Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные соединения спектры, природа

    Все органические молекулы, в том числе и молекулы асфальтенов, обладают общим свойством — поглощать электромагнитное излучение. Поглощение весьма селективно, т. е. излучение определенной длины волны данной молекулой сильно поглощается тогда как излучение других длин волн поглощается слабо или совсем не поглощается. Область поглощения называется полосой, а совокупность полос поглощения данной молекулы является характеристичной для этой молекулы и не может быть продублирована никакой другой молекулой, даже весьма близкого строения. Однако в молекулах органических соединений, особенно сильно выраженной ароматической природы, бывают случаи когда способностью поглощать электромагнитную энергию обладает не вся молекула, а только определенная группа атомов, входящих в ее состав в то время как остальная часть молекулы остается инертной в отношении этого излучения. Важно подчеркнуть, что характер поглощения этой группой атомов не изменяется существенно даже при структурном видоизменении всей молекулы. Это дает возможность определять некоторые структурные элементы в молекулах просто сравнением их спектра со спектрами молекул известного строения. Поэтому для успешного решения молекулярно-структурных проблем с помощью электронных спектров необходимо весьма подробно знать спектральные характеристики различных поглощающих групп атомов. Это положение напоминает положение хромофорных групп в молекулах органических веществ, ответственных за их окраску. [c.211]


    На основе теории валентных связей (МЕС) и теории кристаллического поля (ТКП) невозможно достаточно полно описать свойства комплексных соединений. МВС, хотя и дает наглядное представление о химической связи между атомами, но ограничивается только качественными объяснениями. Не приводится интерпретация спектров комплексов и детальное объяснение магнитных свойств, не учитываются энергетические и другие факторы при образовании комплексов. Достоинство ТКП в возможности количественных расчетов и в сопоставлении теории с экспериментом, ио это сопоставление далеко не всегда на пользу ТКП. Для комплексов, в которых энергия делокализации играет значительную роль, например для систем, в которых существуют я-связи, электростатическая теория непригодна. ТКП не рассматривает электронную структуру лигандов и принимает их как неизменные частицы. Невозможность удовлетворительного описания свойств комплексов в МВС и ТКП в значительной степени связана с тем, что обе теории исходят из одностороннего и абстрактного предположения о природе связей в комплексах — чисто ковалентной (в МВС) или чисто ионной (в ТКП). Эти недостатки в известной мере преодолеваются в теории поля лигандов, которая использует метод молекулярных орбиталей (метод МО). [c.232]

    Общий вид масс-спектра дает некоторые сведения о природе неизвестного вещества. Если интенсивные пики группируются в области малых массовых чисел, а пики тяжелых ионов невелики, то соединение, скорее всего, является алифатическим с функциональными группами, не содержащими других углеводородных радикалов (спирты, карбоновые кислоты, первичные амины, диолы и др.). Присутствие в спектре наряду с пиками глубоких осколочных ионов отдельных интенсивных пиков в средней и близкой к слабому пику М+-областях спектра может указывать на наличие циклов, гетероатомов или функциональных групп, связанных с несколькими углеводородными радикалами (нафтены, вторичные и третичные амины, ацетали, кетали, эфиры карбоновых и дикарбоновых кислот и т. д.). Высокая интенсивность пиков молекулярных ионов и отсутствие заметных пиков в области малых массовых чисел характерны для ароматических и полициклических соеди нений. [c.180]

    На первом этане расшифровки масс-спектра уже по его общему виду можно кое-что сказать о природе исследуемого соединения. Спектр, содержащий много ников осколочных ионов, интенсивность которых увеличивается в направлении уменьшения значений т/е, как правило, указывает на алифатический характер соединения, тогда как спектр с небольшим числом пиков, содержащий интенсивный ник молекулярного иона н пики двухзарядных ионов, обычно соответствует ароматической структуре. В качестве иллюстрации на рис. 4.2 приведены для сравнения масс-спектры нафталина и валерианового альдегида. [c.82]


    Спектроскопия комбинационного рассеяния (КР), так же как ИК Спектроскопия, имеет дело с колебательными и вращательными переходами. Однако природа возникновения спектров КР иная. Данные спектроскопии КР часто дополняют информацию, полученную при изучении ИК-спектров, что расширяет сведения о строении химических соединений. Исходя из классических представлений рассеяние света возникает вследствие колебаний молекулярного диполя, индуцированного переменным электрическим полем падающей на вещество электромагнитной волны. Правилами отбора предусматривается, что колебание активно в спектре КР, если оно сопровождается изменением поляризуемости молекулы, тогда как условием возникновения ИК-спектра поглощения является изменение собственного дипольного момента при колебании молекулы. [c.170]

