Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спирты реакция с ненасыщенными соединениями

    Реакция ненасыщенных соединений с участием оксида углерода и спирта, приводящая к образованию сложных эфиров, называется алкоксилированием  [c.597]

    Реакции с гидразином. Как уже указывалось, при действии водных растворов гидразина на алкиловые эфиры л-толуолсульфокислоты образуются главным образом продукты гидролиза. В отсутствие растворителя из эфиров этой кислоты с первичными спиртами получаются замещенные гидразины, а с вторичными спиртами, кроме того, образуются ненасыщенные соединения [224]  [c.365]


    Галоид может быть введен в органические соединения путем замещения им атома водорода, путем присоединения галоида или галоидоводорода йо кратной связи ненасыщенного соединения и, наконец, путем замещения галоидом гидроксильной группы в спирте. Кроме этих основных типов реакций галоидирования, существует еще несколько методов, имеющих меньшее значение некоторые из них также будут рассмотрены ниже. [c.174]

    При отщеплении молекулы галоидоводородов от галоидопроизводных образуются ненасыщенные соединения. В качестве веществ, отщепляющих галоидоводород, применяют спиртовой или водный раствор едкого кали, твердое едкое кали, натронную известь, амид натрия, окись свинца, диметиламин, диметиланилин, пиридин, хинолин и др. Выбор средства, отщепляющего галоидоводород, обусловливается строением как исходного соединения, так и ожидаемого продукта реакции. При обработке галоидоалкила водным раствором КОН наряду с алкеном получается значительное количество спирта выход алкена возрастает с ростом концентрации раствора КОН. Для получения ненасыщенных углеводородов часто применяют спиртовой раствор КОН, причем в качестве побочного продукта образуется эфир. Если галоидоводород отщепляется с трудом, необходимо применять твердое едкое кали . [c.700]

    К реакции, протекающей по схеме (Г.7.100), часто примыкает отщепление молекулы воды с образованием а,р-ненасыщенных соединений кротоновая конденсация). Отщепление воды в подобных случаях протекает очень легко, так как при этом образуется система сопряженных двойных связей (см. также разд. Г, 3.1.4). Если карбонильной компонентой, реагирующей с С—Н-кислотным соединением, является производное карбоновой кислоты (сложный эфир, галогенангидрид, ангидрид), то стадия конденсации протекает обязательно, причем отщепляется спирт, галогеноводород или карбоновая кислота. В результате получают анионы (еноляты) -дикарбонильных соединений, которые обладают особенно малой энергией  [c.129]

    Ненасыщенные соединения чаще всего восстанавливают или металлическим натрием в присутствии спирта, или амальгамой натрия в присутствии воды. Метод восстановления металлическим натрием в присутствии спирта был открыт А. Н. Вышнеградским, а затем применен и развит в различных направлениях рядом ученых. В. В. Лонгинов сделал весьма интересное наблюдение, что для реакции восстановления необходимо пользоваться очень чистым металлическим натрием малейшая примесь металлического калия сильно снижает выход продукта восстановления. Это положение в недавнее время убедительно подтверждено А. П. Терентьевым и его сотрудниками. [c.100]


    Опубликован обзор [29], посвященный этому методу синтеза он обсуждался также в гл. 4, разд. Б.5, посвященной спиртам. Этот метод позволяет превращать различные ненасыщенные соединения в насыщенные альдегиды, содержащие дополнительный атом углерода [30, 31]. Недавно было обнаружено, что добавление бензонитрила увеличивает выход, по-видимому, за счет стабилизации ацил-кобальтового комплекса [32]. Выходы в этой реакции составляют в среднем около 50%. [c.54]

    На реакцию сульфатирования оказывает большое влияние температура процесса при ее увеличении образуется значительное количество ненасыщенных соединений (алкенов и др.), которые полимеризуются и придают сульфомассе темный цвет, В случае низкой темпера-П ры повышается вязкость реакционной массы, что приводит к местным перегревам, а следовательно, потемнению продукта. Оптимальной температурой сульфатирования первичных спиртов газообразным SO3 считают 40 - 45 °С - температуру, немного превышающую температуры их плавления. [c.69]

