной связи. Наличие двойной связи делает также возможной цис-транс-шгожерто. Сырьевая смесь, взятая даже в довольно узких температурных пределах кипения, очень сложна, о составе ее сообщений не имеется. Свежее сырье смешивается с рециркулирующим продуктом и добавляется нафтенат кобальта в таком количестве, чтобы приходилось около 0,2% кобальта на общую загрузку сырья. Раствор прокачивается через подогреватель в реактор, где жидкость движется вверх в прямотоке с синтез-газом. Реактор наполняется инертным материалом типа колец Рашига и др. В реакторе поддерживаются температура около 175° и давление синтез-газа (IHj I O) 200 am. По выходе продукта из реактора давление снижается до атмосферного, затем продукт нагревается до 150° в присутствии отпаривающего газа (обычно водорода) для разрушения всего карбонила. Освобождаемый от кобальта продукт затем гидрогенизуется, в результате получается смесь октиловых спиртов. Этот процесс мало отличается от известного, но фактически он не нашел заводского использования в Германии [17]. Смесь спиртов g очень полезна в производстве пластификаторов. Окисление спиртов дает смесь кислот С 8, называемых изооктиловыми кислотами, которые представляют интерес для применения в военном деле. Состав смеси g пока точно неизвестен. Возможно, в ней содержится до двенадцати изомерных спиртов. Видимо, значительную часть составляет 3,5-диметилгексанол, получаемый из 2,4-диметилпентена-1. Другие спирты, присутствующие в относительно больших количествах — 4,5-диметил- и 3,4-диметилгек-санолы, 3- и 4-метилгентанолы. Очень возможно, что удастся найти условия превращения олефинов в спирты реакцией в одну ступень. [c.296]

    Для улучшения тех или иных характеристик базовых бензинов применяют высокооктановые компоненты, антидетонационные свойства которых приведены в табл. 24. Некоторые высокооктановые компоненты получают в результате специальных процессов (алкилирование, изомеризация, полимеризация), поэтому их стоимость, как правило, выше стоимости базовых бензинов добавляют такие компоненты обычно в небольших объемах. Наиболее распространенным компонентом бензинов является смесь низко-кипяших углеводородов с различными пределами кипения. Широкую фракцию низкокипящих углеводородов называют газовым бензином, более узкие фракции с преобладанием того или иного углеводорода именуют по названию преобладающего углеводорода. Для приготовления товарных автомобильных бензинов используют низкокипящие углеводороды, выделенные из продуктов прямой перегонки или вторичных процессов, а также не вступившие в реакции при процессах алкилирования или полимеризации (отработанные бутан-бутиленовая, пентан-амиленовая фракции [c.163]

    В промышленности приняты следующие процессы жидкофазный процесс синтеза этилбензола на катализаторе AI I3. Процесс ведут в стальных колоннах, облицованных специальными антикоррозионными материалами, реакция идет при температуре кипения реакционной смеси (80—100°С) и атмосферном давлении. В качестве сырья используется бензол со степенью чистоты пе -ниже 99%. Твердый хлорид алюминия прибавляется к реакционной смеси и -в реакторе образуется соответствующее комплексное соединение. Бе-нзол-сырье и бензол-рециркулят после предварительной осушки подаются в реактор. Хлористый водород или хлористый этилен также добавляются в реактор. Жидкие продукты из алкилатора охлаждаются и направляются в отстойник, где -каталитический комплекс отделяется и возвращается в алкилатор. Алкилат промывается водой, затем 20%-пой водной щелочью для нейтрализации НС1, после чего разделяется на -индивидуальные компоненты на стадии ректификации. [c.266]