    В этой главе рассматривается не столько сам метод, сколько его применение к решению проблем химии нефти. Это относится к применению инфракрасной спектроскопии и спектров комбинационного рассеяния для изучения химического строения углеводородов и углеводородных смесей. Несмотря на то значение, которое имеет качественный и количественный анализы индивидуальных соединений, основное внимание уделяется характеристическим частотам, наблюдаемым в спектрах веществ с определенной молекулярной структурой. Оценивается возможность количественного определения содержания углеводородов данного типа или данных структурных групп. В главе обсуждаются лишь основные вопросы спектроскопии комбинационного рассеяния света и инфракрасной спектроскопии, а вопросы, относящиеся к рассмотрению природы колебательных спектров или интерпретации колебательных частот, рассматриваются лишь частично. [c.313]

    Установление химического типа белков (и только белков ) является для чисто химических методов принципиально неразрешимой задачей, так как белки не являются классическими объектами органической химии. Они обладают практически неограниченной химической потенцией, и их исключительность состоит не в особой склонности к тем или иным, вполне определенным и характерным только для них химическим реакциям, а, напротив, в их универсальности. Химическое поведение белков характеризуется необозримо широким спектром действия, несопоставимым по своему функциональному многообразию с действиями любого другого класса молекул живой и неживой природы или соединений, синтезированных человеком. Именно благодаря универсальным биохимическим свойствам белков назначение генетического аппарата любого живого организма сведено только к их синтезу. В органической химии аналитические методы основаны на эмпирическом тестировании реакций, на выявлении тех химических особенностей, которые присущи лишь данному типу молекул или атомных групп. Со времени Бутлерова считалось незыблемым, что такому условию удовлетворяют все синтезируемые соединения. Не явились исключением здесь и жиры, углеводы и нуклеиновые кислоты. Поэтому определение типов их молекулярного строения на чисто химической основе не встретило непреодолимых осложнений. Подчеркнем, что сказанное относится ко всем природным и синтетическим полимерам, в том числе и к ближайшим искусственным аналогам белков -полиаминокислотам. Таким образом, предпринятые после Фишера попытки решить с помощью органической химии структурную задачу белков не достигли и не могли достичь цели. История химии белка данного периода скорее свидетельствует об обратном - имевшее место увеличение количества химических данных о белках сопровождалось ростом неопределенности в понимании их химического строения. Изучение на такой основе белков не приближало, а, напротив, уводило в сторону от решения этой типичной по своей постановке для синтетической органической химии задачи. [c.65]

    Регистрируемый спектр содержит информацию трех видов. Расположение и высота пиков свидетельствуют о молекулярном окружении отдельных ядер, числе ядер в данном окружении, которые также могут участвовать в резонансе, и о природе ближайшего окружения. Вкратце, спектр содержит информацию, позволяющую судить о структуре как простых, так и сложных молекул. Спектроскопия протонного магнитного резонанса — особенно мощный инструмент, поскольку ядра водорода являются главными составляющими почти всех органических соединений. Поэтому в последующих разделах будет рассматриваться почти исключительно протонный резонанс. [c.182]

    Спирты. Масс-спектры спиртов, полученные под действием ЭУ, часто не содержат пиков М , причем они могут быть приняты за спектры олефинов. Для идентификации спирты часто подвергают ХИ, используя реакции окисления или этерифи-кации. Масс-спектры карбонильных соединений, образующихся при окислении спиртов, позволяют определить молекулярную массу, положение гидроксильной группы исходного спирта и природу заместителей в а, а-положениях. [c.182]


    Сера в природе существует в виде основного изотопа 25 (95%) и изотопа 245 (4,2%), распространенность которого довольно высока. Поэтому в масс-спектрах серосодержащих соединений в молекулярной области наряду с основным пиком М+ присутствуют пики М+1 и М+2, причем высота последнего близка к высоте пика М+1 и может сравняться с ним или даже стать выше по мере накопления 5-атомов в молекуле. Близкий изотопный профиль пиков молекулярных ионов наблюдается также в случае кремнийсодержащих соединений и может привести к неопределенности при установлении состава соединений. [c.98]