    Рассматривая структуру молекулы ацил-СоА и учитывая известные типы биохимических реакций, мы убеждаемся а том, что единственный рациональный путь дальнейшей атаки — это окисление молекулы с помощью флавопротеида, что приводит к отщеплению атомов водорода в а- и р-положениях с образованием ненасыщенного ацил-СоА-производ-ного (рис. 9-1, а). Одной из немногих возможных реакций, которым может подвергаться образовавшееся ненасыщенное соединение, является нуклеофильное присоединение по -положению. В результате присоединения воды (уравнение б) образуется спирт, окисление которого при участии NAD+ приводит к образованию кетона (уравнение в). Эта серия из трех реакций представляет собой хорошо известную последовательность реакций р-окисления. На рис. 9-1 представлена и другая последовательность, входящая а цикл трикарбоновых кислот, а котором янтарная кислота превращается в щавелевоуксусную. [c.308]

    Большое покрытие поверхности продуктами реакции (сильная адсорбция продуктов реакции), например, прн дегидрировании углеводородов, спиртов и других реагентов с образованием ненасыщенных соединений  [c.738]

    Эта реакция получила широкое применение.для окисления ненасыщенных углеводородов и спиртов. В общих чертах способ заключается в медленном прибавлении к ненасыщенному соединению холодного разбавленного раствора перманганата в количестве, несколько большем, чем это соответствует одному атомному эквиваленту кислорода. Если вещество не растворимо-в воде, реакцию ведут при энергичном перемешивании или, что еще лучше, в ацетоновом растворе. По окончании окисления осадок частично гидратированной двуокиси марганца отделяют, а фильтрат нейтрализуют разбавленной серной кислотой или насыщают углекислым газом, после чего упаривают. Если гликоль не выделяется из остатка, его извлекают спиртом или уксусноэтиловым эфиром 3 . [c.28]

    Винильные и этильные группы. Винильные группы, находящиеся в а- или 7-, но не в З-положении по отнощению к гетероатому азота, легко присоединяют воду, спирты, аммиак, амины, -кетоэфиры, цианистый водород, сернистую кислоту, 2-пиколин и т. д. (реакции Михаэля) [пример 2-винилпиридин и диметиламин дают (684)]. Известны также обычные реакции ненасыщенных соединений (пример 2-стирилниридин685686). Как и следовало ожидать (ср. стр. 73), в случае присоединения по Михаэлю и присоединения воды наблюдается обычная ориентация (686->687). [c.101]

    Связь О—Н в спиртах довольно прочна, хотя она, полярна и кинетически лабильна. Значения энергии гомолитической диссоциации связи (D°) для i—Сгалканолов лежат в пределах 427—436 кДж-моль . Гомолитическое отщепление гидроксильного атома водорода радикалами для первичных и вторичных спиртов в растворе обычно не встречается в этих случаях, как правило, протекает предпочтительно атака по а-атому углерода. С другой стороны, депротонирование с образованием алкоксида легко осуществляется при обработке спирта сильно электроположительным металлом или сильным основанием. Реакционная способность понижается от первичных к третичным спиртам в соответствии с порядком изменения кислотности в жидкой фазе (см. табл. 4.1.4). Гетеролиз связи О—Н также следует за электрофильной атакой по гидроксильному атому кислорода, например при алкилировании и ацилировании спиртов. Вследствие высокой электроотрицательности и низкой поляризуемости кислорода спирты являются только слабыми и относительно жесткими основаниями (см. табл. 4.1.4) и лищь умеренно реакционноспособны в качестве нуклеофилов. Реакции присоединения спиртов к ненасыщенным соединениям обычно требуют участия катализатора или использования активированных субстратов. Нуклеофильность самих спиртов может быть активирована путем (а) превращения их в алкоксиды или (б) путем замещения гидроксильного атома водорода электроположительной или электронодонорной группой. Первый, более распространенный подход, находит применение, например, при нуклеофильном замещении алкилгало-генов, нуклеофильном (по Михаэлю) присоединении к активированным алкенам и при нуклеофильных реакциях присоединения-элиминирования в процессе переэтерификации. Второй, менее популярный подход, включает использование ковалентного средине- [c.60]


    Было установлено, что некоторые реакции ненасыщенных соединений протекают по ионному механизму. Стюарт и Эдлунд [44] показали, что взаимодействие паров этилена и брома происходит главным образом, если не целиком, на стеклянных стенках реакционного сосуда. Норриш [45] изучал эту же реакцию, проводя ее в реакционном сосуде, стенки которого он покрывал веществами различной полярности, и нашел, что каталитическая эффективность различных поверхностей располагается в следующем порядке стеариновая кислота>стекло>>цетиловый спирт >парафин. Эти опыты показывают, что для ускорения реакции необходим полярный катализатор, весьма убедительно подтверждая мысль, что здесь имеет место ионный механизм, так как трудно представить себе, чтобы электрическое поле полярного катализатора стало расталкивать два электрона в противоположные стороны. [c.101]

