Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уксусная кислота серебра

    Серебро [7, 51, 241] является наиболее доступным нз драгоценных (благородных) металлов, нашедшем, несмотря на значительную его стоимость, некоторое применение в технике. Положительными свойствами серебра, из-за которых его нередко используют как коррозионностойкий конструкционный металл, является его хорошая пластичность и технологичность, высокая отражательная способность, большая электро- и теплопроводность и повышенная химическая стойкость в ряде сред. В химической промышленности, особенно в производстве чистой уксусной кислоты, серебро считают лучшим материалом для изготовления или плакировки дистилляционных колонн и деталей аппаратов. Значительное количество серебра расходуют для сплавов с другими благородными и неблагородными металлами, а также для многочисленных припоев. Серебряная посуда, мелкая аппаратура или плакирование серебром более крупных аппаратов иногда применяют в лабораторной практике и отдельных промышленных установках. [c.318]


    Полученный твердый остаток растворить в уксусной кислоте. Серебро не растворяется. [c.324]

    В продуктах опытов, проведенных при температуре 250°, обнаружены главным образом уксусная кислота (серебра в соли после прокаливания 64,59%) и З-метилпентен-2 (табл. 2, Б). Опыты, проведенные при 400°, дали главным образом пропионовую кислоту (серебра в соли после прокаливания 59,69%) и 2-метилбутен-1 (табл. 2, Б). [c.269]

    Серебро стойко в горячих растворах уксусной кислоты. Так, в 99,5%-ной уксусной кислоте серебро разрушается со скоростью 0,25 Г м в сутки. [c.540]

    Дисульфиды.........Восстановление цинком и уксусной кислотой с последующим титрованием нитратом серебра [c.36]

    Серебро растворимо в азотной и концентрированной серной кислотах, царской водке, цианистых солях. Оно обладает исключительной коррозионной стойкостью в уксусной кислоте и других органических кислотах всех концентраций (присутствие кислорода значительно снижает стойкость серебра), а также во многих органических соединениях. [c.275]

    Предложены также скелетные катализаторы — серебро сплавляют с кальцием, который затем извлекается уксусной кислотой. [c.172]

    Для определения сульфидной серы навеску 2 фильтрата I вводят в заранее приготовленный растворитель (35% объемн. бензола, 60% объемн. ледяной уксусной кислоты и 5% объеми. воды, содержащей 0,4 моля хлористого водорода и 0,0025 моля хлористого йода) и подвергают ее потенциометрическому титрованию раствором йодата калия в уксусной кислоте (Tz). Если фильтрат I содержит меркаптаны, то их удаляют, так как они мешают дальнейшему ходу анализа. Для этого фильтрат I взбалтывают в течение 30 мин. с равным объемом 1%-иого водного раствора азотнокислого серебра. После взбалтывания и отслаивания нижний водный слой, содержащ ий осадок меркаптида серебра, отделяют от верхнего углеводородного и не псследуют. Дистиллят после промывки дистиллированной водой фильтруют через складчатый фильтр. Полученный фильтрат II подвергают дальнейшему анализу. [c.436]

    При нагревании сульфохлоридов с ацетатом серебра при 120 начинается экзотермическая реакция, ведущая к образованию смешанного ангидрида [288] с выходами, достигающими 40%, Если вместо серебряной соли взять уксуснокислый натрий, то для получения ангидридов необходимо продолжительное нагревание при 200° и получаются очень низкие выходы. В случае алифатических сульфохлоридов выходы выше, чем с ароматическими. Смешанный ангидрид уксусной кислоты и бензолсульфокислоты перегоняется при 160—161°/20 мм, а такой же ангидрид п олуол-сульфокислоты — при 186—188720 мм. [c.391]


    Важнейшим техническим способом получения уксусной кислоты является синтез ее из ацетилена (стр, 80) через ацетальдегид (стр. 213). Окисление ацетальдегида в промышленности осуществляется кислородом воздуха при нагревании в присутствии окислов различных металлов (л<елеза, марганца, ванадия, урана или серебра) в качестве катализаторов. [c.250]

    Хорошим примером использования дигалоидных соединений для синтетических целей является получение двухатомных спиртов, или гликолей. Гликоли были открыты Вюрцем при действии уксуснокислым серебром на вицинальные дигалоидпроизводные и при последующем омылении образовавшихся гликолевых эфиров уксусной кислоты  [c.301]

    Замещение хлора ацетатной группой. Длительное нагревание при 65° раствора поливинилхлорида со смесью уксусной кислоты и уксуснокислого серебра приводит к замещению большей части атомов хлора на ацетатные группы  [c.270]