    Зонная структура энергетического спектра, как мы видели выше, отражает ту особенность природы атомных кристаллов (металлов, полупроводников и изоляторов), что в них существует непрерывный трехмерный каркас межатомных связей и свойственное кристаллическому веществу периодическое поле. Электронный энергетический спектр молекулярных кристаллов, построенных из отдельных нульмерных молекул, соединенных ван-дер-ваальсовскими связями, не имеет обычной зонной структуры, а представляет собой совокупность до некоторой степени искаженных в результате слабого обменного взаимодействия молекул молекулярных энергетических спектров, состоящих из дискретных энергетических уровней. Кристаллы цепочечной, сетчатой и каркасной структуры, в том числе разнообразные соединения включения, мы рассматриваем как разновидности молекулярных кристаллов, построенных, соответственно, из одно-, двух- и трехмерных молекул или из их комбинаций. Их энергетические спект- [c.118]

    Иод в парах и в растворе (в насыщенных углеводородах) имеет полосу поглощения в видимой области около 520 нм, а в ультрафиолетовой области в районе 230 нм. Спектральные характеристики растворов иода представлены в табл. 1.7, 1.8, 1.9. При образовании комплексов полоса 520 нм сдвигается в сторону меньших длин волн и ее интенсивность несколько увеличивается. Сдвиг полосы поглощения иода от фиолетовой области к голубой наблюдается при образовании любых стабильных а-комплексов. Он сильно увеличивается с ростом диэлектрической проницаемости растворителя. Установлено, что величина сдвига растет с увеличением устойчивости комплексов с алифатическими аминами. Высказывается мнение, что решающее влияние на сдвиг полос поглощения оказывает универсальное взаимодействие, т.е. неспецифическая сольватация, определяемая полярностью и поляризуемостью растворителя [15]. Малликен [29] объяснил наличие двух полос в электронных спектрах молекулярных соединений на основе концепции переноса заряда. При этом волновая функция основного состояния молекулярного комплекса представлялась в виде двух слагаемых. Первое характеризует систему, когда в комплексе молекулы донора и акцептора имеются такие же геометрические параметры, что и в свободном состоянии, а взаимодействие между донором и акцептором определяется силами электростатической природы диполь-диполь, диполь-индуцированный диполь и др. Второе слагаемое характеризует состояние, в котором электрон перенесен от донора к акцептору, при этом перенос заряда осуществляется с наиболее высокой занятой орбитали донора на наиболее низкую свободную молекулярную орбиталь акцептора. Из теории следует, что энергия полосы переноса заряда определяется величинами потенциалов ионизации донора и сродства к электрону для акцептора. Для отдельных групп растворителей родственного характера удалось установить линейную зависимость между сдвигом полосы поглощения иода и потенциалом ионизации [30]. Детально изучена связь длинноволновой полосы поглощения иода со свойствами растворителей и показано, что для ст-доноров наблюдается связь с потенциалом ионизации функции универсальных взаимодействий, а для случая замещенных пиридинов срК. Сдвиги полос для я-доноров не описываются этими зависимостями [31]. Отмечено, что для комплексов иода с ст- и л-донорами зависимость сдвигов полос поглощения в ультрафиолетовой области от основности растворителя не может быть описана общим уравнением. [c.22]

    В настоящее время распространено мнение о том, что многие химические реакции протекают через стадию образования промежуточных комплексов с переносом электронов, или КПЭ в ряде случаев такого рода комплексы выделены или обнаружены при помощи физических или физико-химических методов. Современная теория комплексных соединений — электронная теория, поэтому очень важным является изучение комплексов с переносом электронов, выяснение природы молекулярных электронных спектров и количественное истолкование спектроскопических проявлений этих процессов, так как это поможет синтезировать вещества с заранее заданными свойствами. [c.78]

    Но, как известно, различие характера непредельности отчетливо проявляется в электронных спектрах, природа же большинства функциональных групп может быть установлена по колебательным спектрам. По этой причине для групповой идентификации неизвестного соединения оказывается весьма эффективным дополнение масс-спектро-метрических данных о молекулярном массовом числе информацией, содержащейся в оптических спектрах. Совокупность этих данных позволяет уже на ранних стадиях анализа установить принадлежность соединения к определенному гомологическому ряду или же значительно сократить число возможных альтернативных рядов, определяемых только по масс-спектрам (основным осколочным ионам или масс-спектрам ионных серий). [c.119]