    В настоящем разделе рассмотрены различные варианты щриме-нения уцра БЛЯющих вычислительных машин общецелевого назначения, а также некоторые частные модели, необходимые для того, чтобы общие модели процесса, пригодные для повседневного пользования, были полными, адекватными и гибкими. Эти модели включают в себя входные данные, уравнения для расчета констант паро-жидкостного равновесия и теплосодержания уравнения для расчета точки росы, температур начала кипения и вспышки методы определения теплосодержания потоков и их температуры по теплосодержанию модели теплообменной и фракционирующей аппаратуры итерационные процедуры для метода проб и ошибок уравнения химических реакций экономические расчеты методы оптимизации выходные данные. [c.207]

    Сырьем для получения нафталина служат высоко-ароматизированные фракции, выделенные из дистиллятов каталитического риформинга, крекинга, пиролиза и других продуктов и содержащие в основном бицикли-ческие ароматические углеводороды. В связи с тем что нафталин с парафиновыми и нафтеновыми углеводородами образует азеотропные смеси [12], температуру начала кипения исходного сырья обычно выбирают около 200° С. В сырье не должно содержаться трициклических ароматических углеводородов, в противном случае в продуктах реакции будет накапливаться высококипя-щий остаток. Поэтому конец кипения сырья для производства нафталина не должен быть выше 300° С. Другое требование, предъявляемое к сырью, — максимальное содержание производных нафталина при минимальном среднем молекулярном весе углеводородов во фракции. Однако получение высокоароматизированных фракций из нефтяных продуктов с малым содержанием парафиновых углеводородов не всегда возможно поэтому при проведении процесса гидродеалкилирования применяют специальные методы, позволяющие уменьшить деструкцию парафиновых углеводородов в газообразные продукты. Содержание сернистых соединений в исходном сырье также оказывает влияние на схему производства нафталина и на выбор метода гидродеалкилирования. [c.295]

    Уже давно замечено, что сульфирование-ароматических соединений является обратимым процессом. При нагревании суль-. -, фокислоты в кислом растворе и даже в чистой воде образуется серная кислота и продукт отщепления сульфогруппы от сульфокислоты [37]. Необходимо указать, что присутствие неорганической кислоты в водном растворе не только повышает температуру кипения раствора, но также значительно увеличивает скорость гидролиза. Особенно наглядную иллюстрацию вышеуказанному дают дурол- и пентаметилбензолсульфокислоты [38], частично гидролизующиеся при взбалтывании с 95%-ной серной кислотой уже при комнатной температуре. В этом случае равновесие между углеводородом и сульфокислотой настолько сдвинуто в сторону первого, что гидролиз обнаруживается даже в присутствии весьма небольшого количества воды, если только имеется неорганическая кислота, катализирующая реакцию. [c.203]

    Уголь с нанесенным на него катализатором поступает в систему приготовления пасты. В качестве пастообразователя используют угольный дистиллят с температурой кипения 300— 400°С, который предварительно гидрируется под давлением 10 МПа на отдельной стадии. Для нормального ведения процесса паста приготавливается при равном соотношении угля и растворителя при большем содержании угля затрудняется транспорт пасты в системе вследствие ее высокой вязкости. Углемасляная паста, в которую вводится газообразный водород, предварительно нагревается в трубчатой печи и поступает в систему пустотелых необогреваемых реакторов с объемной скоростью 1,0—1,5 ч . За время пребывания пасты в реакторе (30—60 мин) протекают реакции гидрогенизации угля с образованием углеводородных газов С1—С4, аммиака, сероводорода и оксидов углерода [до 10% (масс.)], воды [3—5% масс.)] и жидких продуктов [80—90% (масс.)]. Так как процесс протекает с выделением тепла, для регулирования температуры в реакторы подается холодный водородсодержащий газ он служит также перемешивающим агентом. [c.83]

    Параметры процесса. Состав сырья. В одинаковых условиях крекинга скорость реакции растет с повышением температуры кипения сырья. Такая особенность 0б11ясняется различной термической стабильностью углеводородов. Высокомолекулярные парафиновые углеводороды, а также ароматические углеводороды с длинной боковой парафиновой цепью менее термически стабильны, чем низкомолекулярные углеводороды. Поэтому при крекинге последних будет образовываться меньше продуктов разложения. [c.182]