    В других случаях, как было сказано, нарушение точных стехиометри-ческих отношений может быть обусловлено присутствием посторонних веществ, которые взаимодействуют с реактивом так же, как определяемое вещество. Так, очевидно, путем титрования азотнокислым серебром, как это было рассмотрено, нельзя определить концентрации ионов хлора в присутствии других ионов галоидов или анионов 8" , [Ре (СЫ) ] " г т. п. Нельзя также оттитровать рабочим раствором щелочи уксусную кислоту, если в растворе СНдСООН присутствует серная кислота или соли алюминия.  [c.267]

    Ряд определений методами осадительного титрования, проводимых в водных растворах, можно осуществить при добавлении к воде смешивающегося с ней растворителя (для уменьшения растворимости осадка) или при использовании чистого неводного растворителя в качестве среды для титрования. Примером второго случая может служить титрование сульфата в среде уксусной кислоты раствором ацетата бария или титрование галогенидов и роданидов в среде метанола раствором нитрата серебра. [c.349]

    Выполнение реакции. 2—3 капли исследуемого раствора помещают в пробирку, прибавляют несколько капель 2 н. раствора уксусной КИСЛОТЫ И несколько капель раствора хромата калия. При наличии РЬ -ионов образуется желтый осадок. В отличие от хроматов бария и висмутила, осадок растворяется в избыточном количестве едких щелочей и, в отличие от хромата серебра, нерастворим в растворах NHg. [c.93]

    Азотоводородная кислота имеет следующую структуру Н — N = N=N. Она несколько слабее уксусной кислоты и диссоциирует в растворе па ионы H[Na] i № + [Ng] (/С = 1,2- 10 ). Ее соли — азиды — все растворимы в воде, за исключением азидов серебра, ртути [Hg,J и свинца. [c.524]

    Название Внешний вид мость в воде с серной кислотой и медью с раствором хлорида бария и уксусной кислотой с раствором щелочи (при нагревании) с раствором нитрата серебра (I) Окрашивание пламени [c.148]

    Ве, Оа, 1пи РЗЭ флуоресцируют подобно алюминию. РЬ, 2п и Мо дают флуоресценцию, если раствор недостаточно подкислен уксусной кислотой. Серебро гасит флуоресценцию. Ре и Сг с морином дают черные осадки. По данным Уилла [1269], определению 2 ч. на 1 биллион алюминия не мешают (в частях на биллион) Ре (П1Х 10, Сг (1ПХ 30, Си (II) < 20, Mg < 200, КН4+ < 500, Са, Со, N1, 2п, РЬ, > 1000, Р04 3, Р < 5. Не мешают С" и ЫОз", др 9 мг в 100 мл [1261]. Определяемые пределы алюминия 0,0005—0,005 мг в 100 мл [1269] относительная ошибка метода до 5% [1214]. [c.138]

    Михаэль и Хартман обработали 2-иодгексан (из маннита) ацетатом серебра в ледяной уксусной кислоте при 5°, омылили образовавшийся сложный эфир и окислили спирт в кетон. По семикарбазидному методу они смогли установить, что получили почти эквивалентную смесь гек-санона-2 и гексанона-3 [73]. Интересно, что даже при низкой температуре из иодгексана образуется наряду с ацетоном около 40% гексена. Но поскольку, как мы теперь знаем, 3-иодгексан отщепляет иодистый водород легче, чем 2-иодгексан, смесь гексиловых спиртов должна содержать больше гексанола-2, чем этого можно ожидать, исходя из состава смеси иодидов. Михаэль и Хартман нашли в продуктах окисления 60—65% гексанона-2 и 35—40% гексанона-3. [c.561]

    Для изменения кислотно-основных свойств ГАС с целью облегчения их извлечения из смесей применяются и восстановительные реакции. Восстановление цинком в ледяной уксусной кислоте — обычный способ перевода дисульфидов в меркаптаны, использовавшийся в распространенных схемах систематического группового анализа сернистых соединений нефти по методам У. Фарагера и др. [182], Дж. Болла [84], Р. Д. Обо Лнцева и др. [183]. Образующиеся тиолы легко отделяются в форме мерканти-дов серебра или кадмия. [c.23]