    Интерес представляет исследование фаниц соотношений (4.3) - (4.5). С этой целью изучались атомарные системы и органические п- электронные системы. Выбор инертных газов, обусловлен тем, что это - простые атомарные системы, кроме того, их спектры хорошо изучены. Органические тс-электронные системы также поддаются расчету, и имеются данные по их фи-зико-химическим свойствам. В качестве молекулярных систем выбраны различные по природе непредельные и ароматические соединения, в том числе -гетероатомные. [c.94]

    Практическое использование электронных спектров поглощения осуществляется в интервале длин волн 2,Ы0 —7,5-10- м (видимая и ближняя ультрафиолетовая области). Особенность этой области заключается в большом сходстве спектров поглощения у многих различных по составу и природе соединений. Поэтому возможности электронной молекулярной спектроскопии для идентификации соединений путем сравнения спектров ограничены. В тех [c.163]

    Ничем подобным, как по ширине функционального спектра, так и специфичности и эффективности реализации любой функции этого спектра, не обладает ни один класс искусственных, синтезированных человеком соединений. Таким образом, из всего того, что составляет молекулярный уровень биосистем, только белки (или прежде всего белки) могут быть ответственны за фундаментальные особенности живого - великое разнообразие органического мира, избирательность и эффективность процессов жизнедеятельности, наличие активного начала и удивительной целесообразности в организации живой материи. Количество различных белков, участвующих в функционировании организма, определяет его морфологическую и физиологическую сложность, а следовательно, и положение в иерархической организации живой природы. Чем же могут быть обусловлены столь необычные как по своему характеру, так и разно- [c.50]

    Из этого -спектра точно определяется молекулярная масса соединения (148) и устанавливается его ароматическая природа, так как главные пики содержатся в ближайшей к пику молекулярного иона области. Интенсивный пик иона [М—Н]+ при отсутствии заметных пиков ионов [М— H2+J miz 133, 119, 105) указывает, что молекула не [c.222]

    Масс-спектрометрический метод позволяет установить природу многих элементов, входящих в состав изучаемого соединения. Усовершенствование метода возможно осуществить двумя путями. Во-первых, исследования масс-спектров могут охватить пики изотопов, которые, как указывалось выше, сопутствуют исходному молекулярному иону и интенсивность которых находится в опреде- [c.10]

    При спектрометрическом изучении органического соединения обычно применяется следующая стратегия. Сначала масс-спектрометрически определяют его элементарный состав (молекулярную формулу) и предварительно отмечают характер его фрагментации. Затем с помощью инфракрасной спектроскопии определяют природу функциональных групп, а электронный спектр позволяет выяснить, сопряжены ли эти функциональные группы или нет. Далее по данным спектроскопии ЯМР Н и С, анализируя окружение атомов водорода и углерода в изучаемой молекуле, выбирают одну или несколько наиболее вероятных структур. Наконец, полученные каждым методом данные сопоставляют друг с другом н перепроверяют с тем, чтобы убедиться, что они не противоречат найденному решению задачи. [c.10]

    Современная -трактовка природы электронных спектров поглощения основана на молекулярно-орбитальном подходе. Согласно этому подходу, электроны в молекуле находятся на орбиталях со строго определенной энергией. Относительное расположение энергетических уровней валентных электронов в молекулах органических соединений представлено на рис. 12.3. [c.516]

    Модель КСР сыграла исторически важную роль в физике полимеров, показав возможности молекулярно-статистического подхода к анализу релаксационных свойств полимерных систем. Особое значение имеет тот факт, что для предсказания существования релаксационного спектра полимера оказалось достаточным предположения о возникновении при деформациях различных видов ( мод ) движения однотипных структурных элементов (названных субмолекулами или сегментами ), соединенных в цепочку. Это наглядно продемонстрировало, что наличие релаксационного спектра, даже очень широкого, еще никак не свидетельствует о сложности химического строения цепи или разнообразии природы (механизма) ее молекулярно-кинетических движений. [c.244]

    Участие катализатора в образовании комплекса соединения, имеющего гидроксильную группу, не исключает образования ассоциатов за счет водородных связей. Протоны таких связей имеют иные химические сдвиги, чем в изолированных молекулах. Для выяснения природы алкилирующего поляризованного комплекса и учета степени проявления водородной связи в спектре ЯМР молекулярного соединения К-С3Н7ОН—А1С1з были изучены температурные зависи- [c.70]