    В качестве противозадирных присадок предложены многочисленные вещества, полученные реакциями непредельных соединений с хлоридами серы. Например, противозадирные присадки получают взаимодействием эфиров ненасыщенных кислот Сю—Сао и спиртов i—Сз с монохлоридом серы ири 20—80 С [пат. ГДР 60609. Эти присадкн добавляют к маслам в количестве 10—40 %. [c.116]

    Процессы дегидрирования и гидрирования имеют очень важное значение в промышленности. Дегидрированием получают ненасыщенные соединения, представляющие большую ценность в качестве мономеров для производства синтетического каучука и пластических масс (бутадиен-1,3, изопрен, стирол), а также некоторые альдегиды и кетоны (формальдегид, ацетон, метилэтилкетон). Реакциями гидрирования синтезируют циклогексан и его производные, многие амины (анилин, гекеаметилендиамин), спирты (н-пропиловый, -бутиловый и высшие). Процессы гидрирования применяют также при гидрогенизации жиров и получении искусственного жидкого топлива (гидрокрекинг, риформинг, гидрогенизация угля н т. д.). Очень часто реакции гидрирования и дегидрирования являются этапами многостадийных синтезов ценных органических соединений — мономеров, поверхностно-активных ве-щестп, растворителей п т. д. [c.456]

    Одними из перспективных являются медные скелетные катализаторы, которые давно нашли свое применение при восстановлении карбонильных и ненасыщенных соединений [47], в реакциях дегидрирования вторичных спиртов [48], в реакциях обессерива-ния и других процессах [49]. В последние годы они применяются и при гидрогенолизе углеводов [50—53]. [c.47]

    Первая промышленная установка оксосинтеза была пущена в Батон-Руже (США) в 1948 г., а к 1974 г. мировое производство оксопродуктов Превысило 3,5 млн. т. В основной реакции участвуют соединения разных классов олефины (алкены), диены (алкадиены), ненасыщенные кислоты, спирты и нитрилы, ароматические и гетероциклические соединения, окиси олефинов и др. Наибольшее техническое значение по сравнению с другими продуктами реакции гидроформилирования имеют получаемые на ее основе спирты. [c.255]

    Оксосинтез. Процессы оксосинтеза включаются в схемы НХЗ для получения различных кислородсодержащих соединений — спиртов, альдегидов, кислот. В этих процессах используются реакции гидроформилирования — взаимодействия ненасыщенных соединений с окисью углерода и водородом в присутствии катализаторов, из которых в настоящее время наиболее широко используются карбонилы кобальта. Методом оксосинтеза, в СССР получают бутиловые спирты (через масляные альдегиды), спирты Су—Сд. Намечается организовать производство высших спиртов, пропионовой кислоты и других продуктов. Современные установки производства бутиловых спиртов методом оксосинтеза состоят из отделений приготовления катализатора (кобальти-зации), гидроформилирования, разложения и регенерации катализатора (декобальтизации), гидрирования альдегидов в спирты, ректификации. В состав установки включают также производство синтез-газа (смеси окиси углерода и водорода) на базе природного или нефтезаводского газа. Новыми направлениями развития оксосинтеза являются процессы гидрокарбоксилирова-ния олефинов (взаимодействия с окисью углерода и водой) с получением кислот, гидрокарбалкоксилирования олефинов (взаимо- [c.43]

    Значительный интерес предсгавляет действие серной кислоты на ненасыщенные соединения, содержащие гидроксильную группу. Аллиловый спирт реагирует с концентрированной серной кислотой с образованием смолообразной массы [80], но прибавление спирта к 50%-ной серной кислоте дает возможность получить небольшой выход аллилсерной кислоты [81]. Так, из продуктов реакции, полученных из 100 г спирта, выделено 40 г бариевой соли аллилсерной кислоты. Действие серной кислоты, даже разбавленной, на гераниол ведет к замыканию кольца п гидратации, обработка 5 %-ной кислотой дает главным образом терпингидрат [82а]. [c.18]

    Полистирол растворяется в диоксане, бензоле, четыреххлористом углероде и не растворяется в спирте, лигроине , в ацетоне набухает. При нагревании до 300 °С полистирол деполиме-ризуется, образуя смесь мономера с различными многоядер-ными соединениями. Стирол вступает в реакции сополимеризации с другими ненасыщенными соединениями — бутадие-ном, акрилопитрилом и др. [c.205]