    Перед определением дисульфидов исследуемый образец бензина встряхивают с металлической ртутью для удаления элементарной серы, после чего определяют содержание элементарной серы до и после обработки ртутью ( 1 — Л2). Затем образец продукта обрабатывают раствором азотнокислого серебра для удаления сероводорода и меркаптанов. Дисульфиды восстанавливают цинковой пылью в ледяной уксусной кислоте до меркаптанов и определяют титрованием последних азотнокислым серебром Т ). Алифатические сульфиды и тиофаны определяют по разности величин содержания ламповой серы до и после обработки бензина а отнокислой закисной ртутью (Л — Л . Ароматические сульфиды определяют также по разности после обработки бензина окисной азотнокислой ртутью. Так как одновременно с ароматическими сульфидами удаляются дисульфиды, то их содержание приходится вычитать из содержания серы, полученной как разность между двумя определениями до и после обработки бензина окисной азотнокислой ртутью [c.434]


    Для определения дисульфидной серы навеску 2 фильтрата II вводят в полярографический раствор (фон) — 0,025 М раствор йодистого тетратилам-мония в 96%-ном этиловом спирте — и полярографируют IT2). Если в фильтрате II содержатся дисульфиды, то их восстанавливают до меркаптанов, которые затем удаляют в виде меркаптидов серебра. Восстановление производят цинковой пылью в ледяной уксусной кислоте. После восстановления дистиллят три раза последовательно промывают дистиллированной водой, обрабатывают 1%-ным водным раствором азотнокислого серебра, отделяют водный слой и фильтруют. В фильтрате III для контроля повторно определяют сульфидную серу методом потенциометрического титрования (Т ). Удовлетворительная сходимость результатов потенциометрических титрований Т2 и Гд указывает на то, что при удалении меркаптанов и восстановлении дисульфидов, а также при амперометрическом титровании меркаптанов сульфиды не затрагиваются. [c.436]

    Амальгама натрия восстанавливает ее в изэтионовую кислоту при действии перманганата бария она окисляется в бромсульфо-уксусную кислоту окисление окисью серебра ведет к получению гликолевой кислоты азотная кислота дает в качестве конечного продукта щавелевую кислоту. При нагревании калиевой соли 1-бром-2-оксиэтан-1-сульфокислоты до 225° образуется простой эфир, как и из солей изэтионовой кпслоты  [c.148]

    Сопоставляя полученные данные, можно прийти к следующим выводам. Прежде всего, молекулярная формула уксусной кислоты не может быть меньше, чем С2Н4О2, а молекулярная формула молочной кислоты — меньше, чем СзНеОз, так как совершенно ясно, что в любой молекуле соли не может содержаться меньше одного атома серебра. Однако это соображение еще не указывает верхнего предела для величины молекул обеих кислот уксуснокислое серебро, например, могло бы иметь молекулярную формулу С4Нб04Ад2, а молочнокислое серебро— СбНюОбАдг, что точно так же соответствовало бы результатам анализа. Таким образом, посредством подобного определения молекулярного веса химическим путем мы можем, следовательно, точно установить только наименьшие размеры молекулы, но не определить ее максимальную величину. Последнюю задачу можно разрешить, лишь определив величину молекулярного веса с помощью физических методов — по плотности паров или по величине осмотического давления. Однако эти результаты, в свою очередь, тоже не вполне однозначны, так как устанавливают для величины молекул исследуемого вещества лишь верхние границы, не исключая возможности существования также молекул меньших размеров. Так, например, для веществ, молекулы ко- [c.12]

    Титрование хлоридов в нейтральной среде. Определение основано на образовании осадка хлористого серебра. В качестве индикатора берут хромовокислый калий КаСгО , который, после достижения точки эквивалентности, образует с избытком серебра кирпично-красный осадок А 2СгО . Хромовокислое серебро, как соль слабой кислоты, растворяется при увеличении концентрации водородных ионов. Поэтому метод, применяют главным образом для титрования нейтральных растворов хлоридов. Кислые растворы можно предварительно нейтрализовать щелочью по фенолфталеину, а затем прилить к ним разбавленной уксусной кислоты до обесцвечивания индикатора. [c.418]

    Приборы и реактивы. Конические пробирки. Вода. Растворы азотной кислоты (2 и.) хлороводородной кислоты (2 н.) уксусной кислоты (2 и.) едкого натра (2 н.) хлорида натрия (0,5 н.) сульфата натрия (0,5 н.) хлорида кальция (0,5 п.) иодида калия (0,5 н.) нитрата серебра (1,0 и.) нитрата свцнца (0,5 н.) хромата калия (0,5 н.) оксалата аммония (0,5 н.) сульфида аммония аммиака (10%-ного). [c.74]