    Были исследованы инфракрасные спектры поглощения молекулярных соединений окиси азота, ацетонитрила, пиридина, ацетальдегида, ацетона, хлористого ацетила, этилацетата, диэтилового эф ира, метанола и циклогексана с А1Вгз, А1С1з, ЗпСЦ и некоторыми другими каталитически активными галогенидами металлов. При этом были обнаружены значительные изменения частот, характерных для определенных связей присоединившихся органических молекул и N0, которые непосредственно выявляют электроноакцепторную природу указанных галогенидов и место их присоединения к молекулам аддендов. В случае этилацетата молекулы галогенидов присоединяются прежде всего к карбонильной группе эфира, в случаях же хлористого ацетила — к атому хлора. Изменения в спектрах органических молекул позволяют предположить, что молекулы исследованных галогенидов металлов обладают более сильными электронно-акцепторными свойствами, чем молекулы муравьиной и уксусной кислот, причем эти свойства увеличиваются в последовательности  [c.291]

    Серия блестящих работ, опубликованных недавно Мак-Коннеллом с сотр., открыла новый многообещающий аспект применения таких реакций в молекулярной биологии. Пара.магнитные вещества, получаемые в результате реакций радикалов с биополимерами, по предложению хМак-Коннелла получили название сиин-меченых соединений. Спектры ЭПР спин-меченых белков могут дать ценную информацию о молекулярных осях симметрии, об аллостерических структурных изменениях, о природе и порядке связи аминокислотных фрагментов, о фор.ме и хпАП(ческом строении активных центров и их относительном пространственно.м расположении, о над.молекулярной структуре биополимеров. [c.164]

    О природе связи фосфорорганических молекул с цирконием и гафнием в экстрагируемых комплексах имеются данные [152, 154], указывающие на участие фосфорильного кислорода в образовании донорно-акцепторной связи. Однако существует мнение [155, 157] о возможном участии в образовании этой связи и эфирного кислорода. Так, О. А. Осипов с сотрудниками [157] исследовал взаимодействие три-н-бутилфосфата с тетрахлоридами титана, циркония, олова и тория в растворах в четыреххлористом углероде. Исследованием ИК-спектров поглощения показано, что ТБФ участвует в комплексообразовании. В системе Zr li — ТБФ появляются две полосы поглощения при 1148 и 1196 сж- , из которых первая относится к соединению эквимолекулярного состава с участием эфирного и фосфорильного кислородов как доноров, а полоса 1196 сл - принадлежит обычному молекулярному соединению. Таким образом, трибутилфосфат в определенных условиях может образовывать молекулярные соединения циклического характера, когда в координации участвуют и фосфорильный, и эфирный кислороды. [c.310]

    Полижризация макроциклов. При нагревании выше температур плавления эти кристаллические макроциклические соединения самопроизвольно полимеризуются с образованием аморфных (по рентгеноструктурным данным) веществ, которые медленно растворяются в бензоле. Такие полимеры имеют характеристическую вязкость в пределах 0,1—2,7, что свойственно полимерам с высоким молекулярным весом. Высокомолекулярная природа этих веществ была подтверждена исследованием их механических свойств. Наиример, полимер 1И, где К =СНз, К=(СН2)8, имеет характеристическую вязкость 0,9 и обладает гибкостью нри комнатной температуре (тедшература перехода в стекловидное состояние 35°), модулем упругости прн 25°, равным 8540 кг см , и прочностью на разрыв (100%-ное удлинение в 1 мин), равной 190 кг/см . Изменение температуры плавления при 198° (АЗТМ, тест В 1238—52Т) было в пределах 0,1—2,0 град мин, что также является признаком высокого молекулярного веса полимера. Аналитические данные и инфракрасные спектры полимеров совпадалн с иредиолагаемой структурой. [c.23]

    Исследование механизма полимеризации под влиянием щелочноорганических соединений и природы активных центров в этих системах проводилось путем изучения кинетики процесса, микроструктуры и составов полимеров, их молекулярных весов, электронных спектров поглощения и спектров ЭПР, ЯМР, электропроводности и другими методами. Ниже будут рассмотрены результаты таких исследований полимеризации в присутствии натрия, калия, рубидия, цезия и их органических соединений. [c.519]