    От продукта конденсации легко отщепляется молекула воды (или, если карбонил содержащим компонентом реакции был сложный эфир,— молекула спирта) при этом образуется ненасыщенное соединение. В случае отщепления молекулы спирта образуется енол, который в большей или меньшей степени таутомерно превращается в кетон  [c.590]

    Дегидратация альдолей с образованием а, -ненасыщенных соединений происходит в большинстве случаев уже в условиях реакции, если конденсация проводится при комнатной температуре или, особенно, при нагревании. В случае конденсации алифатического альдегида с кетоном реакцию i самоконденсации альдегида предупрежда1дт тем же способом.. который указан при описании получения оксикетонов (стр. 591). Специальная методика работы делается излишней, если альдегид не способен к образованию альдоля (нагтример, ароматические альдегиды). В особенности это касается конденсаций ароматических альдегидов с кетонами, которую проводят преимущественно следующим образом смешивают эквимолекулярные количества альдегида и кеТона, разбавляют смесь этиловым спиртом или метанолом и затем вводят конденсирующее средство. [c.592]

    Реакция этинилировання представляет значительный интерес для синтеза ненасыщенных соединений, в частности терпенов, ка-ротиноидов, стероидов. Так, например, этим путем можно получить различные терпеновые спирты (линалоол, гераниол, фарнезол, фи-тол), а также витамин А. (Эти вопросы см. в учебнике ) [c.138]

    Из приведенного в этом разделе материала следует, что замещение спиртового гидроксила на галоид является одним из -важнейших методов получения алифатических галогенидов. Рассмотренные реакции могут применяться для замещения гидроксильной группы не только в одноатомных, но и в многоатомных спиртах и в соединениях, содержащих также и другие функциональные группы, кроме гидроксильной,— для получения дигалогенидов из гликолей, ненасыщенных галогенидов из ненасыщенных спиртов, галоидэфиров из окси-эфиров, галоидкетонов из оксикетонов, галоидозамещенных кислот из оксикислот, аминоалкилгалогенидов из аминоспир-тов и др. [c.196]

    Соединение II представляет собой озонид, получаемый при взаимодействии алкенов с озоном в инертном растворителе, а соединение I, так называемый мольозонид (первоначальный продукт присоединения молекулярного кислорода к ненасыщенному соединению), может быть получен в эфире при температуре ниже —110 С [12]. Такие мольозониды при температуре выше —100 °С разлагаются со взрывом. Хотя для восстановления обычных озонидов применяют различные восстановители,. в определенных условиях предпочтение следует отдать алюмогидриду лития [13]. При применении этога реагента получают хорошие выходы спиртов (примеры а, 6.1 и 2). Другим видоизменением этой реакции является проведение озонирования в смеси метилового спирта и диметилсульфида с целью прямого получения альдегида, который без выделения восстанавливают до спирта боргидридом натрия в этиловом спирте [14]. Спирты получают также из мольозонидов, образующихся из цис- и транс-алкенов при взаимодействии с изопропилмагнийбромидом, однако в этом случае из т/7йнс-олефинов образуются в основном 1,2-гли-коли, в то время как г ис-олефины гликолей не дают [15] [c.247]

    Однако некоторые кетоны с большими замещающими группами практически не взаимодействуют с этими реагентами, вызывающими реакцию присоединения, даже при применении кислотных катализаторов. К этой группе относятся такие соединения, как ацетоме-зитилен, диизопропилкетон и многие бензофеноны. Имеется также ряд соединений, являющихся продуктами присоединения к карбонильным соединениям, которые теряют элементы воды, образуя ненасыщенные соединения и уменьшая тем самым образование спиртов. Такие соединения содержат электроноакцепторную группу у атома, присоединяющегося к карбонильной группе. К ним относятся гидроксиламин или гидразин со всеми их замещенными производными, такими, как фенилгидразин и семикарбазид. Причи- [c.266]

    Эта реакция детально исследована для акрилонитрила [I]. Обычно акрилонитрил медленно добавляют при охлаждении к раствору спирта, содержащему каталитическое количество этилата натрия, и смесь нагревают до 80 °С б течение нескольких часов. Прежде чем выделять р-алкоксипропионитрил, смесь необходимо нейтрализовать, так как реакцня обратима. Замещенные акрилонитрилы, акриловые эфиры, некоторые пергалогенолефины, а,р-ненасыщенные карбонильные или нитросоединения, а также эфиры малеиновой и фумаровой кислот — вот некоторые из ненасыщенных соединений, присоединяющих алкокси-анион. Самый низкий йыход дает, по-видимому, этилциннамат, для которого, по имеющимся сведениям, при обычных условиях получают около 13% присоединения [2]. [c.355]