    Приборы и реактивы. Прибор для получения сероводорода. Стакан. Тигель № 1. Фарфоровая чашечка (с1 = 3.— 4 см). Железная полоска. Цинк (гранулированный порошок). Натрий. Церий или мишметалл. Диоксид марганца. Мод кристаллический. Магний лента. Пероксид бария. Сульфат натрня. Сульфит натрия. Нитрит калия. Сульфид железа. Нитрат меди Си(Ы0з)2-ЗН20, Висмутат натрня. Дихромат аммоиия. Пероксодисульфат калия или аммония. Спирт этиловый. Растворы сероводородная вода хлорная вода бромная вода йодная вода крахмала фенолфталеина щавелевой кислоты (0,5 н,) серной кислоты (2 и. 4 и, плотность 1,84 г/см ) хлороводородной кислоты (2 н. плотность 1,19 г/см ) азотной кислоты (0,2 н. 2 н.) уксусной кислоты (2 и.) гидроксида натрня или калия (2 и.) аммиака (2 н. 25%) сульфата марганца (0,5 и.) сульфата меди (0,5 н,) сульфита натрня (0,5 н,) хлорида олова (11) (0,5 и,) дихромата калия (0,5 н.) перманганата калия (0,5 н,) нитрата ртути (II) (0,5 н,) нитрата серебра (0,1 н.) формальдегида (10%-ный) пероксида водорода (3%-ный) иодида калия (0,5 н.) сульфата цинка (0,5 и.) хлорида железа (111) (0,5 и.) гексацнано-феррата (III) калия (0,5 н.) соли ттана (IV) (0,5 и.) сульфида натрия нли аммония (0,5 и,) гидроксида натрия (2 н,). [c.94]

    Приборы и реактивы. Штатив с кольцом. Сетка асбестированная. Фарфоровый тигель. Фарфоровый треугольник. Пинцет. Пипетка для растворов. Лучина. Фильтровальная бумага. Марганец твердый нли порошок. Палочки стеклянные. Едкий натр. Нитрат калия (или натрия). Перманганат калия. Сульфит натрия. Соль Мора. Висмутат натрия. Диоксид марганца. Диоксид свинца. Пероксодисульфат гммония. Лакмусовая бумажка (синяя). Спирт этиловый. Растворы бромной воды, хлорной воды, едкого натра (2 н.), хлороводородной кислоты (2 н., плотность 1,19 г/см ), серной кислоты (2 н., плотность 1,84 г/см ), азотной кислоты (2 н.), уксусной кислоты (2 н.), сульфата марганца (0,5 н.), хромата калия (0,5 и.), карбоната аммония (0,5 н.), сульфида аммония (0,5 н.), иодида калия (0,1 п.), перманганата калия (0,5 н.), пероксида водорода (10%-иый), нитрата серебра (0,1 н.), перрената аммония (насыщенный), хлорида калия (0,5 н.). [c.221]

    Запишите уравнения реакций между следующими веществами 1) хлоридом метилфениламмония и гидроксидом натрия, 2) иодидом триэтилфениламмония и гидроксидом серебра, 3) лг-толуидином и уксусной кислотой (прн нагревании), 4) о-толуидином и ацетилхлоридом. [c.190]

    Для определения коэффициентов активности 7д ионов уксусной кислоты следует определить хлористого водорода, уксуснокислого серебра и хлористого серебра. Исходя из аддитивности уд, можАо записать  [c.68]

    Пифер, Вулиш и Смолл провели потенциометржческг.е титрование ацетатов многих катионов в смеси хлороформа с уксусной кислотой (10 1). По результатам титрования все основания были разделены на две группы — сильные (основания, образованные калием и аммонием) и более слабые (основания, образованные литием, натрием, кальцием, барием, серебром, цинком, кадмием, свинцом, никелем). Любой катион второй группы может быть оттитрован раздельно в смеси. В указанных выше условиях авторы осуществили раздельное титрование смесей К+ -f- Li+, К+ -j- Na+, NH -Ь Na+, NHJ -j- Li+ и др. [c.460]

    Итак, свойства растворов электролитов зависят от природы присутствующих в растворе ионов. Такие свойства кислот, как кислый вкус, способность окрашивать лакмус в красный цвет, взаимодействовать с некоторыми металлами с выделением водорода, относятся к свойствам иона водорода, точнее, гидроксония Н3О+ и не зависят от природы аниона. Например, для жидкого хлористого водорода НС1 безводных серной или уксусной кислот ни одно из перечисленных кнслотных свойств не характерно. Эти свойства появляются только в водных растворах указанных веществ. Аналогично и свойства щелочей как электролитов обусловлены наличием в водных растворах гид-роксид-ионор и не зависят от природы катиона. Вместе с тем и кислоты, и щелочи как электролиты обладают также индивидуальными свойствами, зависящими от природы аниона или катиона соответственно. Например, если к раствору серной кислоты добавить соль бария, а к соляной — соль серебра, то в обоих случаях образуются белые нерастворимые в воде осадки. Эти свойства серной и соляной кислот обусловлены свойствами их анионов образовывать нерастворимые соли с катионами бария и серебра соответственно. [c.133]