    Область молекулярных масс 200—600. Осиоиные ноны, полученные в интервале температур 20— 265°С, имеют т/е в интервале 28—559 ИК-спектр показывает наличие соединения углеводородной природы, богатого — Hj— и —СНз" группами (2800—2920 и 1450 см- ), помимо колебаний, характерных для групп >СН—ОН, [c.75]

    Наличие в масс-спектрах сателлитных пиков, обусловленных различной распространенностью изотопов в природе, характерно и для молекулярных, кластерных и осколочных ионов других типов. Пики сателлитных ионов присутствуют и в масс-спектрах соединений, молекулы которых содержат элементы, существующие в природе в виде одного доминирующего изотопа. Необходимо отметить, что в масс-спектрах соединений, содержащих полиизотопные элементы, присутствуют весьма характерные мультиплеты пиков, которые позволяют определить природу и количество таких элементов в молекуле. [c.58]

    Установление структуры органических соединений по масс-спектрам включает определение молекулярной массы, природы и количества функциональных групп, строения скелета молекулы и по возможности пространственного строения. Если эти сведения не удается получить при прямом масс-спектрометри-ческом исследовании, то проводят химическую модификацию образца и последующий анализ масс-спектров модифицированных продуктов. Химическое модифицирование может состоять а) в получении соединения, имеющего интенсивный пик М " б) в целенаправленной трансформации функциональных групп путем их защиты или других химических превращений в) в получении соединения, имеющего более характеристический масс-спектр, который легче интерпретировать на основе общих и специфических закономерностей фрагментации г) в получении гомологов или аналогов (в частности, дейтероаналогов) с последующим исследованием сдвига характеристических ионов при переходе от исходного соединения к модифицированному и др. [c.179]

    Среди многочисленных компонентов биосистем молекулярного уровня исключительная роль в процессах жизнедеятельности, бесспорно, принадлежит белкам. Активно участвуя практически во всех протекающих в клетках и организме процессах, они наделены поистине универсальными биофизическими и биохимическими свойствами. Белки обладают способностью к взаимному превращению всех необходимых для жизни видов энергии тепловой, механической, химической, электрической и световой. Кроме того, они входят в состав соединительных и костных тканей, кожи, волос и других структурных элементов всех уровней живого организма, выполняя динамическую опорную функцию и обеспечивая нежесткую взаимосвязь органов, их механическую целостность и защиту. Нет смысла перечислять все функции белков, спектр их действия огромен. Отметим лишь, что по разнообразию своих физических и химических проявлений белки несопоставимы с возможностями любого другого класса соединений живой и неживой природы. Они "умеют" делать все, и именно поэтому назначение генетического аппарата любого живого организма сведено к хранению информации только о белках и к их синтезу. Биосистемы всех уровней, в том числе и молекулярного, можно считать "произведениями" белков. При функциональной универсальности природных аминокислотных последовательностей деятельность каждого отдельного представителя этого класса уникальна в отношении функции, механизма действия, природы лиганда и внешней среды. И, наконец, белки проявляют высочайшую активность в физиологических, мягких условиях и не образуют при своем функционировании побочных продуктов. [c.50]

    Задача 13.2. В задаче 9.19 на стр. 296 вы рассчитали число колец в р-каротине. Учитывая молекулярную формулу, число двойных связей, сопряжение, нахождение в природе н его превращение в витамин А (стр. 259), предложите возможную структуру р-каротина. Задача 13.3. Соединения А, Б и В имеют формулу jHg и при гидрировании превращаются в н-пентан. В их ультрафиолетовых спектрах имеются следующие максимумы поглощения (Х акс ) для А — 176 нм, для Б — 211 нм и для В —215 нм (для пентена-1 178 нм), а) Какая структура вероятна для соединения А Для соединений Б и В б) Какие дополинтельиые данные необходимы для установления структур Б и В  [c.403]

    Наряду с этим, естественно, необходимо чисто техническое усовершенствование указанных методов применительно к углеводам. В области масс-спектрометрии речь идет прежде всего о конструировании приборов, позволяющих исследовать вещества с молекулярным весом до нескольких тысяч, и использовании других принципов ионизации, например фотоио-низацин, а также о поиске новых типов летучих производных. Для ЯМР-спектроскопии одним из перспективных направлений является изучение зависимости ЯМР-спектров от температуры и природы растворителя и от ее связи с конформацией соединения. [c.627]