    При исследовании конденсации ТМГХ с третичными аллиль-ными спиртами, содержащими ненасыщенные изопреноидные радикалы, традиционные катализаторы оказались мало пригодны, поскольку реакция осложнялась побочными процессами циклизации, ведущими к образованию трициклических соединений 2.13 [c.484]

    Взаимодействие ненасыщенного соединения с моноксидом углерода и спиртом (карбалкоксигруппа образуется в ходе реакции)  [c.116]

    Достоинством серной кислоты как катализатора является значительная скорость этерификации при сравнительно невысоких температурах (80—150°С). К недостаткам серной кислоты как катализатора следует отнести возможность дегидратации спиртов до олефинов, сульфирование ненасыщенных соединений, присутствующих в исходных спиртах и образующихся в результате побочных реакций. Не исключается возможность осмоления органических соединений, а также образование сложных эфиров сульфокислот, что приводит к снижению цветостабильности пластификатора. Для удаления катализатора из сложного эфира-сырца необ--ходимо проводить нейтрализацию щелочным агентом и ряд водных промывок. [c.8]

    Конечной стадией процесса являлось дегалоидирова-ние оно осуществлялось при помощи цинковой пыли, суспендированной в подходящих растворителях (воде, этиловом спирте или ацетамиде). Факторами, влияющими на успех дегалоидироваыия, оказались состав исходного органического вещества, температура дегалоидирования, соотношения между количествами взятого органического вещества и цинка и вязкость реакционной массы. Исходные материалы, содержаище у углеродных атомов цикла шесть или менее атомов хлора, дегалоидировались легче, чем вещества, содержавшие большее количество атомов фтора. Ацетамид и вода не вызывали такого высокого выхода обратного продукта, который имел место в случае применения этилового спирта, но в том случае, когда растворителем был ацетамид, получался повышенный выход низкокипящих продуктов. Это частично обусловлено высокой температурой реакции, которая возможна при применении ацетамида в качестве растворителя, так как высокая температура благоприятствует образованию более ненасыщенных соединений. Обычно дегалоидиро-вание производилось в этиловом спирте, а полученная промежуточная фракция дегалоидировалась в ацетамиде. В том случае, когда цинк брался в количестве менее одного моля на каждые два моля отщепляемого галоида или же вязкость реакционной массы была выше обычной, происходило соответствующее понижение выхода продукта, допускавшего идентификацию. [c.155]

    Реакции с виниловыми соединениями. Циклоалкилиро-вание с участием виниловых и винилиденовых соединений показано на примере образования тетрафторциклобутана (1) из тетрафторэтилена и этилена и на примерах образования замещенных тетрафторциклобутанов. Последние получаются при взаимодействии тетрафторэтилена с такими моноолефинами, как стирол, с хлоролефинами типа хлорвинила, а также с винилацетатом, акролеином, аллиловым спиртом и родственными ненасыщенными соединениями, помещенными в табл. 1—3. [c.308]

    Термин ароматический возник потому, что многае соединения — бензальдегид, бензиловый спирт, эфиры бензойной кислоты, содержащие, как и бензол, радикал фенил gHs, были выделены из различного рода ладанов, ароматических масел и бальзамов. Даже после установления четырехвалентности углерода и введения понятия о кратных связях в алкенах и алкинах строение бензола и других ароматических соединений оставалось загадкой, поскольку, являясь формально ненасыщенными соединениями, они были инертными в реакциях присоединения. Зто противоречие частично удалось устранить А.Кекуле, который в 1865 г. предложил для бензола формулу гексагонального [c.328]


Смотреть страницы где упоминается термин Спирты реакция с ненасыщенными соединениями: [c.60]    [c.17]    [c.666]    [c.127]    [c.673]    [c.212]    [c.297]    [c.224]    [c.261]    [c.16]    [c.516]    [c.26]   
Акваметрия (1952) -- [ c.140 ]




ПОИСК





Смотрите так же термины и статьи:

Ненасыщенные соединения со спиртами

Спирты ненасыщенные



© 2024 chem21.info Реклама на сайте