    Лцилоксилирование было также выполнено под действием ацетатов металлов, например тетраацетата свинца [200] и ацетата ртути (II) [201]. В этом случае замещение осуществляется не только по аллильному и бензильному положениям и по ос-положениям к группам OR или SR, но также и по а-положе-ниям к карбонильной группе альдегидов, кетонов, сложных эфиров и по а-положению к двум карбонильным группам (Z H2Z ). Вероятно, в последних случаях в реакцию вступают енольные формы. а-Ацилирование кетонов можно провести косвенным путем, обрабатывая различные производные енолов ацетатами металлов, например силиловые эфиры енолов смесью карбоксилат серебра — иод [202], тиоэфиры енолов тетраацетатом свинца [203], енамины тетраацетатом свинца [204] или триацетатом таллия [205]. Метилбензолы были ацетоксилиро-ваны по метильной группе с умеренными выходами под действием пероксидисульфата натрия в кипящей уксусной кислоте в присутствии ацетата натрия и ацетата меди(II) [206]. Под действием ацетата палладия алкены превращаются в винил-и (или) аллилацетаты [207]. [c.90]

    Алкиларилкетоны можно превратить в производные арил-уксусной кислоты и другим путем. Реакция заключается в обработке субстрата либо нитратом серебра и иодом или бромом [640], либо нитратом таллия, МеОН и триметилортоформиатом, адсорбированным на кислой глине К-Ю [641]. [c.340]

    Для нейтрализации 20 т раствора, содержащего муравьиную и уксусную кислоты, понадоби-пось 20 г 20 %-ного раствора NaOH. При взаимодействии такой же массы раствора кислот с аммиачным раствором нитрата серебра получено 10,8 г серебра. Какова массовая доля (%) каждой из кистот в растворе Ответ. 11,5% НСООН и 15% СН3СООН. [c.345]

    Приготовление насыщенного раствора уксуснокислого серебра. К 10,6 г нитрата серебра, растворенного в 50 мл воды, прибавляют раствор 3,30 г безводной соды в 75 мл воды. Выпавший рсадок отфильтровывают, промывают на фильтре три — четыре раза холодной водой, переносят в литровый стакан, добавляют 8 мл 80%-ной уксусной кислоты в 92 мл воды и нагревают до температуры не выше 50 °С (до прекращения выделения пузырьков углекислого газа). Вливают в стакан 900 мл воды, нагревают раствор до кипения и после охлаждения отфильтровывают от нерастворившегося осадка. [c.133]

    Для работы требуется Аппарат Киппа для получения сероводорода. — Тигли фарфоровые с крышкой, 2 шт. — Штатив с пробирками. — Пробирка тугоплавкая. — Палочки стеклянные, 2 шт. — Бумага фильтровальная. — Лучины.— Асбестовый картон (20x20 см) с отверстием для тигля. — Трехокись вольфрама.— Трехокись молибдена. — Хромовый ангидрид.—Смесь нитрата и карбоната калия (I 2). — Цинк гранулированный. — Бихромат аммония. — Спирт метиловый. — Спирт этиловый. — Эфир серный. — Серная кислота концентрированная. — Соляная кислота концентрированная. — Серная кислота, 2 н. раствор. — Соляная кислота, 2 н. раствор. — Едкое кали, 2 н. раствор. — Едкий натр, 2 н. раствор. — Перекись водорода, 3%-ный раствор. — Уксусная кислота, 2 и. раствор. —Азотная кислота, 2 н. раствор. — Хромат калия, 1 и. раствор. — Бихромат калия, i н. раствор. — Нитрат серебра, 0,1 и. раствор. — Ацетат свинца, 0,5 н. раствор. — Хлорид стронция, 1 н. раствор. — Хлорид бария, [c.296]


Смотреть страницы где упоминается термин Уксусная кислота серебра: [c.138]    [c.385]    [c.275]    [c.54]    [c.142]    [c.110]    [c.194]    [c.350]    [c.43]    [c.123]    [c.98]    [c.225]    [c.293]   
Курс органической химии (0) -- [ c.301 ]




ПОИСК





Смотрите так же термины и статьи:

Серебро в кислотах



© 2025 chem21.info Реклама на сайте