    Молекулярная спектроскопия является одним из фундаментальных разделов современной физики, в котором с позиций волновой и квантовой физики изучаются процессы и закономерности взаимодействия электромагнитной радиации с отдельными молекулами и веществом в целом. Методы молекулярной спектроскопии позволяют исследовать вещества, находящиеся в любом агрегатном состоянии, и щироко используются для рещения самых разнообразньгх задач. В частности, анализируя вращательные спектры, можно определить многие параметры нормальной конфигурации молекул (длина связи, углы между связями и т. п.) колебательные спектры обычно используются для идентификации соединений в количественном и структурно-групповом анализе, а также для изучения различных по своей природе внутри- и межмолекулярных взаимодействий электронные спектры применяются как в качественном, так и, главным образом, в количественном анализе. [c.218]

    Масс-спектрометрия позволяет определять молекулярную массу и структуру органических соединений. Молекулярную массу удо5но устанавливать по пику молекулярного иона. В тех случаях, когда пик молекулярных ионов в масс-спектре достаточно интенсивен, можно приближенно рассчитать валовую (брутто) формулу органического соединения по числу атомов каждого вида. Для этого используют соотношение интенсивностей пиков изотопов элементов, входящих в органическое соединение. Например, число атомов углерода в молекуле углеводорода можно точно определить по интенсивности пика иона с массой на единицу большей, чем у молекулярного иона. Этот ион имеет такую же структуру, но содержит атомы С. Естественное содержание изотопа С в природе составляет 1,1%. Поэтому для углеводорода, имеющего один атом углерода, интенсивность пика иона, содержащего С, составит 1,1% от интенсивности пика молекулярного иона, а для иона, содержащего я атомов углерода —1,1 и%. [c.370]

    При облучении в политетрафторэтилене, кроме С 4, образуются и другие продукты. Райан 21] подвергал действию 7-излучения образцы, погруженные в разбавленный раствор едкого натра, и нашел, что при этом образуются фтор-ионы. При воздействии дозы 10 мегафэр выделяется 61,4 мкг фтор-иона на 1 г полимера при 100 мегафэр — 394 и при 1000 мегафэр — 8952 мкг. Последнее значение соответствует примерно 0,5 ммоль фтора. После прекращения облучения наблюдается дополнительное медленное выделение фтора приведенные данные относятся к общему количеству фтора, выделившемуся как во время облучения, так и в течение 30 суток после облучения. Не удалось точно установить природу выделяющегося соединения или соединений определен только фтор-ион. Возможно, что выделяется молекулярный фтор [22], но доказательств справедливости этого до сих пор не опубликовано возможно, что получаются и другие реакционноспособные фрагменты. Райан [21] нашел, что при облучении в политетрас )торэтилене возникает ненасыщенность, что установлено исследованием инфракрасных спектров суспензии облученного политетрафторэтилена в минеральном масле кроме того, наблюдается также обесцвечивание разбавленного кислого раствора перманганата при добавлении облученного политетрафторэтилена. [c.167]

    Знание их особенно важно для исследования заполнения пространства, стерических препятствий, внутренней подвижйости, свободного вращения и т, д. Ясно,, что они различны в зависимости от метода определения, а также и от природы соединения, из которого их определяют они приблизительно вдвое больше, чем радиус каждого атома. Молекулярные радиусы, будут также зависеть от атомных радиусов в направлении химической связи, сумма которых соответствует расстояниию ядер атомов в молекуле. Последнее может быть найдено из полосатых спектров, из инфракрасного спектра, спектра Романа и, особенно, на основании остроумного метода измерения интерференции электронов и рентгеновских лучей (см. ниже). Поэтому атомы в соединениях имеЮт меньшие размеры-в направлении действия валентности. Молекулу не следует себе представлять состоящей из- шаров, изображающих атомы, центры которых совпадают с атомными ядрами ее следует себе представлять.. состоящей из шаров, срезанных со стороны действия валентности. [c.30]


Смотреть страницы где упоминается термин Молекулярные соединения спектры, природа: [c.112]    [c.108]    [c.228]    [c.113]    [c.149]    [c.469]    [c.264]    [c.206]    [c.42]    [c.7]    [c.40]    [c.114]   
Инфракрасные спектры неорганических и координационных соединений (1966) -- [ c.15 ]




ПОИСК





Смотрите так же термины и статьи:

Природа молекулярных спектров

Спектр молекулярный

спектры соединения



© 2024 chem21.info Реклама на сайте