    Обобщая вышеизложенные сведения о трансформащ1и буровых реагентов, нефтешламов, нефти и нефтепродуктов в почве и воде, следует еще раз подчеркнуть, что это сложный процесс, на который оказывают влияние особенности гранулометрического состава почв, содержание органического вещества и обменных катионов, а также химический состав нефти и ее свойства. Большое значение также имеет характер их распространения в среде, включая процессы испарения и конденсации, диффузии, адсорбции и десорбции, биодеградации под воздействием микроорганизмов и различные реакции абиотического расщепления. При этом важно также учитывать физико-химические характеристики растворимость углеводородов, точку кипения, давление паров и др., а также условия, при когорых протекает биологическое окисление загрязнителей, адсорбированных частичками почвы, роль органических и неорганических почвенных коллоидов и т. д. Необходимо принимать во внимание и характер миграционных процессов, которые, с одной стороны, приводят к широкому распространению загрязнения за пределы исходного района за счет горизонтальной миграции низко- и среднемолекулярных углеводородов, а с другой - приводят к концентрации в зоне загрязнения высокомолекулярных компонентов нефти и буровых реагентов в верхних слоях почвы. [c.190]

    Бода, молекулы которой включают тяжелые изотопы водорода и кислорода, обобщенно называется тяжелой водой. Однако под тяжелой водой прежде всего имеют в виду дейтериевую воду ВгО . В природной воде 99,73% приходится на обычную воду НгО . Из тяжелых разновидностей в природной воде больше других содержится НгО (0,2 мол. доли, %), НгО (0,04 мол. доли, %) и НВО (0,03 мол. доли, %). Содержание остальных разновидностей тяжелой воды, в том числе и тритиевой ТгО, составляет не более мол. доли, %. Химическое строение молекул тяжелой воды такое же, как у обычной, с очень малыми различиями в длинах связей и углах между ними. Однако частоты колебаний в молекулЕ1Х с тяжелыми изотопами заметно ниже, а энтропия выше, чем в протиевой воде. Химические связи В—О и Т—О прочнее связи Н—О, числовые значения изменения энергии Гиббса реакций образования В2О и ТгО более отрицательны, чем для Н2О (-190,10, -191,48 и -185,56 кДж/моль соответственна). Следовательно, прочность молекул в ряду НгО, В2О, Т2О растет. Для конденсированного состояния разновидностей тяжелой воды также характерна водородная связь. Лучше других исследованы свойства дейтериевой воды В2О, которую обычно и называют тяжелой водой. По сравнению с НгО она характеризуется большими значениями плотности, теплоемкости, вязкости, температур плавления и кипения. Растворимость большинства веществ в тяжелой воде значительно меньше, чем в протиевой. Более прочные связи В—О приводят к определенным различиям в кинетических характеристиках реакций, протекающих в тяжелой воде. В частности, протолитические реакции и биохимические процессы в ней значительно замедлены. Вследствие этого тяжелая вода является биологическим ядом. Получают тяжелую воду многоступенчатым электролизом воды, окислением обогащенного дейтерием протия, изотопным обменом между молекулами воды и сероводорода с последующей ректификацией обогащенной дейтерием воды. [c.301]


Смотреть страницы где упоминается термин Процессы также реакции кипения: [c.1122]    [c.142]    [c.277]    [c.139]    [c.207]    [c.4]    [c.288]    [c.54]    [c.287]    [c.108]    [c.134]    [c.82]    [c.65]    [c.73]    [c.98]    [c.277]    [c.128]    [c.85]    [c.257]    [c.638]    [c.128]    [c.1844]    [c.2090]    [c.29]   
Введение в термографию Издание 2 (1969) -- [ c.106 , c.109 , c.110 ]




ПОИСК







© 2024 chem21.info Реклама на сайте